ref: bfe9da47cfa2f51ebef78c59332b5ba2deba306d
dir: /third_party/boringssl/src/crypto/fipsmodule/modes/asm/ghash-neon-armv8.pl/
#! /usr/bin/env perl # Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # This file was adapted to AArch64 from the 32-bit version in ghash-armv4.pl. It # implements the multiplication algorithm described in: # # Câmara, D.; Gouvêa, C. P. L.; López, J. & Dahab, R.: Fast Software # Polynomial Multiplication on ARM Processors using the NEON Engine. # # http://conradoplg.cryptoland.net/files/2010/12/mocrysen13.pdf # # The main distinction to keep in mind between 32-bit NEON and AArch64 SIMD is # AArch64 cannot compute over the upper halves of SIMD registers. In 32-bit # NEON, the low and high halves of the 128-bit register q0 are accessible as # 64-bit registers d0 and d1, respectively. In AArch64, dN is the lower half of # vN. Where the 32-bit version would use the upper half, this file must keep # halves in separate registers. # # The other distinction is in syntax. 32-bit NEON embeds lane information in the # instruction name, while AArch64 uses suffixes on the registers. For instance, # left-shifting 64-bit lanes of a SIMD register in 32-bit would be written: # # vshl.i64 q0, q0, #1 # # in 64-bit, it would be written: # # shl v0.2d, v0.2d, #1 # # See Programmer's Guide for ARMv8-A, section 7 for details. # http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/DEN0024A_v8_architecture_PG.pdf # # Finally, note the 8-bit and 64-bit polynomial multipliers in AArch64 differ # only by suffix. pmull vR.8h, vA.8b, vB.8b multiplies eight 8-bit polynomials # and is always available. pmull vR.1q, vA.1d, vB.1d multiplies a 64-bit # polynomial and is conditioned on the PMULL extension. This file emulates the # latter with the former. use strict; my $flavour = shift; my $output; if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; } else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} } if ($flavour && $flavour ne "void") { $0 =~ m/(.*[\/\\])[^\/\\]+$/; my $dir = $1; my $xlate; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; } else { open OUT,">$output"; *STDOUT=*OUT; } my ($Xi, $Htbl, $inp, $len) = map("x$_", (0..3)); # argument block my ($Xl, $Xm, $Xh, $INlo, $INhi) = map("v$_", (0..4)); my ($Hlo, $Hhi, $Hhl) = map("v$_", (5..7)); # d8-d15 are callee-saved, so avoid v8-v15. AArch64 SIMD has plenty of registers # to spare. my ($t0, $t1, $t2, $t3) = map("v$_", (16..19)); my ($t0l_t1l, $t0h_t1h, $t2l_t3l, $t2h_t3h) = map("v$_", (20..23)); my ($k48_k32, $k16_k0) = map("v$_", (24..25)); my $code = ""; # clmul64x64 emits code which emulates pmull $r.1q, $a.1d, $b.1d. $r, $a, and $b # must be distinct from $t* and $k*. $t* are clobbered by the emitted code. sub clmul64x64 { my ($r, $a, $b) = @_; $code .= <<___; ext $t0.8b, $a.8b, $a.8b, #1 // A1 pmull $t0.8h, $t0.8b, $b.8b // F = A1*B ext $r.8b, $b.8b, $b.8b, #1 // B1 pmull $r.8h, $a.8b, $r.8b // E = A*B1 ext $t1.8b, $a.8b, $a.8b, #2 // A2 pmull $t1.8h, $t1.8b, $b.8b // H = A2*B ext $t3.8b, $b.8b, $b.8b, #2 // B2 pmull $t3.8h, $a.8b, $t3.8b // G = A*B2 ext $t2.8b, $a.8b, $a.8b, #3 // A3 eor $t0.16b, $t0.16b, $r.16b // L = E + F pmull $t2.8h, $t2.8b, $b.8b // J = A3*B ext $r.8b, $b.8b, $b.8b, #3 // B3 eor $t1.16b, $t1.16b, $t3.16b // M = G + H pmull $r.8h, $a.8b, $r.8b // I = A*B3 // Here we diverge from the 32-bit version. It computes the following // (instructions reordered for clarity): // // veor \$t0#lo, \$t0#lo, \$t0#hi @ t0 = P0 + P1 (L) // vand \$t0#hi, \$t0#hi, \$k48 // veor \$t0#lo, \$t0#lo, \$t0#hi // // veor \$t1#lo, \$t1#lo, \$t1#hi @ t1 = P2 + P3 (M) // vand \$t1#hi, \$t1#hi, \$k32 // veor \$t1#lo, \$t1#lo, \$t1#hi // // veor \$t2#lo, \$t2#lo, \$t2#hi @ t2 = P4 + P5 (N) // vand \$t2#hi, \$t2#hi, \$k16 // veor \$t2#lo, \$t2#lo, \$t2#hi // // veor \$t3#lo, \$t3#lo, \$t3#hi @ t3 = P6 + P7 (K) // vmov.i64 \$t3#hi, #0 // // \$kN is a mask with the bottom N bits set. AArch64 cannot compute on // upper halves of SIMD registers, so we must split each half into // separate registers. To compensate, we pair computations up and // parallelize. ext $t3.8b, $b.8b, $b.8b, #4 // B4 eor $t2.16b, $t2.16b, $r.16b // N = I + J pmull $t3.8h, $a.8b, $t3.8b // K = A*B4 // This can probably be scheduled more efficiently. For now, we just // pair up independent instructions. zip1 $t0l_t1l.2d, $t0.2d, $t1.2d zip1 $t2l_t3l.2d, $t2.2d, $t3.2d zip2 $t0h_t1h.2d, $t0.2d, $t1.2d zip2 $t2h_t3h.2d, $t2.2d, $t3.2d eor $t0l_t1l.16b, $t0l_t1l.16b, $t0h_t1h.16b eor $t2l_t3l.16b, $t2l_t3l.16b, $t2h_t3h.16b and $t0h_t1h.16b, $t0h_t1h.16b, $k48_k32.16b and $t2h_t3h.16b, $t2h_t3h.16b, $k16_k0.16b eor $t0l_t1l.16b, $t0l_t1l.16b, $t0h_t1h.16b eor $t2l_t3l.16b, $t2l_t3l.16b, $t2h_t3h.16b zip1 $t0.2d, $t0l_t1l.2d, $t0h_t1h.2d zip1 $t2.2d, $t2l_t3l.2d, $t2h_t3h.2d zip2 $t1.2d, $t0l_t1l.2d, $t0h_t1h.2d zip2 $t3.2d, $t2l_t3l.2d, $t2h_t3h.2d ext $t0.16b, $t0.16b, $t0.16b, #15 // t0 = t0 << 8 ext $t1.16b, $t1.16b, $t1.16b, #14 // t1 = t1 << 16 pmull $r.8h, $a.8b, $b.8b // D = A*B ext $t3.16b, $t3.16b, $t3.16b, #12 // t3 = t3 << 32 ext $t2.16b, $t2.16b, $t2.16b, #13 // t2 = t2 << 24 eor $t0.16b, $t0.16b, $t1.16b eor $t2.16b, $t2.16b, $t3.16b eor $r.16b, $r.16b, $t0.16b eor $r.16b, $r.16b, $t2.16b ___ } $code .= <<___; #include <openssl/arm_arch.h> .text .global gcm_init_neon .type gcm_init_neon,%function .align 4 gcm_init_neon: AARCH64_VALID_CALL_TARGET // This function is adapted from gcm_init_v8. xC2 is t3. ld1 {$t1.2d}, [x1] // load H movi $t3.16b, #0xe1 shl $t3.2d, $t3.2d, #57 // 0xc2.0 ext $INlo.16b, $t1.16b, $t1.16b, #8 ushr $t2.2d, $t3.2d, #63 dup $t1.4s, $t1.s[1] ext $t0.16b, $t2.16b, $t3.16b, #8 // t0=0xc2....01 ushr $t2.2d, $INlo.2d, #63 sshr $t1.4s, $t1.4s, #31 // broadcast carry bit and $t2.16b, $t2.16b, $t0.16b shl $INlo.2d, $INlo.2d, #1 ext $t2.16b, $t2.16b, $t2.16b, #8 and $t0.16b, $t0.16b, $t1.16b orr $INlo.16b, $INlo.16b, $t2.16b // H<<<=1 eor $Hlo.16b, $INlo.16b, $t0.16b // twisted H st1 {$Hlo.2d}, [x0] // store Htable[0] ret .size gcm_init_neon,.-gcm_init_neon .global gcm_gmult_neon .type gcm_gmult_neon,%function .align 4 gcm_gmult_neon: AARCH64_VALID_CALL_TARGET ld1 {$INlo.16b}, [$Xi] // load Xi ld1 {$Hlo.1d}, [$Htbl], #8 // load twisted H ld1 {$Hhi.1d}, [$Htbl] adrp x9, :pg_hi21:.Lmasks // load constants add x9, x9, :lo12:.Lmasks ld1 {$k48_k32.2d, $k16_k0.2d}, [x9] rev64 $INlo.16b, $INlo.16b // byteswap Xi ext $INlo.16b, $INlo.16b, $INlo.16b, #8 eor $Hhl.8b, $Hlo.8b, $Hhi.8b // Karatsuba pre-processing mov $len, #16 b .Lgmult_neon .size gcm_gmult_neon,.-gcm_gmult_neon .global gcm_ghash_neon .type gcm_ghash_neon,%function .align 4 gcm_ghash_neon: AARCH64_VALID_CALL_TARGET ld1 {$Xl.16b}, [$Xi] // load Xi ld1 {$Hlo.1d}, [$Htbl], #8 // load twisted H ld1 {$Hhi.1d}, [$Htbl] adrp x9, :pg_hi21:.Lmasks // load constants add x9, x9, :lo12:.Lmasks ld1 {$k48_k32.2d, $k16_k0.2d}, [x9] rev64 $Xl.16b, $Xl.16b // byteswap Xi ext $Xl.16b, $Xl.16b, $Xl.16b, #8 eor $Hhl.8b, $Hlo.8b, $Hhi.8b // Karatsuba pre-processing .Loop_neon: ld1 {$INlo.16b}, [$inp], #16 // load inp rev64 $INlo.16b, $INlo.16b // byteswap inp ext $INlo.16b, $INlo.16b, $INlo.16b, #8 eor $INlo.16b, $INlo.16b, $Xl.16b // inp ^= Xi .Lgmult_neon: // Split the input into $INlo and $INhi. (The upper halves are unused, // so it is okay to leave them alone.) ins $INhi.d[0], $INlo.d[1] ___ &clmul64x64 ($Xl, $Hlo, $INlo); # H.lo·Xi.lo $code .= <<___; eor $INlo.8b, $INlo.8b, $INhi.8b // Karatsuba pre-processing ___ &clmul64x64 ($Xm, $Hhl, $INlo); # (H.lo+H.hi)·(Xi.lo+Xi.hi) &clmul64x64 ($Xh, $Hhi, $INhi); # H.hi·Xi.hi $code .= <<___; ext $t0.16b, $Xl.16b, $Xh.16b, #8 eor $Xm.16b, $Xm.16b, $Xl.16b // Karatsuba post-processing eor $Xm.16b, $Xm.16b, $Xh.16b eor $Xm.16b, $Xm.16b, $t0.16b // Xm overlaps Xh.lo and Xl.hi ins $Xl.d[1], $Xm.d[0] // Xh|Xl - 256-bit result // This is a no-op due to the ins instruction below. // ins $Xh.d[0], $Xm.d[1] // equivalent of reduction_avx from ghash-x86_64.pl shl $t1.2d, $Xl.2d, #57 // 1st phase shl $t2.2d, $Xl.2d, #62 eor $t2.16b, $t2.16b, $t1.16b // shl $t1.2d, $Xl.2d, #63 eor $t2.16b, $t2.16b, $t1.16b // // Note Xm contains {Xl.d[1], Xh.d[0]}. eor $t2.16b, $t2.16b, $Xm.16b ins $Xl.d[1], $t2.d[0] // Xl.d[1] ^= t2.d[0] ins $Xh.d[0], $t2.d[1] // Xh.d[0] ^= t2.d[1] ushr $t2.2d, $Xl.2d, #1 // 2nd phase eor $Xh.16b, $Xh.16b,$Xl.16b eor $Xl.16b, $Xl.16b,$t2.16b // ushr $t2.2d, $t2.2d, #6 ushr $Xl.2d, $Xl.2d, #1 // eor $Xl.16b, $Xl.16b, $Xh.16b // eor $Xl.16b, $Xl.16b, $t2.16b // subs $len, $len, #16 bne .Loop_neon rev64 $Xl.16b, $Xl.16b // byteswap Xi and write ext $Xl.16b, $Xl.16b, $Xl.16b, #8 st1 {$Xl.16b}, [$Xi] ret .size gcm_ghash_neon,.-gcm_ghash_neon .section .rodata .align 4 .Lmasks: .quad 0x0000ffffffffffff // k48 .quad 0x00000000ffffffff // k32 .quad 0x000000000000ffff // k16 .quad 0x0000000000000000 // k0 .asciz "GHASH for ARMv8, derived from ARMv4 version by <appro\@openssl.org>" .align 2 ___ foreach (split("\n",$code)) { s/\`([^\`]*)\`/eval $1/geo; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!"; # enforce flush