ref: bfe9da47cfa2f51ebef78c59332b5ba2deba306d
dir: /third_party/boringssl/src/crypto/fipsmodule/bn/asm/armv8-mont.pl/
#! /usr/bin/env perl # Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the OpenSSL license (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # ==================================================================== # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # March 2015 # # "Teaser" Montgomery multiplication module for ARMv8. Needs more # work. While it does improve RSA sign performance by 20-30% (less for # longer keys) on most processors, for some reason RSA2048 is not # faster and RSA4096 goes 15-20% slower on Cortex-A57. Multiplication # instruction issue rate is limited on processor in question, meaning # that dedicated squaring procedure is a must. Well, actually all # contemporary AArch64 processors seem to have limited multiplication # issue rate, i.e. they can't issue multiplication every cycle, which # explains moderate improvement coefficients in comparison to # compiler-generated code. Recall that compiler is instructed to use # umulh and therefore uses same amount of multiplication instructions # to do the job. Assembly's edge is to minimize number of "collateral" # instructions and of course instruction scheduling. # # April 2015 # # Squaring procedure that handles lengths divisible by 8 improves # RSA/DSA performance by 25-40-60% depending on processor and key # length. Overall improvement coefficients are always positive in # comparison to compiler-generated code. On Cortex-A57 improvement # is still modest on longest key lengths, while others exhibit e.g. # 50-70% improvement for RSA4096 sign. RSA2048 sign is ~25% faster # on Cortex-A57 and ~60-100% faster on others. $flavour = shift; $output = shift; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; *STDOUT=*OUT; ($lo0,$hi0,$aj,$m0,$alo,$ahi, $lo1,$hi1,$nj,$m1,$nlo,$nhi, $ovf, $i,$j,$tp,$tj) = map("x$_",6..17,19..24); # int bn_mul_mont( $rp="x0"; # BN_ULONG *rp, $ap="x1"; # const BN_ULONG *ap, $bp="x2"; # const BN_ULONG *bp, $np="x3"; # const BN_ULONG *np, $n0="x4"; # const BN_ULONG *n0, $num="x5"; # size_t num); $code.=<<___; #include <openssl/arm_arch.h> .text .globl bn_mul_mont .type bn_mul_mont,%function .align 5 bn_mul_mont: AARCH64_SIGN_LINK_REGISTER tst $num,#7 b.eq __bn_sqr8x_mont tst $num,#3 b.eq __bn_mul4x_mont .Lmul_mont: stp x29,x30,[sp,#-64]! add x29,sp,#0 stp x19,x20,[sp,#16] stp x21,x22,[sp,#32] stp x23,x24,[sp,#48] ldr $m0,[$bp],#8 // bp[0] sub $tp,sp,$num,lsl#3 ldp $hi0,$aj,[$ap],#16 // ap[0..1] lsl $num,$num,#3 ldr $n0,[$n0] // *n0 and $tp,$tp,#-16 // ABI says so ldp $hi1,$nj,[$np],#16 // np[0..1] mul $lo0,$hi0,$m0 // ap[0]*bp[0] sub $j,$num,#16 // j=num-2 umulh $hi0,$hi0,$m0 mul $alo,$aj,$m0 // ap[1]*bp[0] umulh $ahi,$aj,$m0 mul $m1,$lo0,$n0 // "tp[0]"*n0 mov sp,$tp // alloca // (*) mul $lo1,$hi1,$m1 // np[0]*m1 umulh $hi1,$hi1,$m1 mul $nlo,$nj,$m1 // np[1]*m1 // (*) adds $lo1,$lo1,$lo0 // discarded // (*) As for removal of first multiplication and addition // instructions. The outcome of first addition is // guaranteed to be zero, which leaves two computationally // significant outcomes: it either carries or not. Then // question is when does it carry? Is there alternative // way to deduce it? If you follow operations, you can // observe that condition for carry is quite simple: // $lo0 being non-zero. So that carry can be calculated // by adding -1 to $lo0. That's what next instruction does. subs xzr,$lo0,#1 // (*) umulh $nhi,$nj,$m1 adc $hi1,$hi1,xzr cbz $j,.L1st_skip .L1st: ldr $aj,[$ap],#8 adds $lo0,$alo,$hi0 sub $j,$j,#8 // j-- adc $hi0,$ahi,xzr ldr $nj,[$np],#8 adds $lo1,$nlo,$hi1 mul $alo,$aj,$m0 // ap[j]*bp[0] adc $hi1,$nhi,xzr umulh $ahi,$aj,$m0 adds $lo1,$lo1,$lo0 mul $nlo,$nj,$m1 // np[j]*m1 adc $hi1,$hi1,xzr umulh $nhi,$nj,$m1 str $lo1,[$tp],#8 // tp[j-1] cbnz $j,.L1st .L1st_skip: adds $lo0,$alo,$hi0 sub $ap,$ap,$num // rewind $ap adc $hi0,$ahi,xzr adds $lo1,$nlo,$hi1 sub $np,$np,$num // rewind $np adc $hi1,$nhi,xzr adds $lo1,$lo1,$lo0 sub $i,$num,#8 // i=num-1 adcs $hi1,$hi1,$hi0 adc $ovf,xzr,xzr // upmost overflow bit stp $lo1,$hi1,[$tp] .Louter: ldr $m0,[$bp],#8 // bp[i] ldp $hi0,$aj,[$ap],#16 ldr $tj,[sp] // tp[0] add $tp,sp,#8 mul $lo0,$hi0,$m0 // ap[0]*bp[i] sub $j,$num,#16 // j=num-2 umulh $hi0,$hi0,$m0 ldp $hi1,$nj,[$np],#16 mul $alo,$aj,$m0 // ap[1]*bp[i] adds $lo0,$lo0,$tj umulh $ahi,$aj,$m0 adc $hi0,$hi0,xzr mul $m1,$lo0,$n0 sub $i,$i,#8 // i-- // (*) mul $lo1,$hi1,$m1 // np[0]*m1 umulh $hi1,$hi1,$m1 mul $nlo,$nj,$m1 // np[1]*m1 // (*) adds $lo1,$lo1,$lo0 subs xzr,$lo0,#1 // (*) umulh $nhi,$nj,$m1 cbz $j,.Linner_skip .Linner: ldr $aj,[$ap],#8 adc $hi1,$hi1,xzr ldr $tj,[$tp],#8 // tp[j] adds $lo0,$alo,$hi0 sub $j,$j,#8 // j-- adc $hi0,$ahi,xzr adds $lo1,$nlo,$hi1 ldr $nj,[$np],#8 adc $hi1,$nhi,xzr mul $alo,$aj,$m0 // ap[j]*bp[i] adds $lo0,$lo0,$tj umulh $ahi,$aj,$m0 adc $hi0,$hi0,xzr mul $nlo,$nj,$m1 // np[j]*m1 adds $lo1,$lo1,$lo0 umulh $nhi,$nj,$m1 str $lo1,[$tp,#-16] // tp[j-1] cbnz $j,.Linner .Linner_skip: ldr $tj,[$tp],#8 // tp[j] adc $hi1,$hi1,xzr adds $lo0,$alo,$hi0 sub $ap,$ap,$num // rewind $ap adc $hi0,$ahi,xzr adds $lo1,$nlo,$hi1 sub $np,$np,$num // rewind $np adcs $hi1,$nhi,$ovf adc $ovf,xzr,xzr adds $lo0,$lo0,$tj adc $hi0,$hi0,xzr adds $lo1,$lo1,$lo0 adcs $hi1,$hi1,$hi0 adc $ovf,$ovf,xzr // upmost overflow bit stp $lo1,$hi1,[$tp,#-16] cbnz $i,.Louter // Final step. We see if result is larger than modulus, and // if it is, subtract the modulus. But comparison implies // subtraction. So we subtract modulus, see if it borrowed, // and conditionally copy original value. ldr $tj,[sp] // tp[0] add $tp,sp,#8 ldr $nj,[$np],#8 // np[0] subs $j,$num,#8 // j=num-1 and clear borrow mov $ap,$rp .Lsub: sbcs $aj,$tj,$nj // tp[j]-np[j] ldr $tj,[$tp],#8 sub $j,$j,#8 // j-- ldr $nj,[$np],#8 str $aj,[$ap],#8 // rp[j]=tp[j]-np[j] cbnz $j,.Lsub sbcs $aj,$tj,$nj sbcs $ovf,$ovf,xzr // did it borrow? str $aj,[$ap],#8 // rp[num-1] ldr $tj,[sp] // tp[0] add $tp,sp,#8 ldr $aj,[$rp],#8 // rp[0] sub $num,$num,#8 // num-- nop .Lcond_copy: sub $num,$num,#8 // num-- csel $nj,$tj,$aj,lo // did it borrow? ldr $tj,[$tp],#8 ldr $aj,[$rp],#8 str xzr,[$tp,#-16] // wipe tp str $nj,[$rp,#-16] cbnz $num,.Lcond_copy csel $nj,$tj,$aj,lo str xzr,[$tp,#-8] // wipe tp str $nj,[$rp,#-8] ldp x19,x20,[x29,#16] mov sp,x29 ldp x21,x22,[x29,#32] mov x0,#1 ldp x23,x24,[x29,#48] ldr x29,[sp],#64 AARCH64_VALIDATE_LINK_REGISTER ret .size bn_mul_mont,.-bn_mul_mont ___ { ######################################################################## # Following is ARMv8 adaptation of sqrx8x_mont from x86_64-mont5 module. my ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("x$_",(6..13)); my ($t0,$t1,$t2,$t3)=map("x$_",(14..17)); my ($acc0,$acc1,$acc2,$acc3,$acc4,$acc5,$acc6,$acc7)=map("x$_",(19..26)); my ($cnt,$carry,$topmost)=("x27","x28","x30"); my ($tp,$ap_end,$na0)=($bp,$np,$carry); $code.=<<___; .type __bn_sqr8x_mont,%function .align 5 __bn_sqr8x_mont: // Not adding AARCH64_SIGN_LINK_REGISTER here because __bn_sqr8x_mont is jumped to // only from bn_mul_mont which has already signed the return address. cmp $ap,$bp b.ne __bn_mul4x_mont .Lsqr8x_mont: stp x29,x30,[sp,#-128]! add x29,sp,#0 stp x19,x20,[sp,#16] stp x21,x22,[sp,#32] stp x23,x24,[sp,#48] stp x25,x26,[sp,#64] stp x27,x28,[sp,#80] stp $rp,$np,[sp,#96] // offload rp and np ldp $a0,$a1,[$ap,#8*0] ldp $a2,$a3,[$ap,#8*2] ldp $a4,$a5,[$ap,#8*4] ldp $a6,$a7,[$ap,#8*6] sub $tp,sp,$num,lsl#4 lsl $num,$num,#3 ldr $n0,[$n0] // *n0 mov sp,$tp // alloca sub $cnt,$num,#8*8 b .Lsqr8x_zero_start .Lsqr8x_zero: sub $cnt,$cnt,#8*8 stp xzr,xzr,[$tp,#8*0] stp xzr,xzr,[$tp,#8*2] stp xzr,xzr,[$tp,#8*4] stp xzr,xzr,[$tp,#8*6] .Lsqr8x_zero_start: stp xzr,xzr,[$tp,#8*8] stp xzr,xzr,[$tp,#8*10] stp xzr,xzr,[$tp,#8*12] stp xzr,xzr,[$tp,#8*14] add $tp,$tp,#8*16 cbnz $cnt,.Lsqr8x_zero add $ap_end,$ap,$num add $ap,$ap,#8*8 mov $acc0,xzr mov $acc1,xzr mov $acc2,xzr mov $acc3,xzr mov $acc4,xzr mov $acc5,xzr mov $acc6,xzr mov $acc7,xzr mov $tp,sp str $n0,[x29,#112] // offload n0 // Multiply everything but a[i]*a[i] .align 4 .Lsqr8x_outer_loop: // a[1]a[0] (i) // a[2]a[0] // a[3]a[0] // a[4]a[0] // a[5]a[0] // a[6]a[0] // a[7]a[0] // a[2]a[1] (ii) // a[3]a[1] // a[4]a[1] // a[5]a[1] // a[6]a[1] // a[7]a[1] // a[3]a[2] (iii) // a[4]a[2] // a[5]a[2] // a[6]a[2] // a[7]a[2] // a[4]a[3] (iv) // a[5]a[3] // a[6]a[3] // a[7]a[3] // a[5]a[4] (v) // a[6]a[4] // a[7]a[4] // a[6]a[5] (vi) // a[7]a[5] // a[7]a[6] (vii) mul $t0,$a1,$a0 // lo(a[1..7]*a[0]) (i) mul $t1,$a2,$a0 mul $t2,$a3,$a0 mul $t3,$a4,$a0 adds $acc1,$acc1,$t0 // t[1]+lo(a[1]*a[0]) mul $t0,$a5,$a0 adcs $acc2,$acc2,$t1 mul $t1,$a6,$a0 adcs $acc3,$acc3,$t2 mul $t2,$a7,$a0 adcs $acc4,$acc4,$t3 umulh $t3,$a1,$a0 // hi(a[1..7]*a[0]) adcs $acc5,$acc5,$t0 umulh $t0,$a2,$a0 adcs $acc6,$acc6,$t1 umulh $t1,$a3,$a0 adcs $acc7,$acc7,$t2 umulh $t2,$a4,$a0 stp $acc0,$acc1,[$tp],#8*2 // t[0..1] adc $acc0,xzr,xzr // t[8] adds $acc2,$acc2,$t3 // t[2]+lo(a[1]*a[0]) umulh $t3,$a5,$a0 adcs $acc3,$acc3,$t0 umulh $t0,$a6,$a0 adcs $acc4,$acc4,$t1 umulh $t1,$a7,$a0 adcs $acc5,$acc5,$t2 mul $t2,$a2,$a1 // lo(a[2..7]*a[1]) (ii) adcs $acc6,$acc6,$t3 mul $t3,$a3,$a1 adcs $acc7,$acc7,$t0 mul $t0,$a4,$a1 adc $acc0,$acc0,$t1 mul $t1,$a5,$a1 adds $acc3,$acc3,$t2 mul $t2,$a6,$a1 adcs $acc4,$acc4,$t3 mul $t3,$a7,$a1 adcs $acc5,$acc5,$t0 umulh $t0,$a2,$a1 // hi(a[2..7]*a[1]) adcs $acc6,$acc6,$t1 umulh $t1,$a3,$a1 adcs $acc7,$acc7,$t2 umulh $t2,$a4,$a1 adcs $acc0,$acc0,$t3 umulh $t3,$a5,$a1 stp $acc2,$acc3,[$tp],#8*2 // t[2..3] adc $acc1,xzr,xzr // t[9] adds $acc4,$acc4,$t0 umulh $t0,$a6,$a1 adcs $acc5,$acc5,$t1 umulh $t1,$a7,$a1 adcs $acc6,$acc6,$t2 mul $t2,$a3,$a2 // lo(a[3..7]*a[2]) (iii) adcs $acc7,$acc7,$t3 mul $t3,$a4,$a2 adcs $acc0,$acc0,$t0 mul $t0,$a5,$a2 adc $acc1,$acc1,$t1 mul $t1,$a6,$a2 adds $acc5,$acc5,$t2 mul $t2,$a7,$a2 adcs $acc6,$acc6,$t3 umulh $t3,$a3,$a2 // hi(a[3..7]*a[2]) adcs $acc7,$acc7,$t0 umulh $t0,$a4,$a2 adcs $acc0,$acc0,$t1 umulh $t1,$a5,$a2 adcs $acc1,$acc1,$t2 umulh $t2,$a6,$a2 stp $acc4,$acc5,[$tp],#8*2 // t[4..5] adc $acc2,xzr,xzr // t[10] adds $acc6,$acc6,$t3 umulh $t3,$a7,$a2 adcs $acc7,$acc7,$t0 mul $t0,$a4,$a3 // lo(a[4..7]*a[3]) (iv) adcs $acc0,$acc0,$t1 mul $t1,$a5,$a3 adcs $acc1,$acc1,$t2 mul $t2,$a6,$a3 adc $acc2,$acc2,$t3 mul $t3,$a7,$a3 adds $acc7,$acc7,$t0 umulh $t0,$a4,$a3 // hi(a[4..7]*a[3]) adcs $acc0,$acc0,$t1 umulh $t1,$a5,$a3 adcs $acc1,$acc1,$t2 umulh $t2,$a6,$a3 adcs $acc2,$acc2,$t3 umulh $t3,$a7,$a3 stp $acc6,$acc7,[$tp],#8*2 // t[6..7] adc $acc3,xzr,xzr // t[11] adds $acc0,$acc0,$t0 mul $t0,$a5,$a4 // lo(a[5..7]*a[4]) (v) adcs $acc1,$acc1,$t1 mul $t1,$a6,$a4 adcs $acc2,$acc2,$t2 mul $t2,$a7,$a4 adc $acc3,$acc3,$t3 umulh $t3,$a5,$a4 // hi(a[5..7]*a[4]) adds $acc1,$acc1,$t0 umulh $t0,$a6,$a4 adcs $acc2,$acc2,$t1 umulh $t1,$a7,$a4 adcs $acc3,$acc3,$t2 mul $t2,$a6,$a5 // lo(a[6..7]*a[5]) (vi) adc $acc4,xzr,xzr // t[12] adds $acc2,$acc2,$t3 mul $t3,$a7,$a5 adcs $acc3,$acc3,$t0 umulh $t0,$a6,$a5 // hi(a[6..7]*a[5]) adc $acc4,$acc4,$t1 umulh $t1,$a7,$a5 adds $acc3,$acc3,$t2 mul $t2,$a7,$a6 // lo(a[7]*a[6]) (vii) adcs $acc4,$acc4,$t3 umulh $t3,$a7,$a6 // hi(a[7]*a[6]) adc $acc5,xzr,xzr // t[13] adds $acc4,$acc4,$t0 sub $cnt,$ap_end,$ap // done yet? adc $acc5,$acc5,$t1 adds $acc5,$acc5,$t2 sub $t0,$ap_end,$num // rewinded ap adc $acc6,xzr,xzr // t[14] add $acc6,$acc6,$t3 cbz $cnt,.Lsqr8x_outer_break mov $n0,$a0 ldp $a0,$a1,[$tp,#8*0] ldp $a2,$a3,[$tp,#8*2] ldp $a4,$a5,[$tp,#8*4] ldp $a6,$a7,[$tp,#8*6] adds $acc0,$acc0,$a0 adcs $acc1,$acc1,$a1 ldp $a0,$a1,[$ap,#8*0] adcs $acc2,$acc2,$a2 adcs $acc3,$acc3,$a3 ldp $a2,$a3,[$ap,#8*2] adcs $acc4,$acc4,$a4 adcs $acc5,$acc5,$a5 ldp $a4,$a5,[$ap,#8*4] adcs $acc6,$acc6,$a6 mov $rp,$ap adcs $acc7,xzr,$a7 ldp $a6,$a7,[$ap,#8*6] add $ap,$ap,#8*8 //adc $carry,xzr,xzr // moved below mov $cnt,#-8*8 // a[8]a[0] // a[9]a[0] // a[a]a[0] // a[b]a[0] // a[c]a[0] // a[d]a[0] // a[e]a[0] // a[f]a[0] // a[8]a[1] // a[f]a[1]........................ // a[8]a[2] // a[f]a[2]........................ // a[8]a[3] // a[f]a[3]........................ // a[8]a[4] // a[f]a[4]........................ // a[8]a[5] // a[f]a[5]........................ // a[8]a[6] // a[f]a[6]........................ // a[8]a[7] // a[f]a[7]........................ .Lsqr8x_mul: mul $t0,$a0,$n0 adc $carry,xzr,xzr // carry bit, modulo-scheduled mul $t1,$a1,$n0 add $cnt,$cnt,#8 mul $t2,$a2,$n0 mul $t3,$a3,$n0 adds $acc0,$acc0,$t0 mul $t0,$a4,$n0 adcs $acc1,$acc1,$t1 mul $t1,$a5,$n0 adcs $acc2,$acc2,$t2 mul $t2,$a6,$n0 adcs $acc3,$acc3,$t3 mul $t3,$a7,$n0 adcs $acc4,$acc4,$t0 umulh $t0,$a0,$n0 adcs $acc5,$acc5,$t1 umulh $t1,$a1,$n0 adcs $acc6,$acc6,$t2 umulh $t2,$a2,$n0 adcs $acc7,$acc7,$t3 umulh $t3,$a3,$n0 adc $carry,$carry,xzr str $acc0,[$tp],#8 adds $acc0,$acc1,$t0 umulh $t0,$a4,$n0 adcs $acc1,$acc2,$t1 umulh $t1,$a5,$n0 adcs $acc2,$acc3,$t2 umulh $t2,$a6,$n0 adcs $acc3,$acc4,$t3 umulh $t3,$a7,$n0 ldr $n0,[$rp,$cnt] adcs $acc4,$acc5,$t0 adcs $acc5,$acc6,$t1 adcs $acc6,$acc7,$t2 adcs $acc7,$carry,$t3 //adc $carry,xzr,xzr // moved above cbnz $cnt,.Lsqr8x_mul // note that carry flag is guaranteed // to be zero at this point cmp $ap,$ap_end // done yet? b.eq .Lsqr8x_break ldp $a0,$a1,[$tp,#8*0] ldp $a2,$a3,[$tp,#8*2] ldp $a4,$a5,[$tp,#8*4] ldp $a6,$a7,[$tp,#8*6] adds $acc0,$acc0,$a0 ldr $n0,[$rp,#-8*8] adcs $acc1,$acc1,$a1 ldp $a0,$a1,[$ap,#8*0] adcs $acc2,$acc2,$a2 adcs $acc3,$acc3,$a3 ldp $a2,$a3,[$ap,#8*2] adcs $acc4,$acc4,$a4 adcs $acc5,$acc5,$a5 ldp $a4,$a5,[$ap,#8*4] adcs $acc6,$acc6,$a6 mov $cnt,#-8*8 adcs $acc7,$acc7,$a7 ldp $a6,$a7,[$ap,#8*6] add $ap,$ap,#8*8 //adc $carry,xzr,xzr // moved above b .Lsqr8x_mul .align 4 .Lsqr8x_break: ldp $a0,$a1,[$rp,#8*0] add $ap,$rp,#8*8 ldp $a2,$a3,[$rp,#8*2] sub $t0,$ap_end,$ap // is it last iteration? ldp $a4,$a5,[$rp,#8*4] sub $t1,$tp,$t0 ldp $a6,$a7,[$rp,#8*6] cbz $t0,.Lsqr8x_outer_loop stp $acc0,$acc1,[$tp,#8*0] ldp $acc0,$acc1,[$t1,#8*0] stp $acc2,$acc3,[$tp,#8*2] ldp $acc2,$acc3,[$t1,#8*2] stp $acc4,$acc5,[$tp,#8*4] ldp $acc4,$acc5,[$t1,#8*4] stp $acc6,$acc7,[$tp,#8*6] mov $tp,$t1 ldp $acc6,$acc7,[$t1,#8*6] b .Lsqr8x_outer_loop .align 4 .Lsqr8x_outer_break: // Now multiply above result by 2 and add a[n-1]*a[n-1]|...|a[0]*a[0] ldp $a1,$a3,[$t0,#8*0] // recall that $t0 is &a[0] ldp $t1,$t2,[sp,#8*1] ldp $a5,$a7,[$t0,#8*2] add $ap,$t0,#8*4 ldp $t3,$t0,[sp,#8*3] stp $acc0,$acc1,[$tp,#8*0] mul $acc0,$a1,$a1 stp $acc2,$acc3,[$tp,#8*2] umulh $a1,$a1,$a1 stp $acc4,$acc5,[$tp,#8*4] mul $a2,$a3,$a3 stp $acc6,$acc7,[$tp,#8*6] mov $tp,sp umulh $a3,$a3,$a3 adds $acc1,$a1,$t1,lsl#1 extr $t1,$t2,$t1,#63 sub $cnt,$num,#8*4 .Lsqr4x_shift_n_add: adcs $acc2,$a2,$t1 extr $t2,$t3,$t2,#63 sub $cnt,$cnt,#8*4 adcs $acc3,$a3,$t2 ldp $t1,$t2,[$tp,#8*5] mul $a4,$a5,$a5 ldp $a1,$a3,[$ap],#8*2 umulh $a5,$a5,$a5 mul $a6,$a7,$a7 umulh $a7,$a7,$a7 extr $t3,$t0,$t3,#63 stp $acc0,$acc1,[$tp,#8*0] adcs $acc4,$a4,$t3 extr $t0,$t1,$t0,#63 stp $acc2,$acc3,[$tp,#8*2] adcs $acc5,$a5,$t0 ldp $t3,$t0,[$tp,#8*7] extr $t1,$t2,$t1,#63 adcs $acc6,$a6,$t1 extr $t2,$t3,$t2,#63 adcs $acc7,$a7,$t2 ldp $t1,$t2,[$tp,#8*9] mul $a0,$a1,$a1 ldp $a5,$a7,[$ap],#8*2 umulh $a1,$a1,$a1 mul $a2,$a3,$a3 umulh $a3,$a3,$a3 stp $acc4,$acc5,[$tp,#8*4] extr $t3,$t0,$t3,#63 stp $acc6,$acc7,[$tp,#8*6] add $tp,$tp,#8*8 adcs $acc0,$a0,$t3 extr $t0,$t1,$t0,#63 adcs $acc1,$a1,$t0 ldp $t3,$t0,[$tp,#8*3] extr $t1,$t2,$t1,#63 cbnz $cnt,.Lsqr4x_shift_n_add ___ my ($np,$np_end)=($ap,$ap_end); $code.=<<___; ldp $np,$n0,[x29,#104] // pull np and n0 adcs $acc2,$a2,$t1 extr $t2,$t3,$t2,#63 adcs $acc3,$a3,$t2 ldp $t1,$t2,[$tp,#8*5] mul $a4,$a5,$a5 umulh $a5,$a5,$a5 stp $acc0,$acc1,[$tp,#8*0] mul $a6,$a7,$a7 umulh $a7,$a7,$a7 stp $acc2,$acc3,[$tp,#8*2] extr $t3,$t0,$t3,#63 adcs $acc4,$a4,$t3 extr $t0,$t1,$t0,#63 ldp $acc0,$acc1,[sp,#8*0] adcs $acc5,$a5,$t0 extr $t1,$t2,$t1,#63 ldp $a0,$a1,[$np,#8*0] adcs $acc6,$a6,$t1 extr $t2,xzr,$t2,#63 ldp $a2,$a3,[$np,#8*2] adc $acc7,$a7,$t2 ldp $a4,$a5,[$np,#8*4] // Reduce by 512 bits per iteration mul $na0,$n0,$acc0 // t[0]*n0 ldp $a6,$a7,[$np,#8*6] add $np_end,$np,$num ldp $acc2,$acc3,[sp,#8*2] stp $acc4,$acc5,[$tp,#8*4] ldp $acc4,$acc5,[sp,#8*4] stp $acc6,$acc7,[$tp,#8*6] ldp $acc6,$acc7,[sp,#8*6] add $np,$np,#8*8 mov $topmost,xzr // initial top-most carry mov $tp,sp mov $cnt,#8 .Lsqr8x_reduction: // (*) mul $t0,$a0,$na0 // lo(n[0-7])*lo(t[0]*n0) mul $t1,$a1,$na0 sub $cnt,$cnt,#1 mul $t2,$a2,$na0 str $na0,[$tp],#8 // put aside t[0]*n0 for tail processing mul $t3,$a3,$na0 // (*) adds xzr,$acc0,$t0 subs xzr,$acc0,#1 // (*) mul $t0,$a4,$na0 adcs $acc0,$acc1,$t1 mul $t1,$a5,$na0 adcs $acc1,$acc2,$t2 mul $t2,$a6,$na0 adcs $acc2,$acc3,$t3 mul $t3,$a7,$na0 adcs $acc3,$acc4,$t0 umulh $t0,$a0,$na0 // hi(n[0-7])*lo(t[0]*n0) adcs $acc4,$acc5,$t1 umulh $t1,$a1,$na0 adcs $acc5,$acc6,$t2 umulh $t2,$a2,$na0 adcs $acc6,$acc7,$t3 umulh $t3,$a3,$na0 adc $acc7,xzr,xzr adds $acc0,$acc0,$t0 umulh $t0,$a4,$na0 adcs $acc1,$acc1,$t1 umulh $t1,$a5,$na0 adcs $acc2,$acc2,$t2 umulh $t2,$a6,$na0 adcs $acc3,$acc3,$t3 umulh $t3,$a7,$na0 mul $na0,$n0,$acc0 // next t[0]*n0 adcs $acc4,$acc4,$t0 adcs $acc5,$acc5,$t1 adcs $acc6,$acc6,$t2 adc $acc7,$acc7,$t3 cbnz $cnt,.Lsqr8x_reduction ldp $t0,$t1,[$tp,#8*0] ldp $t2,$t3,[$tp,#8*2] mov $rp,$tp sub $cnt,$np_end,$np // done yet? adds $acc0,$acc0,$t0 adcs $acc1,$acc1,$t1 ldp $t0,$t1,[$tp,#8*4] adcs $acc2,$acc2,$t2 adcs $acc3,$acc3,$t3 ldp $t2,$t3,[$tp,#8*6] adcs $acc4,$acc4,$t0 adcs $acc5,$acc5,$t1 adcs $acc6,$acc6,$t2 adcs $acc7,$acc7,$t3 //adc $carry,xzr,xzr // moved below cbz $cnt,.Lsqr8x8_post_condition ldr $n0,[$tp,#-8*8] ldp $a0,$a1,[$np,#8*0] ldp $a2,$a3,[$np,#8*2] ldp $a4,$a5,[$np,#8*4] mov $cnt,#-8*8 ldp $a6,$a7,[$np,#8*6] add $np,$np,#8*8 .Lsqr8x_tail: mul $t0,$a0,$n0 adc $carry,xzr,xzr // carry bit, modulo-scheduled mul $t1,$a1,$n0 add $cnt,$cnt,#8 mul $t2,$a2,$n0 mul $t3,$a3,$n0 adds $acc0,$acc0,$t0 mul $t0,$a4,$n0 adcs $acc1,$acc1,$t1 mul $t1,$a5,$n0 adcs $acc2,$acc2,$t2 mul $t2,$a6,$n0 adcs $acc3,$acc3,$t3 mul $t3,$a7,$n0 adcs $acc4,$acc4,$t0 umulh $t0,$a0,$n0 adcs $acc5,$acc5,$t1 umulh $t1,$a1,$n0 adcs $acc6,$acc6,$t2 umulh $t2,$a2,$n0 adcs $acc7,$acc7,$t3 umulh $t3,$a3,$n0 adc $carry,$carry,xzr str $acc0,[$tp],#8 adds $acc0,$acc1,$t0 umulh $t0,$a4,$n0 adcs $acc1,$acc2,$t1 umulh $t1,$a5,$n0 adcs $acc2,$acc3,$t2 umulh $t2,$a6,$n0 adcs $acc3,$acc4,$t3 umulh $t3,$a7,$n0 ldr $n0,[$rp,$cnt] adcs $acc4,$acc5,$t0 adcs $acc5,$acc6,$t1 adcs $acc6,$acc7,$t2 adcs $acc7,$carry,$t3 //adc $carry,xzr,xzr // moved above cbnz $cnt,.Lsqr8x_tail // note that carry flag is guaranteed // to be zero at this point ldp $a0,$a1,[$tp,#8*0] sub $cnt,$np_end,$np // done yet? sub $t2,$np_end,$num // rewinded np ldp $a2,$a3,[$tp,#8*2] ldp $a4,$a5,[$tp,#8*4] ldp $a6,$a7,[$tp,#8*6] cbz $cnt,.Lsqr8x_tail_break ldr $n0,[$rp,#-8*8] adds $acc0,$acc0,$a0 adcs $acc1,$acc1,$a1 ldp $a0,$a1,[$np,#8*0] adcs $acc2,$acc2,$a2 adcs $acc3,$acc3,$a3 ldp $a2,$a3,[$np,#8*2] adcs $acc4,$acc4,$a4 adcs $acc5,$acc5,$a5 ldp $a4,$a5,[$np,#8*4] adcs $acc6,$acc6,$a6 mov $cnt,#-8*8 adcs $acc7,$acc7,$a7 ldp $a6,$a7,[$np,#8*6] add $np,$np,#8*8 //adc $carry,xzr,xzr // moved above b .Lsqr8x_tail .align 4 .Lsqr8x_tail_break: ldr $n0,[x29,#112] // pull n0 add $cnt,$tp,#8*8 // end of current t[num] window subs xzr,$topmost,#1 // "move" top-most carry to carry bit adcs $t0,$acc0,$a0 adcs $t1,$acc1,$a1 ldp $acc0,$acc1,[$rp,#8*0] adcs $acc2,$acc2,$a2 ldp $a0,$a1,[$t2,#8*0] // recall that $t2 is &n[0] adcs $acc3,$acc3,$a3 ldp $a2,$a3,[$t2,#8*2] adcs $acc4,$acc4,$a4 adcs $acc5,$acc5,$a5 ldp $a4,$a5,[$t2,#8*4] adcs $acc6,$acc6,$a6 adcs $acc7,$acc7,$a7 ldp $a6,$a7,[$t2,#8*6] add $np,$t2,#8*8 adc $topmost,xzr,xzr // top-most carry mul $na0,$n0,$acc0 stp $t0,$t1,[$tp,#8*0] stp $acc2,$acc3,[$tp,#8*2] ldp $acc2,$acc3,[$rp,#8*2] stp $acc4,$acc5,[$tp,#8*4] ldp $acc4,$acc5,[$rp,#8*4] cmp $cnt,x29 // did we hit the bottom? stp $acc6,$acc7,[$tp,#8*6] mov $tp,$rp // slide the window ldp $acc6,$acc7,[$rp,#8*6] mov $cnt,#8 b.ne .Lsqr8x_reduction // Final step. We see if result is larger than modulus, and // if it is, subtract the modulus. But comparison implies // subtraction. So we subtract modulus, see if it borrowed, // and conditionally copy original value. ldr $rp,[x29,#96] // pull rp add $tp,$tp,#8*8 subs $t0,$acc0,$a0 sbcs $t1,$acc1,$a1 sub $cnt,$num,#8*8 mov $ap_end,$rp // $rp copy .Lsqr8x_sub: sbcs $t2,$acc2,$a2 ldp $a0,$a1,[$np,#8*0] sbcs $t3,$acc3,$a3 stp $t0,$t1,[$rp,#8*0] sbcs $t0,$acc4,$a4 ldp $a2,$a3,[$np,#8*2] sbcs $t1,$acc5,$a5 stp $t2,$t3,[$rp,#8*2] sbcs $t2,$acc6,$a6 ldp $a4,$a5,[$np,#8*4] sbcs $t3,$acc7,$a7 ldp $a6,$a7,[$np,#8*6] add $np,$np,#8*8 ldp $acc0,$acc1,[$tp,#8*0] sub $cnt,$cnt,#8*8 ldp $acc2,$acc3,[$tp,#8*2] ldp $acc4,$acc5,[$tp,#8*4] ldp $acc6,$acc7,[$tp,#8*6] add $tp,$tp,#8*8 stp $t0,$t1,[$rp,#8*4] sbcs $t0,$acc0,$a0 stp $t2,$t3,[$rp,#8*6] add $rp,$rp,#8*8 sbcs $t1,$acc1,$a1 cbnz $cnt,.Lsqr8x_sub sbcs $t2,$acc2,$a2 mov $tp,sp add $ap,sp,$num ldp $a0,$a1,[$ap_end,#8*0] sbcs $t3,$acc3,$a3 stp $t0,$t1,[$rp,#8*0] sbcs $t0,$acc4,$a4 ldp $a2,$a3,[$ap_end,#8*2] sbcs $t1,$acc5,$a5 stp $t2,$t3,[$rp,#8*2] sbcs $t2,$acc6,$a6 ldp $acc0,$acc1,[$ap,#8*0] sbcs $t3,$acc7,$a7 ldp $acc2,$acc3,[$ap,#8*2] sbcs xzr,$topmost,xzr // did it borrow? ldr x30,[x29,#8] // pull return address stp $t0,$t1,[$rp,#8*4] stp $t2,$t3,[$rp,#8*6] sub $cnt,$num,#8*4 .Lsqr4x_cond_copy: sub $cnt,$cnt,#8*4 csel $t0,$acc0,$a0,lo stp xzr,xzr,[$tp,#8*0] csel $t1,$acc1,$a1,lo ldp $a0,$a1,[$ap_end,#8*4] ldp $acc0,$acc1,[$ap,#8*4] csel $t2,$acc2,$a2,lo stp xzr,xzr,[$tp,#8*2] add $tp,$tp,#8*4 csel $t3,$acc3,$a3,lo ldp $a2,$a3,[$ap_end,#8*6] ldp $acc2,$acc3,[$ap,#8*6] add $ap,$ap,#8*4 stp $t0,$t1,[$ap_end,#8*0] stp $t2,$t3,[$ap_end,#8*2] add $ap_end,$ap_end,#8*4 stp xzr,xzr,[$ap,#8*0] stp xzr,xzr,[$ap,#8*2] cbnz $cnt,.Lsqr4x_cond_copy csel $t0,$acc0,$a0,lo stp xzr,xzr,[$tp,#8*0] csel $t1,$acc1,$a1,lo stp xzr,xzr,[$tp,#8*2] csel $t2,$acc2,$a2,lo csel $t3,$acc3,$a3,lo stp $t0,$t1,[$ap_end,#8*0] stp $t2,$t3,[$ap_end,#8*2] b .Lsqr8x_done .align 4 .Lsqr8x8_post_condition: adc $carry,xzr,xzr ldr x30,[x29,#8] // pull return address // $acc0-7,$carry hold result, $a0-7 hold modulus subs $a0,$acc0,$a0 ldr $ap,[x29,#96] // pull rp sbcs $a1,$acc1,$a1 stp xzr,xzr,[sp,#8*0] sbcs $a2,$acc2,$a2 stp xzr,xzr,[sp,#8*2] sbcs $a3,$acc3,$a3 stp xzr,xzr,[sp,#8*4] sbcs $a4,$acc4,$a4 stp xzr,xzr,[sp,#8*6] sbcs $a5,$acc5,$a5 stp xzr,xzr,[sp,#8*8] sbcs $a6,$acc6,$a6 stp xzr,xzr,[sp,#8*10] sbcs $a7,$acc7,$a7 stp xzr,xzr,[sp,#8*12] sbcs $carry,$carry,xzr // did it borrow? stp xzr,xzr,[sp,#8*14] // $a0-7 hold result-modulus csel $a0,$acc0,$a0,lo csel $a1,$acc1,$a1,lo csel $a2,$acc2,$a2,lo csel $a3,$acc3,$a3,lo stp $a0,$a1,[$ap,#8*0] csel $a4,$acc4,$a4,lo csel $a5,$acc5,$a5,lo stp $a2,$a3,[$ap,#8*2] csel $a6,$acc6,$a6,lo csel $a7,$acc7,$a7,lo stp $a4,$a5,[$ap,#8*4] stp $a6,$a7,[$ap,#8*6] .Lsqr8x_done: ldp x19,x20,[x29,#16] mov sp,x29 ldp x21,x22,[x29,#32] mov x0,#1 ldp x23,x24,[x29,#48] ldp x25,x26,[x29,#64] ldp x27,x28,[x29,#80] ldr x29,[sp],#128 // x30 is popped earlier AARCH64_VALIDATE_LINK_REGISTER ret .size __bn_sqr8x_mont,.-__bn_sqr8x_mont ___ } { ######################################################################## # Even though this might look as ARMv8 adaptation of mulx4x_mont from # x86_64-mont5 module, it's different in sense that it performs # reduction 256 bits at a time. my ($a0,$a1,$a2,$a3, $t0,$t1,$t2,$t3, $m0,$m1,$m2,$m3, $acc0,$acc1,$acc2,$acc3,$acc4, $bi,$mi,$tp,$ap_end,$cnt) = map("x$_",(6..17,19..28)); my $bp_end=$rp; my ($carry,$topmost) = ($rp,"x30"); $code.=<<___; .type __bn_mul4x_mont,%function .align 5 __bn_mul4x_mont: // Not adding AARCH64_SIGN_LINK_REGISTER here because __bn_mul4x_mont is jumped to // only from bn_mul_mont or __bn_mul8x_mont which have already signed the // return address. stp x29,x30,[sp,#-128]! add x29,sp,#0 stp x19,x20,[sp,#16] stp x21,x22,[sp,#32] stp x23,x24,[sp,#48] stp x25,x26,[sp,#64] stp x27,x28,[sp,#80] sub $tp,sp,$num,lsl#3 lsl $num,$num,#3 ldr $n0,[$n0] // *n0 sub sp,$tp,#8*4 // alloca add $t0,$bp,$num add $ap_end,$ap,$num stp $rp,$t0,[x29,#96] // offload rp and &b[num] ldr $bi,[$bp,#8*0] // b[0] ldp $a0,$a1,[$ap,#8*0] // a[0..3] ldp $a2,$a3,[$ap,#8*2] add $ap,$ap,#8*4 mov $acc0,xzr mov $acc1,xzr mov $acc2,xzr mov $acc3,xzr ldp $m0,$m1,[$np,#8*0] // n[0..3] ldp $m2,$m3,[$np,#8*2] adds $np,$np,#8*4 // clear carry bit mov $carry,xzr mov $cnt,#0 mov $tp,sp .Loop_mul4x_1st_reduction: mul $t0,$a0,$bi // lo(a[0..3]*b[0]) adc $carry,$carry,xzr // modulo-scheduled mul $t1,$a1,$bi add $cnt,$cnt,#8 mul $t2,$a2,$bi and $cnt,$cnt,#31 mul $t3,$a3,$bi adds $acc0,$acc0,$t0 umulh $t0,$a0,$bi // hi(a[0..3]*b[0]) adcs $acc1,$acc1,$t1 mul $mi,$acc0,$n0 // t[0]*n0 adcs $acc2,$acc2,$t2 umulh $t1,$a1,$bi adcs $acc3,$acc3,$t3 umulh $t2,$a2,$bi adc $acc4,xzr,xzr umulh $t3,$a3,$bi ldr $bi,[$bp,$cnt] // next b[i] (or b[0]) adds $acc1,$acc1,$t0 // (*) mul $t0,$m0,$mi // lo(n[0..3]*t[0]*n0) str $mi,[$tp],#8 // put aside t[0]*n0 for tail processing adcs $acc2,$acc2,$t1 mul $t1,$m1,$mi adcs $acc3,$acc3,$t2 mul $t2,$m2,$mi adc $acc4,$acc4,$t3 // can't overflow mul $t3,$m3,$mi // (*) adds xzr,$acc0,$t0 subs xzr,$acc0,#1 // (*) umulh $t0,$m0,$mi // hi(n[0..3]*t[0]*n0) adcs $acc0,$acc1,$t1 umulh $t1,$m1,$mi adcs $acc1,$acc2,$t2 umulh $t2,$m2,$mi adcs $acc2,$acc3,$t3 umulh $t3,$m3,$mi adcs $acc3,$acc4,$carry adc $carry,xzr,xzr adds $acc0,$acc0,$t0 sub $t0,$ap_end,$ap adcs $acc1,$acc1,$t1 adcs $acc2,$acc2,$t2 adcs $acc3,$acc3,$t3 //adc $carry,$carry,xzr cbnz $cnt,.Loop_mul4x_1st_reduction cbz $t0,.Lmul4x4_post_condition ldp $a0,$a1,[$ap,#8*0] // a[4..7] ldp $a2,$a3,[$ap,#8*2] add $ap,$ap,#8*4 ldr $mi,[sp] // a[0]*n0 ldp $m0,$m1,[$np,#8*0] // n[4..7] ldp $m2,$m3,[$np,#8*2] add $np,$np,#8*4 .Loop_mul4x_1st_tail: mul $t0,$a0,$bi // lo(a[4..7]*b[i]) adc $carry,$carry,xzr // modulo-scheduled mul $t1,$a1,$bi add $cnt,$cnt,#8 mul $t2,$a2,$bi and $cnt,$cnt,#31 mul $t3,$a3,$bi adds $acc0,$acc0,$t0 umulh $t0,$a0,$bi // hi(a[4..7]*b[i]) adcs $acc1,$acc1,$t1 umulh $t1,$a1,$bi adcs $acc2,$acc2,$t2 umulh $t2,$a2,$bi adcs $acc3,$acc3,$t3 umulh $t3,$a3,$bi adc $acc4,xzr,xzr ldr $bi,[$bp,$cnt] // next b[i] (or b[0]) adds $acc1,$acc1,$t0 mul $t0,$m0,$mi // lo(n[4..7]*a[0]*n0) adcs $acc2,$acc2,$t1 mul $t1,$m1,$mi adcs $acc3,$acc3,$t2 mul $t2,$m2,$mi adc $acc4,$acc4,$t3 // can't overflow mul $t3,$m3,$mi adds $acc0,$acc0,$t0 umulh $t0,$m0,$mi // hi(n[4..7]*a[0]*n0) adcs $acc1,$acc1,$t1 umulh $t1,$m1,$mi adcs $acc2,$acc2,$t2 umulh $t2,$m2,$mi adcs $acc3,$acc3,$t3 adcs $acc4,$acc4,$carry umulh $t3,$m3,$mi adc $carry,xzr,xzr ldr $mi,[sp,$cnt] // next t[0]*n0 str $acc0,[$tp],#8 // result!!! adds $acc0,$acc1,$t0 sub $t0,$ap_end,$ap // done yet? adcs $acc1,$acc2,$t1 adcs $acc2,$acc3,$t2 adcs $acc3,$acc4,$t3 //adc $carry,$carry,xzr cbnz $cnt,.Loop_mul4x_1st_tail sub $t1,$ap_end,$num // rewinded $ap cbz $t0,.Lmul4x_proceed ldp $a0,$a1,[$ap,#8*0] ldp $a2,$a3,[$ap,#8*2] add $ap,$ap,#8*4 ldp $m0,$m1,[$np,#8*0] ldp $m2,$m3,[$np,#8*2] add $np,$np,#8*4 b .Loop_mul4x_1st_tail .align 5 .Lmul4x_proceed: ldr $bi,[$bp,#8*4]! // *++b adc $topmost,$carry,xzr ldp $a0,$a1,[$t1,#8*0] // a[0..3] sub $np,$np,$num // rewind np ldp $a2,$a3,[$t1,#8*2] add $ap,$t1,#8*4 stp $acc0,$acc1,[$tp,#8*0] // result!!! ldp $acc0,$acc1,[sp,#8*4] // t[0..3] stp $acc2,$acc3,[$tp,#8*2] // result!!! ldp $acc2,$acc3,[sp,#8*6] ldp $m0,$m1,[$np,#8*0] // n[0..3] mov $tp,sp ldp $m2,$m3,[$np,#8*2] adds $np,$np,#8*4 // clear carry bit mov $carry,xzr .align 4 .Loop_mul4x_reduction: mul $t0,$a0,$bi // lo(a[0..3]*b[4]) adc $carry,$carry,xzr // modulo-scheduled mul $t1,$a1,$bi add $cnt,$cnt,#8 mul $t2,$a2,$bi and $cnt,$cnt,#31 mul $t3,$a3,$bi adds $acc0,$acc0,$t0 umulh $t0,$a0,$bi // hi(a[0..3]*b[4]) adcs $acc1,$acc1,$t1 mul $mi,$acc0,$n0 // t[0]*n0 adcs $acc2,$acc2,$t2 umulh $t1,$a1,$bi adcs $acc3,$acc3,$t3 umulh $t2,$a2,$bi adc $acc4,xzr,xzr umulh $t3,$a3,$bi ldr $bi,[$bp,$cnt] // next b[i] adds $acc1,$acc1,$t0 // (*) mul $t0,$m0,$mi str $mi,[$tp],#8 // put aside t[0]*n0 for tail processing adcs $acc2,$acc2,$t1 mul $t1,$m1,$mi // lo(n[0..3]*t[0]*n0 adcs $acc3,$acc3,$t2 mul $t2,$m2,$mi adc $acc4,$acc4,$t3 // can't overflow mul $t3,$m3,$mi // (*) adds xzr,$acc0,$t0 subs xzr,$acc0,#1 // (*) umulh $t0,$m0,$mi // hi(n[0..3]*t[0]*n0 adcs $acc0,$acc1,$t1 umulh $t1,$m1,$mi adcs $acc1,$acc2,$t2 umulh $t2,$m2,$mi adcs $acc2,$acc3,$t3 umulh $t3,$m3,$mi adcs $acc3,$acc4,$carry adc $carry,xzr,xzr adds $acc0,$acc0,$t0 adcs $acc1,$acc1,$t1 adcs $acc2,$acc2,$t2 adcs $acc3,$acc3,$t3 //adc $carry,$carry,xzr cbnz $cnt,.Loop_mul4x_reduction adc $carry,$carry,xzr ldp $t0,$t1,[$tp,#8*4] // t[4..7] ldp $t2,$t3,[$tp,#8*6] ldp $a0,$a1,[$ap,#8*0] // a[4..7] ldp $a2,$a3,[$ap,#8*2] add $ap,$ap,#8*4 adds $acc0,$acc0,$t0 adcs $acc1,$acc1,$t1 adcs $acc2,$acc2,$t2 adcs $acc3,$acc3,$t3 //adc $carry,$carry,xzr ldr $mi,[sp] // t[0]*n0 ldp $m0,$m1,[$np,#8*0] // n[4..7] ldp $m2,$m3,[$np,#8*2] add $np,$np,#8*4 .align 4 .Loop_mul4x_tail: mul $t0,$a0,$bi // lo(a[4..7]*b[4]) adc $carry,$carry,xzr // modulo-scheduled mul $t1,$a1,$bi add $cnt,$cnt,#8 mul $t2,$a2,$bi and $cnt,$cnt,#31 mul $t3,$a3,$bi adds $acc0,$acc0,$t0 umulh $t0,$a0,$bi // hi(a[4..7]*b[4]) adcs $acc1,$acc1,$t1 umulh $t1,$a1,$bi adcs $acc2,$acc2,$t2 umulh $t2,$a2,$bi adcs $acc3,$acc3,$t3 umulh $t3,$a3,$bi adc $acc4,xzr,xzr ldr $bi,[$bp,$cnt] // next b[i] adds $acc1,$acc1,$t0 mul $t0,$m0,$mi // lo(n[4..7]*t[0]*n0) adcs $acc2,$acc2,$t1 mul $t1,$m1,$mi adcs $acc3,$acc3,$t2 mul $t2,$m2,$mi adc $acc4,$acc4,$t3 // can't overflow mul $t3,$m3,$mi adds $acc0,$acc0,$t0 umulh $t0,$m0,$mi // hi(n[4..7]*t[0]*n0) adcs $acc1,$acc1,$t1 umulh $t1,$m1,$mi adcs $acc2,$acc2,$t2 umulh $t2,$m2,$mi adcs $acc3,$acc3,$t3 umulh $t3,$m3,$mi adcs $acc4,$acc4,$carry ldr $mi,[sp,$cnt] // next a[0]*n0 adc $carry,xzr,xzr str $acc0,[$tp],#8 // result!!! adds $acc0,$acc1,$t0 sub $t0,$ap_end,$ap // done yet? adcs $acc1,$acc2,$t1 adcs $acc2,$acc3,$t2 adcs $acc3,$acc4,$t3 //adc $carry,$carry,xzr cbnz $cnt,.Loop_mul4x_tail sub $t1,$np,$num // rewinded np? adc $carry,$carry,xzr cbz $t0,.Loop_mul4x_break ldp $t0,$t1,[$tp,#8*4] ldp $t2,$t3,[$tp,#8*6] ldp $a0,$a1,[$ap,#8*0] ldp $a2,$a3,[$ap,#8*2] add $ap,$ap,#8*4 adds $acc0,$acc0,$t0 adcs $acc1,$acc1,$t1 adcs $acc2,$acc2,$t2 adcs $acc3,$acc3,$t3 //adc $carry,$carry,xzr ldp $m0,$m1,[$np,#8*0] ldp $m2,$m3,[$np,#8*2] add $np,$np,#8*4 b .Loop_mul4x_tail .align 4 .Loop_mul4x_break: ldp $t2,$t3,[x29,#96] // pull rp and &b[num] adds $acc0,$acc0,$topmost add $bp,$bp,#8*4 // bp++ adcs $acc1,$acc1,xzr sub $ap,$ap,$num // rewind ap adcs $acc2,$acc2,xzr stp $acc0,$acc1,[$tp,#8*0] // result!!! adcs $acc3,$acc3,xzr ldp $acc0,$acc1,[sp,#8*4] // t[0..3] adc $topmost,$carry,xzr stp $acc2,$acc3,[$tp,#8*2] // result!!! cmp $bp,$t3 // done yet? ldp $acc2,$acc3,[sp,#8*6] ldp $m0,$m1,[$t1,#8*0] // n[0..3] ldp $m2,$m3,[$t1,#8*2] add $np,$t1,#8*4 b.eq .Lmul4x_post ldr $bi,[$bp] ldp $a0,$a1,[$ap,#8*0] // a[0..3] ldp $a2,$a3,[$ap,#8*2] adds $ap,$ap,#8*4 // clear carry bit mov $carry,xzr mov $tp,sp b .Loop_mul4x_reduction .align 4 .Lmul4x_post: // Final step. We see if result is larger than modulus, and // if it is, subtract the modulus. But comparison implies // subtraction. So we subtract modulus, see if it borrowed, // and conditionally copy original value. mov $rp,$t2 mov $ap_end,$t2 // $rp copy subs $t0,$acc0,$m0 add $tp,sp,#8*8 sbcs $t1,$acc1,$m1 sub $cnt,$num,#8*4 .Lmul4x_sub: sbcs $t2,$acc2,$m2 ldp $m0,$m1,[$np,#8*0] sub $cnt,$cnt,#8*4 ldp $acc0,$acc1,[$tp,#8*0] sbcs $t3,$acc3,$m3 ldp $m2,$m3,[$np,#8*2] add $np,$np,#8*4 ldp $acc2,$acc3,[$tp,#8*2] add $tp,$tp,#8*4 stp $t0,$t1,[$rp,#8*0] sbcs $t0,$acc0,$m0 stp $t2,$t3,[$rp,#8*2] add $rp,$rp,#8*4 sbcs $t1,$acc1,$m1 cbnz $cnt,.Lmul4x_sub sbcs $t2,$acc2,$m2 mov $tp,sp add $ap,sp,#8*4 ldp $a0,$a1,[$ap_end,#8*0] sbcs $t3,$acc3,$m3 stp $t0,$t1,[$rp,#8*0] ldp $a2,$a3,[$ap_end,#8*2] stp $t2,$t3,[$rp,#8*2] ldp $acc0,$acc1,[$ap,#8*0] ldp $acc2,$acc3,[$ap,#8*2] sbcs xzr,$topmost,xzr // did it borrow? ldr x30,[x29,#8] // pull return address sub $cnt,$num,#8*4 .Lmul4x_cond_copy: sub $cnt,$cnt,#8*4 csel $t0,$acc0,$a0,lo stp xzr,xzr,[$tp,#8*0] csel $t1,$acc1,$a1,lo ldp $a0,$a1,[$ap_end,#8*4] ldp $acc0,$acc1,[$ap,#8*4] csel $t2,$acc2,$a2,lo stp xzr,xzr,[$tp,#8*2] add $tp,$tp,#8*4 csel $t3,$acc3,$a3,lo ldp $a2,$a3,[$ap_end,#8*6] ldp $acc2,$acc3,[$ap,#8*6] add $ap,$ap,#8*4 stp $t0,$t1,[$ap_end,#8*0] stp $t2,$t3,[$ap_end,#8*2] add $ap_end,$ap_end,#8*4 cbnz $cnt,.Lmul4x_cond_copy csel $t0,$acc0,$a0,lo stp xzr,xzr,[$tp,#8*0] csel $t1,$acc1,$a1,lo stp xzr,xzr,[$tp,#8*2] csel $t2,$acc2,$a2,lo stp xzr,xzr,[$tp,#8*3] csel $t3,$acc3,$a3,lo stp xzr,xzr,[$tp,#8*4] stp $t0,$t1,[$ap_end,#8*0] stp $t2,$t3,[$ap_end,#8*2] b .Lmul4x_done .align 4 .Lmul4x4_post_condition: adc $carry,$carry,xzr ldr $ap,[x29,#96] // pull rp // $acc0-3,$carry hold result, $m0-7 hold modulus subs $a0,$acc0,$m0 ldr x30,[x29,#8] // pull return address sbcs $a1,$acc1,$m1 stp xzr,xzr,[sp,#8*0] sbcs $a2,$acc2,$m2 stp xzr,xzr,[sp,#8*2] sbcs $a3,$acc3,$m3 stp xzr,xzr,[sp,#8*4] sbcs xzr,$carry,xzr // did it borrow? stp xzr,xzr,[sp,#8*6] // $a0-3 hold result-modulus csel $a0,$acc0,$a0,lo csel $a1,$acc1,$a1,lo csel $a2,$acc2,$a2,lo csel $a3,$acc3,$a3,lo stp $a0,$a1,[$ap,#8*0] stp $a2,$a3,[$ap,#8*2] .Lmul4x_done: ldp x19,x20,[x29,#16] mov sp,x29 ldp x21,x22,[x29,#32] mov x0,#1 ldp x23,x24,[x29,#48] ldp x25,x26,[x29,#64] ldp x27,x28,[x29,#80] ldr x29,[sp],#128 // x30 is popped earlier AARCH64_VALIDATE_LINK_REGISTER ret .size __bn_mul4x_mont,.-__bn_mul4x_mont ___ } $code.=<<___; .asciz "Montgomery Multiplication for ARMv8, CRYPTOGAMS by <appro\@openssl.org>" .align 4 ___ print $code; close STDOUT or die "error closing STDOUT: $!";