ref: 98c1cd7ae022efe276123898af6b892eade0732c
dir: /third_party/boringssl/src/tool/server.cc/
/* Copyright (c) 2014, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <openssl/base.h> #include <memory> #include <openssl/err.h> #include <openssl/hpke.h> #include <openssl/rand.h> #include <openssl/ssl.h> #include "internal.h" #include "transport_common.h" static const struct argument kArguments[] = { { "-accept", kRequiredArgument, "The port of the server to bind on; eg 45102", }, { "-cipher", kOptionalArgument, "An OpenSSL-style cipher suite string that configures the offered " "ciphers", }, { "-curves", kOptionalArgument, "An OpenSSL-style ECDH curves list that configures the offered curves", }, { "-max-version", kOptionalArgument, "The maximum acceptable protocol version", }, { "-min-version", kOptionalArgument, "The minimum acceptable protocol version", }, { "-key", kOptionalArgument, "PEM-encoded file containing the private key. A self-signed " "certificate is generated at runtime if this argument is not provided.", }, { "-cert", kOptionalArgument, "PEM-encoded file containing the leaf certificate and optional " "certificate chain. This is taken from the -key argument if this " "argument is not provided.", }, { "-ocsp-response", kOptionalArgument, "OCSP response file to send", }, { "-ech-key", kOptionalArgument, "File containing the private key corresponding to the ECHConfig.", }, { "-ech-config", kOptionalArgument, "File containing one ECHConfig.", }, { "-loop", kBooleanArgument, "The server will continue accepting new sequential connections.", }, { "-early-data", kBooleanArgument, "Allow early data", }, { "-www", kBooleanArgument, "The server will print connection information in response to a " "HTTP GET request.", }, { "-debug", kBooleanArgument, "Print debug information about the handshake", }, { "-require-any-client-cert", kBooleanArgument, "The server will require a client certificate.", }, { "-jdk11-workaround", kBooleanArgument, "Enable the JDK 11 workaround", }, { "", kOptionalArgument, "", }, }; static bool LoadOCSPResponse(SSL_CTX *ctx, const char *filename) { ScopedFILE f(fopen(filename, "rb")); std::vector<uint8_t> data; if (f == nullptr || !ReadAll(&data, f.get())) { fprintf(stderr, "Error reading %s.\n", filename); return false; } if (!SSL_CTX_set_ocsp_response(ctx, data.data(), data.size())) { return false; } return true; } static bssl::UniquePtr<EVP_PKEY> MakeKeyPairForSelfSignedCert() { bssl::UniquePtr<EC_KEY> ec_key(EC_KEY_new_by_curve_name(NID_X9_62_prime256v1)); if (!ec_key || !EC_KEY_generate_key(ec_key.get())) { fprintf(stderr, "Failed to generate key pair.\n"); return nullptr; } bssl::UniquePtr<EVP_PKEY> evp_pkey(EVP_PKEY_new()); if (!evp_pkey || !EVP_PKEY_assign_EC_KEY(evp_pkey.get(), ec_key.release())) { fprintf(stderr, "Failed to assign key pair.\n"); return nullptr; } return evp_pkey; } static bssl::UniquePtr<X509> MakeSelfSignedCert(EVP_PKEY *evp_pkey, const int valid_days) { bssl::UniquePtr<X509> x509(X509_new()); uint32_t serial; RAND_bytes(reinterpret_cast<uint8_t*>(&serial), sizeof(serial)); ASN1_INTEGER_set(X509_get_serialNumber(x509.get()), serial >> 1); X509_gmtime_adj(X509_get_notBefore(x509.get()), 0); X509_gmtime_adj(X509_get_notAfter(x509.get()), 60 * 60 * 24 * valid_days); X509_NAME* subject = X509_get_subject_name(x509.get()); X509_NAME_add_entry_by_txt(subject, "C", MBSTRING_ASC, reinterpret_cast<const uint8_t *>("US"), -1, -1, 0); X509_NAME_add_entry_by_txt(subject, "O", MBSTRING_ASC, reinterpret_cast<const uint8_t *>("BoringSSL"), -1, -1, 0); X509_set_issuer_name(x509.get(), subject); if (!X509_set_pubkey(x509.get(), evp_pkey)) { fprintf(stderr, "Failed to set public key.\n"); return nullptr; } if (!X509_sign(x509.get(), evp_pkey, EVP_sha256())) { fprintf(stderr, "Failed to sign certificate.\n"); return nullptr; } return x509; } static void InfoCallback(const SSL *ssl, int type, int value) { switch (type) { case SSL_CB_HANDSHAKE_START: fprintf(stderr, "Handshake started.\n"); break; case SSL_CB_HANDSHAKE_DONE: fprintf(stderr, "Handshake done.\n"); break; case SSL_CB_ACCEPT_LOOP: fprintf(stderr, "Handshake progress: %s\n", SSL_state_string_long(ssl)); break; } } static FILE *g_keylog_file = nullptr; static void KeyLogCallback(const SSL *ssl, const char *line) { fprintf(g_keylog_file, "%s\n", line); fflush(g_keylog_file); } static bool HandleWWW(SSL *ssl) { bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); if (!bio) { fprintf(stderr, "Cannot create BIO for response\n"); return false; } BIO_puts(bio.get(), "HTTP/1.0 200 OK\r\nContent-Type: text/plain\r\n\r\n"); PrintConnectionInfo(bio.get(), ssl); char request[4]; size_t request_len = 0; while (request_len < sizeof(request)) { int ssl_ret = SSL_read(ssl, request + request_len, sizeof(request) - request_len); if (ssl_ret <= 0) { int ssl_err = SSL_get_error(ssl, ssl_ret); PrintSSLError(stderr, "Error while reading", ssl_err, ssl_ret); return false; } request_len += static_cast<size_t>(ssl_ret); } // Assume simple HTTP request, print status. if (memcmp(request, "GET ", 4) == 0) { const uint8_t *response; size_t response_len; if (BIO_mem_contents(bio.get(), &response, &response_len)) { SSL_write(ssl, response, response_len); } } return true; } bool Server(const std::vector<std::string> &args) { if (!InitSocketLibrary()) { return false; } std::map<std::string, std::string> args_map; if (!ParseKeyValueArguments(&args_map, args, kArguments)) { PrintUsage(kArguments); return false; } bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method())); const char *keylog_file = getenv("SSLKEYLOGFILE"); if (keylog_file) { g_keylog_file = fopen(keylog_file, "a"); if (g_keylog_file == nullptr) { perror("fopen"); return false; } SSL_CTX_set_keylog_callback(ctx.get(), KeyLogCallback); } // Server authentication is required. if (args_map.count("-key") != 0) { std::string key = args_map["-key"]; if (!SSL_CTX_use_PrivateKey_file(ctx.get(), key.c_str(), SSL_FILETYPE_PEM)) { fprintf(stderr, "Failed to load private key: %s\n", key.c_str()); return false; } const std::string &cert = args_map.count("-cert") != 0 ? args_map["-cert"] : key; if (!SSL_CTX_use_certificate_chain_file(ctx.get(), cert.c_str())) { fprintf(stderr, "Failed to load cert chain: %s\n", cert.c_str()); return false; } } else { bssl::UniquePtr<EVP_PKEY> evp_pkey = MakeKeyPairForSelfSignedCert(); if (!evp_pkey) { return false; } bssl::UniquePtr<X509> cert = MakeSelfSignedCert(evp_pkey.get(), 365 /* valid_days */); if (!cert) { return false; } if (!SSL_CTX_use_PrivateKey(ctx.get(), evp_pkey.get())) { fprintf(stderr, "Failed to set private key.\n"); return false; } if (!SSL_CTX_use_certificate(ctx.get(), cert.get())) { fprintf(stderr, "Failed to set certificate.\n"); return false; } } if (args_map.count("-ech-key") + args_map.count("-ech-config") == 1) { fprintf(stderr, "-ech-config and -ech-key must be specified together.\n"); return false; } if (args_map.count("-ech-key") != 0) { // Load the ECH private key. std::string ech_key_path = args_map["-ech-key"]; ScopedFILE ech_key_file(fopen(ech_key_path.c_str(), "rb")); std::vector<uint8_t> ech_key; if (ech_key_file == nullptr || !ReadAll(&ech_key, ech_key_file.get())) { fprintf(stderr, "Error reading %s\n", ech_key_path.c_str()); return false; } // Load the ECHConfig. std::string ech_config_path = args_map["-ech-config"]; ScopedFILE ech_config_file(fopen(ech_config_path.c_str(), "rb")); std::vector<uint8_t> ech_config; if (ech_config_file == nullptr || !ReadAll(&ech_config, ech_config_file.get())) { fprintf(stderr, "Error reading %s\n", ech_config_path.c_str()); return false; } bssl::UniquePtr<SSL_ECH_KEYS> keys(SSL_ECH_KEYS_new()); bssl::ScopedEVP_HPKE_KEY key; if (!keys || !EVP_HPKE_KEY_init(key.get(), EVP_hpke_x25519_hkdf_sha256(), ech_key.data(), ech_key.size()) || !SSL_ECH_KEYS_add(keys.get(), /*is_retry_config=*/1, ech_config.data(), ech_config.size(), key.get()) || !SSL_CTX_set1_ech_keys(ctx.get(), keys.get())) { fprintf(stderr, "Error setting server's ECHConfig and private key\n"); return false; } } if (args_map.count("-cipher") != 0 && !SSL_CTX_set_strict_cipher_list(ctx.get(), args_map["-cipher"].c_str())) { fprintf(stderr, "Failed setting cipher list\n"); return false; } if (args_map.count("-curves") != 0 && !SSL_CTX_set1_curves_list(ctx.get(), args_map["-curves"].c_str())) { fprintf(stderr, "Failed setting curves list\n"); return false; } uint16_t max_version = TLS1_3_VERSION; if (args_map.count("-max-version") != 0 && !VersionFromString(&max_version, args_map["-max-version"])) { fprintf(stderr, "Unknown protocol version: '%s'\n", args_map["-max-version"].c_str()); return false; } if (!SSL_CTX_set_max_proto_version(ctx.get(), max_version)) { return false; } if (args_map.count("-min-version") != 0) { uint16_t version; if (!VersionFromString(&version, args_map["-min-version"])) { fprintf(stderr, "Unknown protocol version: '%s'\n", args_map["-min-version"].c_str()); return false; } if (!SSL_CTX_set_min_proto_version(ctx.get(), version)) { return false; } } if (args_map.count("-ocsp-response") != 0 && !LoadOCSPResponse(ctx.get(), args_map["-ocsp-response"].c_str())) { fprintf(stderr, "Failed to load OCSP response: %s\n", args_map["-ocsp-response"].c_str()); return false; } if (args_map.count("-early-data") != 0) { SSL_CTX_set_early_data_enabled(ctx.get(), 1); } if (args_map.count("-debug") != 0) { SSL_CTX_set_info_callback(ctx.get(), InfoCallback); } if (args_map.count("-require-any-client-cert") != 0) { SSL_CTX_set_verify( ctx.get(), SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, nullptr); SSL_CTX_set_cert_verify_callback( ctx.get(), [](X509_STORE_CTX *store, void *arg) -> int { return 1; }, nullptr); } Listener listener; if (!listener.Init(args_map["-accept"])) { return false; } bool result = true; do { int sock = -1; if (!listener.Accept(&sock)) { return false; } BIO *bio = BIO_new_socket(sock, BIO_CLOSE); bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get())); SSL_set_bio(ssl.get(), bio, bio); if (args_map.count("-jdk11-workaround") != 0) { SSL_set_jdk11_workaround(ssl.get(), 1); } int ret = SSL_accept(ssl.get()); if (ret != 1) { int ssl_err = SSL_get_error(ssl.get(), ret); PrintSSLError(stderr, "Error while connecting", ssl_err, ret); result = false; continue; } fprintf(stderr, "Connected.\n"); bssl::UniquePtr<BIO> bio_stderr(BIO_new_fp(stderr, BIO_NOCLOSE)); PrintConnectionInfo(bio_stderr.get(), ssl.get()); if (args_map.count("-www") != 0) { result = HandleWWW(ssl.get()); } else { result = TransferData(ssl.get(), sock); } } while (args_map.count("-loop") != 0); return result; }