ref: bfe9da47cfa2f51ebef78c59332b5ba2deba306d
dir: /third_party/boringssl/src/crypto/cipher_extra/e_aesccm.c/
/* ==================================================================== * Copyright (c) 2008 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== */ #include <openssl/aead.h> #include <assert.h> #include <openssl/cpu.h> #include <openssl/cipher.h> #include <openssl/err.h> #include <openssl/mem.h> #include "../fipsmodule/cipher/internal.h" struct ccm128_context { block128_f block; ctr128_f ctr; unsigned M, L; }; struct ccm128_state { union { uint64_t u[2]; uint8_t c[16]; } nonce, cmac; }; static int CRYPTO_ccm128_init(struct ccm128_context *ctx, const AES_KEY *key, block128_f block, ctr128_f ctr, unsigned M, unsigned L) { if (M < 4 || M > 16 || (M & 1) != 0 || L < 2 || L > 8) { return 0; } ctx->block = block; ctx->ctr = ctr; ctx->M = M; ctx->L = L; return 1; } static size_t CRYPTO_ccm128_max_input(const struct ccm128_context *ctx) { return ctx->L >= sizeof(size_t) ? (size_t)-1 : (((size_t)1) << (ctx->L * 8)) - 1; } static int ccm128_init_state(const struct ccm128_context *ctx, struct ccm128_state *state, const AES_KEY *key, const uint8_t *nonce, size_t nonce_len, const uint8_t *aad, size_t aad_len, size_t plaintext_len) { const block128_f block = ctx->block; const unsigned M = ctx->M; const unsigned L = ctx->L; // |L| determines the expected |nonce_len| and the limit for |plaintext_len|. if (plaintext_len > CRYPTO_ccm128_max_input(ctx) || nonce_len != 15 - L) { return 0; } // Assemble the first block for computing the MAC. OPENSSL_memset(state, 0, sizeof(*state)); state->nonce.c[0] = (uint8_t)((L - 1) | ((M - 2) / 2) << 3); if (aad_len != 0) { state->nonce.c[0] |= 0x40; // Set AAD Flag } OPENSSL_memcpy(&state->nonce.c[1], nonce, nonce_len); for (unsigned i = 0; i < L; i++) { state->nonce.c[15 - i] = (uint8_t)(plaintext_len >> (8 * i)); } (*block)(state->nonce.c, state->cmac.c, key); size_t blocks = 1; if (aad_len != 0) { unsigned i; // Cast to u64 to avoid the compiler complaining about invalid shifts. uint64_t aad_len_u64 = aad_len; if (aad_len_u64 < 0x10000 - 0x100) { state->cmac.c[0] ^= (uint8_t)(aad_len_u64 >> 8); state->cmac.c[1] ^= (uint8_t)aad_len_u64; i = 2; } else if (aad_len_u64 <= 0xffffffff) { state->cmac.c[0] ^= 0xff; state->cmac.c[1] ^= 0xfe; state->cmac.c[2] ^= (uint8_t)(aad_len_u64 >> 24); state->cmac.c[3] ^= (uint8_t)(aad_len_u64 >> 16); state->cmac.c[4] ^= (uint8_t)(aad_len_u64 >> 8); state->cmac.c[5] ^= (uint8_t)aad_len_u64; i = 6; } else { state->cmac.c[0] ^= 0xff; state->cmac.c[1] ^= 0xff; state->cmac.c[2] ^= (uint8_t)(aad_len_u64 >> 56); state->cmac.c[3] ^= (uint8_t)(aad_len_u64 >> 48); state->cmac.c[4] ^= (uint8_t)(aad_len_u64 >> 40); state->cmac.c[5] ^= (uint8_t)(aad_len_u64 >> 32); state->cmac.c[6] ^= (uint8_t)(aad_len_u64 >> 24); state->cmac.c[7] ^= (uint8_t)(aad_len_u64 >> 16); state->cmac.c[8] ^= (uint8_t)(aad_len_u64 >> 8); state->cmac.c[9] ^= (uint8_t)aad_len_u64; i = 10; } do { for (; i < 16 && aad_len != 0; i++) { state->cmac.c[i] ^= *aad; aad++; aad_len--; } (*block)(state->cmac.c, state->cmac.c, key); blocks++; i = 0; } while (aad_len != 0); } // Per RFC 3610, section 2.6, the total number of block cipher operations done // must not exceed 2^61. There are two block cipher operations remaining per // message block, plus one block at the end to encrypt the MAC. size_t remaining_blocks = 2 * ((plaintext_len + 15) / 16) + 1; if (plaintext_len + 15 < plaintext_len || remaining_blocks + blocks < blocks || (uint64_t) remaining_blocks + blocks > UINT64_C(1) << 61) { return 0; } // Assemble the first block for encrypting and decrypting. The bottom |L| // bytes are replaced with a counter and all bit the encoding of |L| is // cleared in the first byte. state->nonce.c[0] &= 7; return 1; } static int ccm128_encrypt(const struct ccm128_context *ctx, struct ccm128_state *state, const AES_KEY *key, uint8_t *out, const uint8_t *in, size_t len) { // The counter for encryption begins at one. for (unsigned i = 0; i < ctx->L; i++) { state->nonce.c[15 - i] = 0; } state->nonce.c[15] = 1; uint8_t partial_buf[16]; unsigned num = 0; if (ctx->ctr != NULL) { CRYPTO_ctr128_encrypt_ctr32(in, out, len, key, state->nonce.c, partial_buf, &num, ctx->ctr); } else { CRYPTO_ctr128_encrypt(in, out, len, key, state->nonce.c, partial_buf, &num, ctx->block); } return 1; } static int ccm128_compute_mac(const struct ccm128_context *ctx, struct ccm128_state *state, const AES_KEY *key, uint8_t *out_tag, size_t tag_len, const uint8_t *in, size_t len) { block128_f block = ctx->block; if (tag_len != ctx->M) { return 0; } // Incorporate |in| into the MAC. union { uint64_t u[2]; uint8_t c[16]; } tmp; while (len >= 16) { OPENSSL_memcpy(tmp.c, in, 16); state->cmac.u[0] ^= tmp.u[0]; state->cmac.u[1] ^= tmp.u[1]; (*block)(state->cmac.c, state->cmac.c, key); in += 16; len -= 16; } if (len > 0) { for (size_t i = 0; i < len; i++) { state->cmac.c[i] ^= in[i]; } (*block)(state->cmac.c, state->cmac.c, key); } // Encrypt the MAC with counter zero. for (unsigned i = 0; i < ctx->L; i++) { state->nonce.c[15 - i] = 0; } (*block)(state->nonce.c, tmp.c, key); state->cmac.u[0] ^= tmp.u[0]; state->cmac.u[1] ^= tmp.u[1]; OPENSSL_memcpy(out_tag, state->cmac.c, tag_len); return 1; } static int CRYPTO_ccm128_encrypt(const struct ccm128_context *ctx, const AES_KEY *key, uint8_t *out, uint8_t *out_tag, size_t tag_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t len, const uint8_t *aad, size_t aad_len) { struct ccm128_state state; return ccm128_init_state(ctx, &state, key, nonce, nonce_len, aad, aad_len, len) && ccm128_compute_mac(ctx, &state, key, out_tag, tag_len, in, len) && ccm128_encrypt(ctx, &state, key, out, in, len); } static int CRYPTO_ccm128_decrypt(const struct ccm128_context *ctx, const AES_KEY *key, uint8_t *out, uint8_t *out_tag, size_t tag_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t len, const uint8_t *aad, size_t aad_len) { struct ccm128_state state; return ccm128_init_state(ctx, &state, key, nonce, nonce_len, aad, aad_len, len) && ccm128_encrypt(ctx, &state, key, out, in, len) && ccm128_compute_mac(ctx, &state, key, out_tag, tag_len, out, len); } #define EVP_AEAD_AES_CCM_MAX_TAG_LEN 16 struct aead_aes_ccm_ctx { union { double align; AES_KEY ks; } ks; struct ccm128_context ccm; }; OPENSSL_STATIC_ASSERT(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= sizeof(struct aead_aes_ccm_ctx), "AEAD state is too small"); #if defined(__GNUC__) || defined(__clang__) OPENSSL_STATIC_ASSERT(alignof(union evp_aead_ctx_st_state) >= alignof(struct aead_aes_ccm_ctx), "AEAD state has insufficient alignment"); #endif static int aead_aes_ccm_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len, unsigned M, unsigned L) { assert(M == EVP_AEAD_max_overhead(ctx->aead)); assert(M == EVP_AEAD_max_tag_len(ctx->aead)); assert(15 - L == EVP_AEAD_nonce_length(ctx->aead)); if (key_len != EVP_AEAD_key_length(ctx->aead)) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); return 0; // EVP_AEAD_CTX_init should catch this. } if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { tag_len = M; } if (tag_len != M) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); return 0; } struct aead_aes_ccm_ctx *ccm_ctx = (struct aead_aes_ccm_ctx *)&ctx->state; block128_f block; ctr128_f ctr = aes_ctr_set_key(&ccm_ctx->ks.ks, NULL, &block, key, key_len); ctx->tag_len = tag_len; if (!CRYPTO_ccm128_init(&ccm_ctx->ccm, &ccm_ctx->ks.ks, block, ctr, M, L)) { OPENSSL_PUT_ERROR(CIPHER, ERR_R_INTERNAL_ERROR); return 0; } return 1; } static void aead_aes_ccm_cleanup(EVP_AEAD_CTX *ctx) {} static int aead_aes_ccm_seal_scatter( const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, size_t extra_in_len, const uint8_t *ad, size_t ad_len) { const struct aead_aes_ccm_ctx *ccm_ctx = (struct aead_aes_ccm_ctx *)&ctx->state; if (in_len > CRYPTO_ccm128_max_input(&ccm_ctx->ccm)) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); return 0; } if (max_out_tag_len < ctx->tag_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); return 0; } if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); return 0; } if (!CRYPTO_ccm128_encrypt(&ccm_ctx->ccm, &ccm_ctx->ks.ks, out, out_tag, ctx->tag_len, nonce, nonce_len, in, in_len, ad, ad_len)) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); return 0; } *out_tag_len = ctx->tag_len; return 1; } static int aead_aes_ccm_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out, const uint8_t *nonce, size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *in_tag, size_t in_tag_len, const uint8_t *ad, size_t ad_len) { const struct aead_aes_ccm_ctx *ccm_ctx = (struct aead_aes_ccm_ctx *)&ctx->state; if (in_len > CRYPTO_ccm128_max_input(&ccm_ctx->ccm)) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); return 0; } if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); return 0; } if (in_tag_len != ctx->tag_len) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); return 0; } uint8_t tag[EVP_AEAD_AES_CCM_MAX_TAG_LEN]; assert(ctx->tag_len <= EVP_AEAD_AES_CCM_MAX_TAG_LEN); if (!CRYPTO_ccm128_decrypt(&ccm_ctx->ccm, &ccm_ctx->ks.ks, out, tag, ctx->tag_len, nonce, nonce_len, in, in_len, ad, ad_len)) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); return 0; } if (CRYPTO_memcmp(tag, in_tag, ctx->tag_len) != 0) { OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); return 0; } return 1; } static int aead_aes_ccm_bluetooth_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len) { return aead_aes_ccm_init(ctx, key, key_len, tag_len, 4, 2); } static const EVP_AEAD aead_aes_128_ccm_bluetooth = { 16, // key length (AES-128) 13, // nonce length 4, // overhead 4, // max tag length 0, // seal_scatter_supports_extra_in aead_aes_ccm_bluetooth_init, NULL /* init_with_direction */, aead_aes_ccm_cleanup, NULL /* open */, aead_aes_ccm_seal_scatter, aead_aes_ccm_open_gather, NULL /* get_iv */, NULL /* tag_len */, }; const EVP_AEAD *EVP_aead_aes_128_ccm_bluetooth(void) { return &aead_aes_128_ccm_bluetooth; } static int aead_aes_ccm_bluetooth_8_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, size_t tag_len) { return aead_aes_ccm_init(ctx, key, key_len, tag_len, 8, 2); } static const EVP_AEAD aead_aes_128_ccm_bluetooth_8 = { 16, // key length (AES-128) 13, // nonce length 8, // overhead 8, // max tag length 0, // seal_scatter_supports_extra_in aead_aes_ccm_bluetooth_8_init, NULL /* init_with_direction */, aead_aes_ccm_cleanup, NULL /* open */, aead_aes_ccm_seal_scatter, aead_aes_ccm_open_gather, NULL /* get_iv */, NULL /* tag_len */, }; const EVP_AEAD *EVP_aead_aes_128_ccm_bluetooth_8(void) { return &aead_aes_128_ccm_bluetooth_8; }