ref: bfe9da47cfa2f51ebef78c59332b5ba2deba306d
dir: /third_party/boringssl/src/crypto/cipher_extra/e_aesctrhmac.c/
/* Copyright (c) 2017, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <openssl/aead.h> #include <openssl/cipher.h> #include <openssl/crypto.h> #include <openssl/err.h> #include <openssl/sha.h> #include "../fipsmodule/cipher/internal.h" #define EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN SHA256_DIGEST_LENGTH #define EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN 12 struct aead_aes_ctr_hmac_sha256_ctx { union { double align; AES_KEY ks; } ks; ctr128_f ctr; block128_f block; SHA256_CTX inner_init_state; SHA256_CTX outer_init_state; }; OPENSSL_STATIC_ASSERT(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= sizeof(struct aead_aes_ctr_hmac_sha256_ctx), "AEAD state is too small"); #if defined(__GNUC__) || defined(__clang__) OPENSSL_STATIC_ASSERT(alignof(union evp_aead_ctx_st_state) >= alignof(struct aead_aes_ctr_hmac_sha256_ctx), "AEAD state has insufficient alignment"); #endif static void hmac_init(SHA256_CTX *out_inner, SHA256_CTX *out_outer, const uint8_t hmac_key[32]) { static const size_t hmac_key_len = 32; uint8_t block[SHA256_CBLOCK]; OPENSSL_memcpy(block, hmac_key, hmac_key_len); OPENSSL_memset(block + hmac_key_len, 0x36, sizeof(block) - hmac_key_len); unsigned i; for (i = 0; i < hmac_key_len; i++) { block[i] ^= 0x36; } SHA256_Init(out_inner); SHA256_Update(out_inner, block, sizeof(block)); OPENSSL_memset(block + hmac_key_len, 0x5c, sizeof(block) - hmac_key_len); for (i = 0; i < hmac_key_len; i++) { block[i] ^= (0x36 ^ 0x5c); } SHA256_Init(out_outer); SHA256_Update(out_outer, block, sizeof(block)); } static int aead_aes_ctr_hmac_sha256_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len) { struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx = (struct aead_aes_ctr_hmac_sha256_ctx *)&ctx->state; static const size_t hmac_key_len = 32; if (key_len < hmac_key_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); return 0; // EVP_AEAD_CTX_init should catch this. } const size_t aes_key_len = key_len - hmac_key_len; if (aes_key_len != 16 && aes_key_len != 32) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); return 0; // EVP_AEAD_CTX_init should catch this. } if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { tag_len = EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN; } if (tag_len > EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); return 0; } aes_ctx->ctr = aes_ctr_set_key(&aes_ctx->ks.ks, NULL, &aes_ctx->block, key, aes_key_len); ctx->tag_len = tag_len; hmac_init(&aes_ctx->inner_init_state, &aes_ctx->outer_init_state, key + aes_key_len); return 1; } static void aead_aes_ctr_hmac_sha256_cleanup(EVP_AEAD_CTX *ctx) {} static void hmac_update_uint64(SHA256_CTX *sha256, uint64_t value) { unsigned i; uint8_t bytes[8]; for (i = 0; i < sizeof(bytes); i++) { bytes[i] = value & 0xff; value >>= 8; } SHA256_Update(sha256, bytes, sizeof(bytes)); } static void hmac_calculate(uint8_t out[SHA256_DIGEST_LENGTH], const SHA256_CTX *inner_init_state, const SHA256_CTX *outer_init_state, const uint8_t *ad, size_t ad_len, const uint8_t *nonce, const uint8_t *ciphertext, size_t ciphertext_len) { SHA256_CTX sha256; OPENSSL_memcpy(&sha256, inner_init_state, sizeof(sha256)); hmac_update_uint64(&sha256, ad_len); hmac_update_uint64(&sha256, ciphertext_len); SHA256_Update(&sha256, nonce, EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN); SHA256_Update(&sha256, ad, ad_len); // Pad with zeros to the end of the SHA-256 block. const unsigned num_padding = (SHA256_CBLOCK - ((sizeof(uint64_t)*2 + EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN + ad_len) % SHA256_CBLOCK)) % SHA256_CBLOCK; uint8_t padding[SHA256_CBLOCK]; OPENSSL_memset(padding, 0, num_padding); SHA256_Update(&sha256, padding, num_padding); SHA256_Update(&sha256, ciphertext, ciphertext_len); uint8_t inner_digest[SHA256_DIGEST_LENGTH]; SHA256_Final(inner_digest, &sha256); OPENSSL_memcpy(&sha256, outer_init_state, sizeof(sha256)); SHA256_Update(&sha256, inner_digest, sizeof(inner_digest)); SHA256_Final(out, &sha256); } static void aead_aes_ctr_hmac_sha256_crypt( const struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx, uint8_t *out, const uint8_t *in, size_t len, const uint8_t *nonce) { // Since the AEAD operation is one-shot, keeping a buffer of unused keystream // bytes is pointless. However, |CRYPTO_ctr128_encrypt| requires it. uint8_t partial_block_buffer[AES_BLOCK_SIZE]; unsigned partial_block_offset = 0; OPENSSL_memset(partial_block_buffer, 0, sizeof(partial_block_buffer)); uint8_t counter[AES_BLOCK_SIZE]; OPENSSL_memcpy(counter, nonce, EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN); OPENSSL_memset(counter + EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN, 0, 4); if (aes_ctx->ctr) { CRYPTO_ctr128_encrypt_ctr32(in, out, len, &aes_ctx->ks.ks, counter, partial_block_buffer, &partial_block_offset, aes_ctx->ctr); } else { CRYPTO_ctr128_encrypt(in, out, len, &aes_ctx->ks.ks, counter, partial_block_buffer, &partial_block_offset, aes_ctx->block); } } static int aead_aes_ctr_hmac_sha256_seal_scatter( const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, size_t extra_in_len, const uint8_t *ad, size_t ad_len) { const struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx = (struct aead_aes_ctr_hmac_sha256_ctx *) &ctx->state; const uint64_t in_len_64 = in_len; if (in_len_64 >= (UINT64_C(1) << 32) * AES_BLOCK_SIZE) { // This input is so large it would overflow the 32-bit block counter. OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); return 0; } if (max_out_tag_len < ctx->tag_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); return 0; } if (nonce_len != EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); return 0; } aead_aes_ctr_hmac_sha256_crypt(aes_ctx, out, in, in_len, nonce); uint8_t hmac_result[SHA256_DIGEST_LENGTH]; hmac_calculate(hmac_result, &aes_ctx->inner_init_state, &aes_ctx->outer_init_state, ad, ad_len, nonce, out, in_len); OPENSSL_memcpy(out_tag, hmac_result, ctx->tag_len); *out_tag_len = ctx->tag_len; return 1; } static int aead_aes_ctr_hmac_sha256_open_gather( const EVP_AEAD_CTX *ctx, uint8_t *out, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *in_tag, size_t in_tag_len, const uint8_t *ad, size_t ad_len) { const struct aead_aes_ctr_hmac_sha256_ctx *aes_ctx = (struct aead_aes_ctr_hmac_sha256_ctx *) &ctx->state; if (in_tag_len != ctx->tag_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); return 0; } if (nonce_len != EVP_AEAD_AES_CTR_HMAC_SHA256_NONCE_LEN) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); return 0; } uint8_t hmac_result[SHA256_DIGEST_LENGTH]; hmac_calculate(hmac_result, &aes_ctx->inner_init_state, &aes_ctx->outer_init_state, ad, ad_len, nonce, in, in_len); if (CRYPTO_memcmp(hmac_result, in_tag, ctx->tag_len) != 0) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); return 0; } aead_aes_ctr_hmac_sha256_crypt(aes_ctx, out, in, in_len, nonce); return 1; } static const EVP_AEAD aead_aes_128_ctr_hmac_sha256 = { 16 /* AES key */ + 32 /* HMAC key */, 12, // nonce length EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN, // overhead EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN, // max tag length 0, // seal_scatter_supports_extra_in aead_aes_ctr_hmac_sha256_init, NULL /* init_with_direction */, aead_aes_ctr_hmac_sha256_cleanup, NULL /* open */, aead_aes_ctr_hmac_sha256_seal_scatter, aead_aes_ctr_hmac_sha256_open_gather, NULL /* get_iv */, NULL /* tag_len */, }; static const EVP_AEAD aead_aes_256_ctr_hmac_sha256 = { 32 /* AES key */ + 32 /* HMAC key */, 12, // nonce length EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN, // overhead EVP_AEAD_AES_CTR_HMAC_SHA256_TAG_LEN, // max tag length 0, // seal_scatter_supports_extra_in aead_aes_ctr_hmac_sha256_init, NULL /* init_with_direction */, aead_aes_ctr_hmac_sha256_cleanup, NULL /* open */, aead_aes_ctr_hmac_sha256_seal_scatter, aead_aes_ctr_hmac_sha256_open_gather, NULL /* get_iv */, NULL /* tag_len */, }; const EVP_AEAD *EVP_aead_aes_128_ctr_hmac_sha256(void) { return &aead_aes_128_ctr_hmac_sha256; } const EVP_AEAD *EVP_aead_aes_256_ctr_hmac_sha256(void) { return &aead_aes_256_ctr_hmac_sha256; }