ref: 98c1cd7ae022efe276123898af6b892eade0732c
dir: /third_party/boringssl/src/tool/transport_common.cc/
/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ // Suppress MSVC's STL warnings. It flags |std::copy| calls with a raw output // pointer, on grounds that MSVC cannot check them. Unfortunately, there is no // way to suppress the warning just on one line. The warning is flagged inside // the STL itself, so suppressing at the |std::copy| call does not work. #if !defined(_SCL_SECURE_NO_WARNINGS) #define _SCL_SECURE_NO_WARNINGS #endif #include <openssl/base.h> #include <string> #include <vector> #include <errno.h> #include <limits.h> #include <stddef.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #if !defined(OPENSSL_WINDOWS) #include <arpa/inet.h> #include <fcntl.h> #include <netdb.h> #include <netinet/in.h> #include <sys/select.h> #include <sys/socket.h> #include <unistd.h> #else #include <algorithm> #include <condition_variable> #include <deque> #include <memory> #include <mutex> #include <thread> #include <utility> #include <io.h> OPENSSL_MSVC_PRAGMA(warning(push, 3)) #include <winsock2.h> #include <ws2tcpip.h> OPENSSL_MSVC_PRAGMA(warning(pop)) OPENSSL_MSVC_PRAGMA(comment(lib, "Ws2_32.lib")) #endif #include <openssl/err.h> #include <openssl/ssl.h> #include <openssl/x509.h> #include "../crypto/internal.h" #include "internal.h" #include "transport_common.h" #if defined(OPENSSL_WINDOWS) using socket_result_t = int; #else using socket_result_t = ssize_t; static int closesocket(int sock) { return close(sock); } #endif bool InitSocketLibrary() { #if defined(OPENSSL_WINDOWS) WSADATA wsaData; int err = WSAStartup(MAKEWORD(2, 2), &wsaData); if (err != 0) { fprintf(stderr, "WSAStartup failed with error %d\n", err); return false; } #endif return true; } static void SplitHostPort(std::string *out_hostname, std::string *out_port, const std::string &hostname_and_port) { size_t colon_offset = hostname_and_port.find_last_of(':'); const size_t bracket_offset = hostname_and_port.find_last_of(']'); std::string hostname, port; // An IPv6 literal may have colons internally, guarded by square brackets. if (bracket_offset != std::string::npos && colon_offset != std::string::npos && bracket_offset > colon_offset) { colon_offset = std::string::npos; } if (colon_offset == std::string::npos) { *out_hostname = hostname_and_port; *out_port = "443"; } else { *out_hostname = hostname_and_port.substr(0, colon_offset); *out_port = hostname_and_port.substr(colon_offset + 1); } } static std::string GetLastSocketErrorString() { #if defined(OPENSSL_WINDOWS) int error = WSAGetLastError(); char *buffer; DWORD len = FormatMessageA( FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_ALLOCATE_BUFFER, 0, error, 0, reinterpret_cast<char *>(&buffer), 0, nullptr); if (len == 0) { char buf[256]; snprintf(buf, sizeof(buf), "unknown error (0x%x)", error); return buf; } std::string ret(buffer, len); LocalFree(buffer); return ret; #else return strerror(errno); #endif } static void PrintSocketError(const char *function) { // On Windows, |perror| and |errno| are part of the C runtime, while sockets // are separate, so we must print errors manually. std::string error = GetLastSocketErrorString(); fprintf(stderr, "%s: %s\n", function, error.c_str()); } // Connect sets |*out_sock| to be a socket connected to the destination given // in |hostname_and_port|, which should be of the form "www.example.com:123". // It returns true on success and false otherwise. bool Connect(int *out_sock, const std::string &hostname_and_port) { std::string hostname, port; SplitHostPort(&hostname, &port, hostname_and_port); // Handle IPv6 literals. if (hostname.size() >= 2 && hostname[0] == '[' && hostname[hostname.size() - 1] == ']') { hostname = hostname.substr(1, hostname.size() - 2); } struct addrinfo hint, *result; OPENSSL_memset(&hint, 0, sizeof(hint)); hint.ai_family = AF_UNSPEC; hint.ai_socktype = SOCK_STREAM; int ret = getaddrinfo(hostname.c_str(), port.c_str(), &hint, &result); if (ret != 0) { #if defined(OPENSSL_WINDOWS) const char *error = gai_strerrorA(ret); #else const char *error = gai_strerror(ret); #endif fprintf(stderr, "getaddrinfo returned: %s\n", error); return false; } bool ok = false; char buf[256]; *out_sock = socket(result->ai_family, result->ai_socktype, result->ai_protocol); if (*out_sock < 0) { PrintSocketError("socket"); goto out; } switch (result->ai_family) { case AF_INET: { struct sockaddr_in *sin = reinterpret_cast<struct sockaddr_in *>(result->ai_addr); fprintf(stderr, "Connecting to %s:%d\n", inet_ntop(result->ai_family, &sin->sin_addr, buf, sizeof(buf)), ntohs(sin->sin_port)); break; } case AF_INET6: { struct sockaddr_in6 *sin6 = reinterpret_cast<struct sockaddr_in6 *>(result->ai_addr); fprintf(stderr, "Connecting to [%s]:%d\n", inet_ntop(result->ai_family, &sin6->sin6_addr, buf, sizeof(buf)), ntohs(sin6->sin6_port)); break; } } if (connect(*out_sock, result->ai_addr, result->ai_addrlen) != 0) { PrintSocketError("connect"); goto out; } ok = true; out: freeaddrinfo(result); return ok; } Listener::~Listener() { if (server_sock_ >= 0) { closesocket(server_sock_); } } bool Listener::Init(const std::string &port) { if (server_sock_ >= 0) { return false; } struct sockaddr_in6 addr; OPENSSL_memset(&addr, 0, sizeof(addr)); addr.sin6_family = AF_INET6; // Windows' IN6ADDR_ANY_INIT does not have enough curly braces for clang-cl // (https://crbug.com/772108), while other platforms like NaCl are missing // in6addr_any, so use a mix of both. #if defined(OPENSSL_WINDOWS) addr.sin6_addr = in6addr_any; #else addr.sin6_addr = IN6ADDR_ANY_INIT; #endif addr.sin6_port = htons(atoi(port.c_str())); #if defined(OPENSSL_WINDOWS) const BOOL enable = TRUE; #else const int enable = 1; #endif server_sock_ = socket(addr.sin6_family, SOCK_STREAM, 0); if (server_sock_ < 0) { PrintSocketError("socket"); return false; } if (setsockopt(server_sock_, SOL_SOCKET, SO_REUSEADDR, (const char *)&enable, sizeof(enable)) < 0) { PrintSocketError("setsockopt"); return false; } if (bind(server_sock_, (struct sockaddr *)&addr, sizeof(addr)) != 0) { PrintSocketError("connect"); return false; } listen(server_sock_, SOMAXCONN); return true; } bool Listener::Accept(int *out_sock) { struct sockaddr_in6 addr; socklen_t addr_len = sizeof(addr); *out_sock = accept(server_sock_, (struct sockaddr *)&addr, &addr_len); return *out_sock >= 0; } bool VersionFromString(uint16_t *out_version, const std::string &version) { if (version == "tls1" || version == "tls1.0") { *out_version = TLS1_VERSION; return true; } else if (version == "tls1.1") { *out_version = TLS1_1_VERSION; return true; } else if (version == "tls1.2") { *out_version = TLS1_2_VERSION; return true; } else if (version == "tls1.3") { *out_version = TLS1_3_VERSION; return true; } return false; } void PrintConnectionInfo(BIO *bio, const SSL *ssl) { const SSL_CIPHER *cipher = SSL_get_current_cipher(ssl); BIO_printf(bio, " Version: %s\n", SSL_get_version(ssl)); BIO_printf(bio, " Resumed session: %s\n", SSL_session_reused(ssl) ? "yes" : "no"); BIO_printf(bio, " Cipher: %s\n", SSL_CIPHER_standard_name(cipher)); uint16_t curve = SSL_get_curve_id(ssl); if (curve != 0) { BIO_printf(bio, " ECDHE curve: %s\n", SSL_get_curve_name(curve)); } uint16_t sigalg = SSL_get_peer_signature_algorithm(ssl); if (sigalg != 0) { BIO_printf(bio, " Signature algorithm: %s\n", SSL_get_signature_algorithm_name( sigalg, SSL_version(ssl) != TLS1_2_VERSION)); } BIO_printf(bio, " Secure renegotiation: %s\n", SSL_get_secure_renegotiation_support(ssl) ? "yes" : "no"); BIO_printf(bio, " Extended master secret: %s\n", SSL_get_extms_support(ssl) ? "yes" : "no"); const uint8_t *next_proto; unsigned next_proto_len; SSL_get0_next_proto_negotiated(ssl, &next_proto, &next_proto_len); BIO_printf(bio, " Next protocol negotiated: %.*s\n", next_proto_len, next_proto); const uint8_t *alpn; unsigned alpn_len; SSL_get0_alpn_selected(ssl, &alpn, &alpn_len); BIO_printf(bio, " ALPN protocol: %.*s\n", alpn_len, alpn); const char *host_name = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name); if (host_name != nullptr && SSL_is_server(ssl)) { BIO_printf(bio, " Client sent SNI: %s\n", host_name); } if (!SSL_is_server(ssl)) { const uint8_t *ocsp_staple; size_t ocsp_staple_len; SSL_get0_ocsp_response(ssl, &ocsp_staple, &ocsp_staple_len); BIO_printf(bio, " OCSP staple: %s\n", ocsp_staple_len > 0 ? "yes" : "no"); const uint8_t *sct_list; size_t sct_list_len; SSL_get0_signed_cert_timestamp_list(ssl, &sct_list, &sct_list_len); BIO_printf(bio, " SCT list: %s\n", sct_list_len > 0 ? "yes" : "no"); } BIO_printf( bio, " Early data: %s\n", (SSL_early_data_accepted(ssl) || SSL_in_early_data(ssl)) ? "yes" : "no"); BIO_printf(bio, " Encrypted ClientHello: %s\n", SSL_ech_accepted(ssl) ? "yes" : "no"); // Print the server cert subject and issuer names. bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(ssl)); if (peer != nullptr) { BIO_printf(bio, " Cert subject: "); X509_NAME_print_ex(bio, X509_get_subject_name(peer.get()), 0, XN_FLAG_ONELINE); BIO_printf(bio, "\n Cert issuer: "); X509_NAME_print_ex(bio, X509_get_issuer_name(peer.get()), 0, XN_FLAG_ONELINE); BIO_printf(bio, "\n"); } } bool SocketSetNonBlocking(int sock, bool is_non_blocking) { bool ok; #if defined(OPENSSL_WINDOWS) u_long arg = is_non_blocking; ok = 0 == ioctlsocket(sock, FIONBIO, &arg); #else int flags = fcntl(sock, F_GETFL, 0); if (flags < 0) { return false; } if (is_non_blocking) { flags |= O_NONBLOCK; } else { flags &= ~O_NONBLOCK; } ok = 0 == fcntl(sock, F_SETFL, flags); #endif if (!ok) { PrintSocketError("Failed to set socket non-blocking"); } return ok; } enum class StdinWait { kStdinRead, kSocketWrite, }; #if !defined(OPENSSL_WINDOWS) // SocketWaiter abstracts waiting for either the socket or stdin to be readable // between Windows and POSIX. class SocketWaiter { public: explicit SocketWaiter(int sock) : sock_(sock) {} SocketWaiter(const SocketWaiter &) = delete; SocketWaiter &operator=(const SocketWaiter &) = delete; // Init initializes the SocketWaiter. It returns whether it succeeded. bool Init() { return true; } // Wait waits for at least on of the socket or stdin or be ready. On success, // it sets |*socket_ready| and |*stdin_ready| to whether the respective // objects are readable and returns true. On error, it returns false. stdin's // readiness may either be the socket being writable or stdin being readable, // depending on |stdin_wait|. bool Wait(StdinWait stdin_wait, bool *socket_ready, bool *stdin_ready) { *socket_ready = true; *stdin_ready = false; fd_set read_fds, write_fds; FD_ZERO(&read_fds); FD_ZERO(&write_fds); if (stdin_wait == StdinWait::kSocketWrite) { FD_SET(sock_, &write_fds); } else if (stdin_open_) { FD_SET(STDIN_FILENO, &read_fds); } FD_SET(sock_, &read_fds); if (select(sock_ + 1, &read_fds, &write_fds, NULL, NULL) <= 0) { perror("select"); return false; } if (FD_ISSET(STDIN_FILENO, &read_fds) || FD_ISSET(sock_, &write_fds)) { *stdin_ready = true; } if (FD_ISSET(sock_, &read_fds)) { *socket_ready = true; } return true; } // ReadStdin reads at most |max_out| bytes from stdin. On success, it writes // them to |out| and sets |*out_len| to the number of bytes written. On error, // it returns false. This method may only be called after |Wait| returned // stdin was ready. bool ReadStdin(void *out, size_t *out_len, size_t max_out) { ssize_t n; do { n = read(STDIN_FILENO, out, max_out); } while (n == -1 && errno == EINTR); if (n <= 0) { stdin_open_ = false; } if (n < 0) { perror("read from stdin"); return false; } *out_len = static_cast<size_t>(n); return true; } private: bool stdin_open_ = true; int sock_; }; #else // OPENSSL_WINDOWs class ScopedWSAEVENT { public: ScopedWSAEVENT() = default; ScopedWSAEVENT(WSAEVENT event) { reset(event); } ScopedWSAEVENT(const ScopedWSAEVENT &) = delete; ScopedWSAEVENT(ScopedWSAEVENT &&other) { *this = std::move(other); } ~ScopedWSAEVENT() { reset(); } ScopedWSAEVENT &operator=(const ScopedWSAEVENT &) = delete; ScopedWSAEVENT &operator=(ScopedWSAEVENT &&other) { reset(other.release()); return *this; } explicit operator bool() const { return event_ != WSA_INVALID_EVENT; } WSAEVENT get() const { return event_; } WSAEVENT release() { WSAEVENT ret = event_; event_ = WSA_INVALID_EVENT; return ret; } void reset(WSAEVENT event = WSA_INVALID_EVENT) { if (event_ != WSA_INVALID_EVENT) { WSACloseEvent(event_); } event_ = event; } private: WSAEVENT event_ = WSA_INVALID_EVENT; }; // SocketWaiter, on Windows, is more complicated. While |WaitForMultipleObjects| // works for both sockets and stdin, the latter is often a line-buffered // console. The |HANDLE| is considered readable if there are any console events // available, but reading blocks until a full line is available. // // So that |Wait| reflects final stdin read, we spawn a stdin reader thread that // writes to an in-memory buffer and signals a |WSAEVENT| to coordinate with the // socket. class SocketWaiter { public: explicit SocketWaiter(int sock) : sock_(sock) {} SocketWaiter(const SocketWaiter &) = delete; SocketWaiter &operator=(const SocketWaiter &) = delete; bool Init() { stdin_ = std::make_shared<StdinState>(); stdin_->event.reset(WSACreateEvent()); if (!stdin_->event) { PrintSocketError("Error in WSACreateEvent"); return false; } // Spawn a thread to block on stdin. std::shared_ptr<StdinState> state = stdin_; std::thread thread([state]() { for (;;) { uint8_t buf[512]; int ret = _read(0 /* stdin */, buf, sizeof(buf)); if (ret <= 0) { if (ret < 0) { perror("read from stdin"); } // Report the error or EOF to the caller. std::lock_guard<std::mutex> lock(state->lock); state->error = ret < 0; state->open = false; WSASetEvent(state->event.get()); return; } size_t len = static_cast<size_t>(ret); size_t written = 0; while (written < len) { std::unique_lock<std::mutex> lock(state->lock); // Wait for there to be room in the buffer. state->cond.wait(lock, [&] { return !state->buffer_full(); }); // Copy what we can and signal to the caller. size_t todo = std::min(len - written, state->buffer_remaining()); state->buffer.insert(state->buffer.end(), buf + written, buf + written + todo); written += todo; WSASetEvent(state->event.get()); } } }); thread.detach(); return true; } bool Wait(StdinWait stdin_wait, bool *socket_ready, bool *stdin_ready) { *socket_ready = true; *stdin_ready = false; ScopedWSAEVENT sock_read_event(WSACreateEvent()); if (!sock_read_event || WSAEventSelect(sock_, sock_read_event.get(), FD_READ | FD_CLOSE) != 0) { PrintSocketError("Error waiting for socket read"); return false; } DWORD count = 1; WSAEVENT events[3] = {sock_read_event.get(), WSA_INVALID_EVENT}; ScopedWSAEVENT sock_write_event; if (stdin_wait == StdinWait::kSocketWrite) { sock_write_event.reset(WSACreateEvent()); if (!sock_write_event || WSAEventSelect(sock_, sock_write_event.get(), FD_WRITE | FD_CLOSE) != 0) { PrintSocketError("Error waiting for socket write"); return false; } events[1] = sock_write_event.get(); count++; } else if (listen_stdin_) { events[1] = stdin_->event.get(); count++; } switch (WSAWaitForMultipleEvents(count, events, FALSE /* wait all */, WSA_INFINITE, FALSE /* alertable */)) { case WSA_WAIT_EVENT_0 + 0: *socket_ready = true; return true; case WSA_WAIT_EVENT_0 + 1: *stdin_ready = true; return true; case WSA_WAIT_TIMEOUT: return true; default: PrintSocketError("Error waiting for events"); return false; } } bool ReadStdin(void *out, size_t *out_len, size_t max_out) { std::lock_guard<std::mutex> locked(stdin_->lock); if (stdin_->buffer.empty()) { // |ReadStdin| may only be called when |Wait| signals it is ready, so // stdin must have reached EOF or error. assert(!stdin_->open); listen_stdin_ = false; if (stdin_->error) { return false; } *out_len = 0; return true; } bool was_full = stdin_->buffer_full(); // Copy as many bytes as well fit. *out_len = std::min(max_out, stdin_->buffer.size()); auto begin = stdin_->buffer.begin(); auto end = stdin_->buffer.begin() + *out_len; std::copy(begin, end, static_cast<uint8_t *>(out)); stdin_->buffer.erase(begin, end); // Notify the stdin thread if there is more space. if (was_full && !stdin_->buffer_full()) { stdin_->cond.notify_one(); } // If stdin is now waiting for input, clear the event. if (stdin_->buffer.empty() && stdin_->open) { WSAResetEvent(stdin_->event.get()); } return true; } private: struct StdinState { static constexpr size_t kMaxBuffer = 1024; StdinState() = default; StdinState(const StdinState &) = delete; StdinState &operator=(const StdinState &) = delete; size_t buffer_remaining() const { return kMaxBuffer - buffer.size(); } bool buffer_full() const { return buffer_remaining() == 0; } ScopedWSAEVENT event; // lock protects the following fields. std::mutex lock; // cond notifies the stdin thread that |buffer| is no longer full. std::condition_variable cond; std::deque<uint8_t> buffer; bool open = true; bool error = false; }; int sock_; std::shared_ptr<StdinState> stdin_; // listen_stdin_ is set to false when we have consumed an EOF or error from // |stdin_|. This is separate from |stdin_->open| because the signal may not // have been consumed yet. bool listen_stdin_ = true; }; #endif // OPENSSL_WINDOWS void PrintSSLError(FILE *file, const char *msg, int ssl_err, int ret) { switch (ssl_err) { case SSL_ERROR_SSL: fprintf(file, "%s: %s\n", msg, ERR_reason_error_string(ERR_peek_error())); break; case SSL_ERROR_SYSCALL: if (ret == 0) { fprintf(file, "%s: peer closed connection\n", msg); } else { std::string error = GetLastSocketErrorString(); fprintf(file, "%s: %s\n", msg, error.c_str()); } break; case SSL_ERROR_ZERO_RETURN: fprintf(file, "%s: received close_notify\n", msg); break; default: fprintf(file, "%s: unexpected error: %s\n", msg, SSL_error_description(ssl_err)); } ERR_print_errors_fp(file); } bool TransferData(SSL *ssl, int sock) { if (!SocketSetNonBlocking(sock, true)) { return false; } SocketWaiter waiter(sock); if (!waiter.Init()) { return false; } uint8_t pending_write[512]; size_t pending_write_len = 0; for (;;) { bool socket_ready = false; bool stdin_ready = false; if (!waiter.Wait(pending_write_len == 0 ? StdinWait::kStdinRead : StdinWait::kSocketWrite, &socket_ready, &stdin_ready)) { return false; } if (stdin_ready) { if (pending_write_len == 0) { if (!waiter.ReadStdin(pending_write, &pending_write_len, sizeof(pending_write))) { return false; } if (pending_write_len == 0) { #if !defined(OPENSSL_WINDOWS) shutdown(sock, SHUT_WR); #else shutdown(sock, SD_SEND); #endif continue; } } int ssl_ret = SSL_write(ssl, pending_write, static_cast<int>(pending_write_len)); if (ssl_ret <= 0) { int ssl_err = SSL_get_error(ssl, ssl_ret); if (ssl_err == SSL_ERROR_WANT_WRITE) { continue; } PrintSSLError(stderr, "Error while writing", ssl_err, ssl_ret); return false; } if (ssl_ret != static_cast<int>(pending_write_len)) { fprintf(stderr, "Short write from SSL_write.\n"); return false; } pending_write_len = 0; } if (socket_ready) { for (;;) { uint8_t buffer[512]; int ssl_ret = SSL_read(ssl, buffer, sizeof(buffer)); if (ssl_ret < 0) { int ssl_err = SSL_get_error(ssl, ssl_ret); if (ssl_err == SSL_ERROR_WANT_READ) { break; } PrintSSLError(stderr, "Error while reading", ssl_err, ssl_ret); return false; } else if (ssl_ret == 0) { return true; } size_t n; if (!WriteToFD(1, &n, buffer, ssl_ret)) { fprintf(stderr, "Error writing to stdout.\n"); return false; } if (n != static_cast<size_t>(ssl_ret)) { fprintf(stderr, "Short write to stderr.\n"); return false; } } } } } // SocketLineReader wraps a small buffer around a socket for line-orientated // protocols. class SocketLineReader { public: explicit SocketLineReader(int sock) : sock_(sock) {} // Next reads a '\n'- or '\r\n'-terminated line from the socket and, on // success, sets |*out_line| to it and returns true. Otherwise it returns // false. bool Next(std::string *out_line) { for (;;) { for (size_t i = 0; i < buf_len_; i++) { if (buf_[i] != '\n') { continue; } size_t length = i; if (i > 0 && buf_[i - 1] == '\r') { length--; } out_line->assign(buf_, length); buf_len_ -= i + 1; OPENSSL_memmove(buf_, &buf_[i + 1], buf_len_); return true; } if (buf_len_ == sizeof(buf_)) { fprintf(stderr, "Received line too long!\n"); return false; } socket_result_t n; do { n = recv(sock_, &buf_[buf_len_], sizeof(buf_) - buf_len_, 0); } while (n == -1 && errno == EINTR); if (n < 0) { fprintf(stderr, "Read error from socket\n"); return false; } buf_len_ += n; } } // ReadSMTPReply reads one or more lines that make up an SMTP reply. On // success, it sets |*out_code| to the reply's code (e.g. 250) and // |*out_content| to the body of the reply (e.g. "OK") and returns true. // Otherwise it returns false. // // See https://tools.ietf.org/html/rfc821#page-48 bool ReadSMTPReply(unsigned *out_code, std::string *out_content) { out_content->clear(); // kMaxLines is the maximum number of lines that we'll accept in an SMTP // reply. static const unsigned kMaxLines = 512; for (unsigned i = 0; i < kMaxLines; i++) { std::string line; if (!Next(&line)) { return false; } if (line.size() < 4) { fprintf(stderr, "Short line from SMTP server: %s\n", line.c_str()); return false; } const std::string code_str = line.substr(0, 3); char *endptr; const unsigned long code = strtoul(code_str.c_str(), &endptr, 10); if (*endptr || code > UINT_MAX) { fprintf(stderr, "Failed to parse code from line: %s\n", line.c_str()); return false; } if (i == 0) { *out_code = code; } else if (code != *out_code) { fprintf(stderr, "Reply code varied within a single reply: was %u, now %u\n", *out_code, static_cast<unsigned>(code)); return false; } if (line[3] == ' ') { // End of reply. *out_content += line.substr(4, std::string::npos); return true; } else if (line[3] == '-') { // Another line of reply will follow this one. *out_content += line.substr(4, std::string::npos); out_content->push_back('\n'); } else { fprintf(stderr, "Bad character after code in SMTP reply: %s\n", line.c_str()); return false; } } fprintf(stderr, "Rejected SMTP reply of more then %u lines\n", kMaxLines); return false; } private: const int sock_; char buf_[512]; size_t buf_len_ = 0; }; // SendAll writes |data_len| bytes from |data| to |sock|. It returns true on // success and false otherwise. static bool SendAll(int sock, const char *data, size_t data_len) { size_t done = 0; while (done < data_len) { socket_result_t n; do { n = send(sock, &data[done], data_len - done, 0); } while (n == -1 && errno == EINTR); if (n < 0) { fprintf(stderr, "Error while writing to socket\n"); return false; } done += n; } return true; } bool DoSMTPStartTLS(int sock) { SocketLineReader line_reader(sock); unsigned code_220 = 0; std::string reply_220; if (!line_reader.ReadSMTPReply(&code_220, &reply_220)) { return false; } if (code_220 != 220) { fprintf(stderr, "Expected 220 line from SMTP server but got code %u\n", code_220); return false; } static const char kHelloLine[] = "EHLO BoringSSL\r\n"; if (!SendAll(sock, kHelloLine, sizeof(kHelloLine) - 1)) { return false; } unsigned code_250 = 0; std::string reply_250; if (!line_reader.ReadSMTPReply(&code_250, &reply_250)) { return false; } if (code_250 != 250) { fprintf(stderr, "Expected 250 line after EHLO but got code %u\n", code_250); return false; } // https://tools.ietf.org/html/rfc1869#section-4.3 if (("\n" + reply_250 + "\n").find("\nSTARTTLS\n") == std::string::npos) { fprintf(stderr, "Server does not support STARTTLS\n"); return false; } static const char kSTARTTLSLine[] = "STARTTLS\r\n"; if (!SendAll(sock, kSTARTTLSLine, sizeof(kSTARTTLSLine) - 1)) { return false; } if (!line_reader.ReadSMTPReply(&code_220, &reply_220)) { return false; } if (code_220 != 220) { fprintf( stderr, "Expected 220 line from SMTP server after STARTTLS, but got code %u\n", code_220); return false; } return true; } bool DoHTTPTunnel(int sock, const std::string &hostname_and_port) { std::string hostname, port; SplitHostPort(&hostname, &port, hostname_and_port); fprintf(stderr, "Establishing HTTP tunnel to %s:%s.\n", hostname.c_str(), port.c_str()); char buf[1024]; snprintf(buf, sizeof(buf), "CONNECT %s:%s HTTP/1.0\r\n\r\n", hostname.c_str(), port.c_str()); if (!SendAll(sock, buf, strlen(buf))) { return false; } SocketLineReader line_reader(sock); // Read until an empty line, signaling the end of the HTTP response. std::string line; for (;;) { if (!line_reader.Next(&line)) { return false; } if (line.empty()) { return true; } fprintf(stderr, "%s\n", line.c_str()); } }