ref: e86bd6a50933e99899d63de755d81b9805827a15
dir: /third_party/boringssl/src/crypto/cmac/cmac.c/
/* ==================================================================== * Copyright (c) 2010 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * licensing@OpenSSL.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== */ #include <openssl/cmac.h> #include <assert.h> #include <string.h> #include <openssl/aes.h> #include <openssl/cipher.h> #include <openssl/mem.h> #include "../internal.h" struct cmac_ctx_st { EVP_CIPHER_CTX cipher_ctx; // k1 and k2 are the CMAC subkeys. See // https://tools.ietf.org/html/rfc4493#section-2.3 uint8_t k1[AES_BLOCK_SIZE]; uint8_t k2[AES_BLOCK_SIZE]; // Last (possibly partial) scratch uint8_t block[AES_BLOCK_SIZE]; // block_used contains the number of valid bytes in |block|. unsigned block_used; }; static void CMAC_CTX_init(CMAC_CTX *ctx) { EVP_CIPHER_CTX_init(&ctx->cipher_ctx); } static void CMAC_CTX_cleanup(CMAC_CTX *ctx) { EVP_CIPHER_CTX_cleanup(&ctx->cipher_ctx); OPENSSL_cleanse(ctx->k1, sizeof(ctx->k1)); OPENSSL_cleanse(ctx->k2, sizeof(ctx->k2)); OPENSSL_cleanse(ctx->block, sizeof(ctx->block)); } int AES_CMAC(uint8_t out[16], const uint8_t *key, size_t key_len, const uint8_t *in, size_t in_len) { const EVP_CIPHER *cipher; switch (key_len) { case 16: cipher = EVP_aes_128_cbc(); break; case 32: cipher = EVP_aes_256_cbc(); break; default: return 0; } size_t scratch_out_len; CMAC_CTX ctx; CMAC_CTX_init(&ctx); const int ok = CMAC_Init(&ctx, key, key_len, cipher, NULL /* engine */) && CMAC_Update(&ctx, in, in_len) && CMAC_Final(&ctx, out, &scratch_out_len); CMAC_CTX_cleanup(&ctx); return ok; } CMAC_CTX *CMAC_CTX_new(void) { CMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx)); if (ctx != NULL) { CMAC_CTX_init(ctx); } return ctx; } void CMAC_CTX_free(CMAC_CTX *ctx) { if (ctx == NULL) { return; } CMAC_CTX_cleanup(ctx); OPENSSL_free(ctx); } int CMAC_CTX_copy(CMAC_CTX *out, const CMAC_CTX *in) { if (!EVP_CIPHER_CTX_copy(&out->cipher_ctx, &in->cipher_ctx)) { return 0; } OPENSSL_memcpy(out->k1, in->k1, AES_BLOCK_SIZE); OPENSSL_memcpy(out->k2, in->k2, AES_BLOCK_SIZE); OPENSSL_memcpy(out->block, in->block, AES_BLOCK_SIZE); out->block_used = in->block_used; return 1; } // binary_field_mul_x_128 treats the 128 bits at |in| as an element of GF(2¹²⁸) // with a hard-coded reduction polynomial and sets |out| as x times the input. // // See https://tools.ietf.org/html/rfc4493#section-2.3 static void binary_field_mul_x_128(uint8_t out[16], const uint8_t in[16]) { unsigned i; // Shift |in| to left, including carry. for (i = 0; i < 15; i++) { out[i] = (in[i] << 1) | (in[i+1] >> 7); } // If MSB set fixup with R. const uint8_t carry = in[0] >> 7; out[i] = (in[i] << 1) ^ ((0 - carry) & 0x87); } // binary_field_mul_x_64 behaves like |binary_field_mul_x_128| but acts on an // element of GF(2⁶⁴). // // See https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf static void binary_field_mul_x_64(uint8_t out[8], const uint8_t in[8]) { unsigned i; // Shift |in| to left, including carry. for (i = 0; i < 7; i++) { out[i] = (in[i] << 1) | (in[i+1] >> 7); } // If MSB set fixup with R. const uint8_t carry = in[0] >> 7; out[i] = (in[i] << 1) ^ ((0 - carry) & 0x1b); } static const uint8_t kZeroIV[AES_BLOCK_SIZE] = {0}; int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t key_len, const EVP_CIPHER *cipher, ENGINE *engine) { uint8_t scratch[AES_BLOCK_SIZE]; size_t block_size = EVP_CIPHER_block_size(cipher); if ((block_size != AES_BLOCK_SIZE && block_size != 8 /* 3-DES */) || EVP_CIPHER_key_length(cipher) != key_len || !EVP_EncryptInit_ex(&ctx->cipher_ctx, cipher, NULL, key, kZeroIV) || !EVP_Cipher(&ctx->cipher_ctx, scratch, kZeroIV, block_size) || // Reset context again ready for first data. !EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV)) { return 0; } if (block_size == AES_BLOCK_SIZE) { binary_field_mul_x_128(ctx->k1, scratch); binary_field_mul_x_128(ctx->k2, ctx->k1); } else { binary_field_mul_x_64(ctx->k1, scratch); binary_field_mul_x_64(ctx->k2, ctx->k1); } ctx->block_used = 0; return 1; } int CMAC_Reset(CMAC_CTX *ctx) { ctx->block_used = 0; return EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV); } int CMAC_Update(CMAC_CTX *ctx, const uint8_t *in, size_t in_len) { size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx); assert(block_size <= AES_BLOCK_SIZE); uint8_t scratch[AES_BLOCK_SIZE]; if (ctx->block_used > 0) { size_t todo = block_size - ctx->block_used; if (in_len < todo) { todo = in_len; } OPENSSL_memcpy(ctx->block + ctx->block_used, in, todo); in += todo; in_len -= todo; ctx->block_used += todo; // If |in_len| is zero then either |ctx->block_used| is less than // |block_size|, in which case we can stop here, or |ctx->block_used| is // exactly |block_size| but there's no more data to process. In the latter // case we don't want to process this block now because it might be the last // block and that block is treated specially. if (in_len == 0) { return 1; } assert(ctx->block_used == block_size); if (!EVP_Cipher(&ctx->cipher_ctx, scratch, ctx->block, block_size)) { return 0; } } // Encrypt all but one of the remaining blocks. while (in_len > block_size) { if (!EVP_Cipher(&ctx->cipher_ctx, scratch, in, block_size)) { return 0; } in += block_size; in_len -= block_size; } OPENSSL_memcpy(ctx->block, in, in_len); ctx->block_used = in_len; return 1; } int CMAC_Final(CMAC_CTX *ctx, uint8_t *out, size_t *out_len) { size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx); assert(block_size <= AES_BLOCK_SIZE); *out_len = block_size; if (out == NULL) { return 1; } const uint8_t *mask = ctx->k1; if (ctx->block_used != block_size) { // If the last block is incomplete, terminate it with a single 'one' bit // followed by zeros. ctx->block[ctx->block_used] = 0x80; OPENSSL_memset(ctx->block + ctx->block_used + 1, 0, block_size - (ctx->block_used + 1)); mask = ctx->k2; } for (unsigned i = 0; i < block_size; i++) { out[i] = ctx->block[i] ^ mask[i]; } return EVP_Cipher(&ctx->cipher_ctx, out, out, block_size); }