ref: 98c1cd7ae022efe276123898af6b892eade0732c
dir: /third_party/boringssl/src/ssl/tls13_enc.cc/
/* Copyright (c) 2016, Google Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <openssl/ssl.h> #include <assert.h> #include <string.h> #include <algorithm> #include <utility> #include <openssl/aead.h> #include <openssl/bytestring.h> #include <openssl/digest.h> #include <openssl/hkdf.h> #include <openssl/hmac.h> #include <openssl/mem.h> #include "../crypto/internal.h" #include "internal.h" BSSL_NAMESPACE_BEGIN static bool init_key_schedule(SSL_HANDSHAKE *hs, SSLTranscript *transcript, uint16_t version, const SSL_CIPHER *cipher) { if (!transcript->InitHash(version, cipher)) { return false; } // Initialize the secret to the zero key. hs->ResizeSecrets(transcript->DigestLen()); OPENSSL_memset(hs->secret().data(), 0, hs->secret().size()); return true; } static bool hkdf_extract_to_secret(SSL_HANDSHAKE *hs, const SSLTranscript &transcript, Span<const uint8_t> in) { size_t len; if (!HKDF_extract(hs->secret().data(), &len, transcript.Digest(), in.data(), in.size(), hs->secret().data(), hs->secret().size())) { return false; } assert(len == hs->secret().size()); return true; } bool tls13_init_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> psk) { if (!init_key_schedule(hs, &hs->transcript, ssl_protocol_version(hs->ssl), hs->new_cipher)) { return false; } // Handback includes the whole handshake transcript, so we cannot free the // transcript buffer in the handback case. if (!hs->handback) { hs->transcript.FreeBuffer(); } return hkdf_extract_to_secret(hs, hs->transcript, psk); } bool tls13_init_early_key_schedule(SSL_HANDSHAKE *hs, const SSL_SESSION *session) { assert(!hs->ssl->server); // When offering ECH, early data is associated with ClientHelloInner, not // ClientHelloOuter. SSLTranscript *transcript = hs->selected_ech_config ? &hs->inner_transcript : &hs->transcript; return init_key_schedule(hs, transcript, ssl_session_protocol_version(session), session->cipher) && hkdf_extract_to_secret( hs, *transcript, MakeConstSpan(session->secret, session->secret_length)); } static Span<const char> label_to_span(const char *label) { return MakeConstSpan(label, strlen(label)); } static bool hkdf_expand_label(Span<uint8_t> out, const EVP_MD *digest, Span<const uint8_t> secret, Span<const char> label, Span<const uint8_t> hash) { Span<const char> protocol_label = label_to_span("tls13 "); ScopedCBB cbb; CBB child; Array<uint8_t> hkdf_label; if (!CBB_init(cbb.get(), 2 + 1 + protocol_label.size() + label.size() + 1 + hash.size()) || !CBB_add_u16(cbb.get(), out.size()) || !CBB_add_u8_length_prefixed(cbb.get(), &child) || !CBB_add_bytes(&child, reinterpret_cast<const uint8_t *>(protocol_label.data()), protocol_label.size()) || !CBB_add_bytes(&child, reinterpret_cast<const uint8_t *>(label.data()), label.size()) || !CBB_add_u8_length_prefixed(cbb.get(), &child) || !CBB_add_bytes(&child, hash.data(), hash.size()) || !CBBFinishArray(cbb.get(), &hkdf_label)) { return false; } return HKDF_expand(out.data(), out.size(), digest, secret.data(), secret.size(), hkdf_label.data(), hkdf_label.size()); } static const char kTLS13LabelDerived[] = "derived"; bool tls13_advance_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> in) { uint8_t derive_context[EVP_MAX_MD_SIZE]; unsigned derive_context_len; return EVP_Digest(nullptr, 0, derive_context, &derive_context_len, hs->transcript.Digest(), nullptr) && hkdf_expand_label(hs->secret(), hs->transcript.Digest(), hs->secret(), label_to_span(kTLS13LabelDerived), MakeConstSpan(derive_context, derive_context_len)) && hkdf_extract_to_secret(hs, hs->transcript, in); } // derive_secret_with_transcript derives a secret of length |out.size()| and // writes the result in |out| with the given label, the current base secret, and // the state of |transcript|. It returns true on success and false on error. static bool derive_secret_with_transcript(const SSL_HANDSHAKE *hs, Span<uint8_t> out, const SSLTranscript &transcript, Span<const char> label) { uint8_t context_hash[EVP_MAX_MD_SIZE]; size_t context_hash_len; if (!transcript.GetHash(context_hash, &context_hash_len)) { return false; } return hkdf_expand_label(out, transcript.Digest(), hs->secret(), label, MakeConstSpan(context_hash, context_hash_len)); } static bool derive_secret(SSL_HANDSHAKE *hs, Span<uint8_t> out, Span<const char> label) { return derive_secret_with_transcript(hs, out, hs->transcript, label); } bool tls13_set_traffic_key(SSL *ssl, enum ssl_encryption_level_t level, enum evp_aead_direction_t direction, const SSL_SESSION *session, Span<const uint8_t> traffic_secret) { uint16_t version = ssl_session_protocol_version(session); UniquePtr<SSLAEADContext> traffic_aead; Span<const uint8_t> secret_for_quic; if (ssl->quic_method != nullptr) { // Install a placeholder SSLAEADContext so that SSL accessors work. The // encryption itself will be handled by the SSL_QUIC_METHOD. traffic_aead = SSLAEADContext::CreatePlaceholderForQUIC(version, session->cipher); secret_for_quic = traffic_secret; } else { // Look up cipher suite properties. const EVP_AEAD *aead; size_t discard; if (!ssl_cipher_get_evp_aead(&aead, &discard, &discard, session->cipher, version, SSL_is_dtls(ssl))) { return false; } const EVP_MD *digest = ssl_session_get_digest(session); // Derive the key. size_t key_len = EVP_AEAD_key_length(aead); uint8_t key_buf[EVP_AEAD_MAX_KEY_LENGTH]; auto key = MakeSpan(key_buf, key_len); if (!hkdf_expand_label(key, digest, traffic_secret, label_to_span("key"), {})) { return false; } // Derive the IV. size_t iv_len = EVP_AEAD_nonce_length(aead); uint8_t iv_buf[EVP_AEAD_MAX_NONCE_LENGTH]; auto iv = MakeSpan(iv_buf, iv_len); if (!hkdf_expand_label(iv, digest, traffic_secret, label_to_span("iv"), {})) { return false; } traffic_aead = SSLAEADContext::Create(direction, session->ssl_version, SSL_is_dtls(ssl), session->cipher, key, Span<const uint8_t>(), iv); } if (!traffic_aead) { return false; } if (traffic_secret.size() > OPENSSL_ARRAY_SIZE(ssl->s3->read_traffic_secret) || traffic_secret.size() > OPENSSL_ARRAY_SIZE(ssl->s3->write_traffic_secret)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } if (direction == evp_aead_open) { if (!ssl->method->set_read_state(ssl, level, std::move(traffic_aead), secret_for_quic)) { return false; } OPENSSL_memmove(ssl->s3->read_traffic_secret, traffic_secret.data(), traffic_secret.size()); ssl->s3->read_traffic_secret_len = traffic_secret.size(); } else { if (!ssl->method->set_write_state(ssl, level, std::move(traffic_aead), secret_for_quic)) { return false; } OPENSSL_memmove(ssl->s3->write_traffic_secret, traffic_secret.data(), traffic_secret.size()); ssl->s3->write_traffic_secret_len = traffic_secret.size(); } return true; } static const char kTLS13LabelExporter[] = "exp master"; static const char kTLS13LabelClientEarlyTraffic[] = "c e traffic"; static const char kTLS13LabelClientHandshakeTraffic[] = "c hs traffic"; static const char kTLS13LabelServerHandshakeTraffic[] = "s hs traffic"; static const char kTLS13LabelClientApplicationTraffic[] = "c ap traffic"; static const char kTLS13LabelServerApplicationTraffic[] = "s ap traffic"; bool tls13_derive_early_secret(SSL_HANDSHAKE *hs) { SSL *const ssl = hs->ssl; // When offering ECH on the client, early data is associated with // ClientHelloInner, not ClientHelloOuter. const SSLTranscript &transcript = (!ssl->server && hs->selected_ech_config) ? hs->inner_transcript : hs->transcript; if (!derive_secret_with_transcript( hs, hs->early_traffic_secret(), transcript, label_to_span(kTLS13LabelClientEarlyTraffic)) || !ssl_log_secret(ssl, "CLIENT_EARLY_TRAFFIC_SECRET", hs->early_traffic_secret())) { return false; } return true; } bool tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs) { SSL *const ssl = hs->ssl; if (!derive_secret(hs, hs->client_handshake_secret(), label_to_span(kTLS13LabelClientHandshakeTraffic)) || !ssl_log_secret(ssl, "CLIENT_HANDSHAKE_TRAFFIC_SECRET", hs->client_handshake_secret()) || !derive_secret(hs, hs->server_handshake_secret(), label_to_span(kTLS13LabelServerHandshakeTraffic)) || !ssl_log_secret(ssl, "SERVER_HANDSHAKE_TRAFFIC_SECRET", hs->server_handshake_secret())) { return false; } return true; } bool tls13_derive_application_secrets(SSL_HANDSHAKE *hs) { SSL *const ssl = hs->ssl; ssl->s3->exporter_secret_len = hs->transcript.DigestLen(); if (!derive_secret(hs, hs->client_traffic_secret_0(), label_to_span(kTLS13LabelClientApplicationTraffic)) || !ssl_log_secret(ssl, "CLIENT_TRAFFIC_SECRET_0", hs->client_traffic_secret_0()) || !derive_secret(hs, hs->server_traffic_secret_0(), label_to_span(kTLS13LabelServerApplicationTraffic)) || !ssl_log_secret(ssl, "SERVER_TRAFFIC_SECRET_0", hs->server_traffic_secret_0()) || !derive_secret( hs, MakeSpan(ssl->s3->exporter_secret, ssl->s3->exporter_secret_len), label_to_span(kTLS13LabelExporter)) || !ssl_log_secret(ssl, "EXPORTER_SECRET", MakeConstSpan(ssl->s3->exporter_secret, ssl->s3->exporter_secret_len))) { return false; } return true; } static const char kTLS13LabelApplicationTraffic[] = "traffic upd"; bool tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction) { Span<uint8_t> secret; if (direction == evp_aead_open) { secret = MakeSpan(ssl->s3->read_traffic_secret, ssl->s3->read_traffic_secret_len); } else { secret = MakeSpan(ssl->s3->write_traffic_secret, ssl->s3->write_traffic_secret_len); } const SSL_SESSION *session = SSL_get_session(ssl); const EVP_MD *digest = ssl_session_get_digest(session); return hkdf_expand_label(secret, digest, secret, label_to_span(kTLS13LabelApplicationTraffic), {}) && tls13_set_traffic_key(ssl, ssl_encryption_application, direction, session, secret); } static const char kTLS13LabelResumption[] = "res master"; bool tls13_derive_resumption_secret(SSL_HANDSHAKE *hs) { if (hs->transcript.DigestLen() > SSL_MAX_MASTER_KEY_LENGTH) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } hs->new_session->secret_length = hs->transcript.DigestLen(); return derive_secret( hs, MakeSpan(hs->new_session->secret, hs->new_session->secret_length), label_to_span(kTLS13LabelResumption)); } static const char kTLS13LabelFinished[] = "finished"; // tls13_verify_data sets |out| to be the HMAC of |context| using a derived // Finished key for both Finished messages and the PSK binder. |out| must have // space available for |EVP_MAX_MD_SIZE| bytes. static bool tls13_verify_data(uint8_t *out, size_t *out_len, const EVP_MD *digest, uint16_t version, Span<const uint8_t> secret, Span<const uint8_t> context) { uint8_t key_buf[EVP_MAX_MD_SIZE]; auto key = MakeSpan(key_buf, EVP_MD_size(digest)); unsigned len; if (!hkdf_expand_label(key, digest, secret, label_to_span(kTLS13LabelFinished), {}) || HMAC(digest, key.data(), key.size(), context.data(), context.size(), out, &len) == nullptr) { return false; } *out_len = len; return true; } bool tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, bool is_server) { Span<const uint8_t> traffic_secret = is_server ? hs->server_handshake_secret() : hs->client_handshake_secret(); uint8_t context_hash[EVP_MAX_MD_SIZE]; size_t context_hash_len; if (!hs->transcript.GetHash(context_hash, &context_hash_len) || !tls13_verify_data(out, out_len, hs->transcript.Digest(), hs->ssl->version, traffic_secret, MakeConstSpan(context_hash, context_hash_len))) { return 0; } return 1; } static const char kTLS13LabelResumptionPSK[] = "resumption"; bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce) { const EVP_MD *digest = ssl_session_get_digest(session); // The session initially stores the resumption_master_secret, which we // override with the PSK. auto session_secret = MakeSpan(session->secret, session->secret_length); return hkdf_expand_label(session_secret, digest, session_secret, label_to_span(kTLS13LabelResumptionPSK), nonce); } static const char kTLS13LabelExportKeying[] = "exporter"; bool tls13_export_keying_material(SSL *ssl, Span<uint8_t> out, Span<const uint8_t> secret, Span<const char> label, Span<const uint8_t> context) { if (secret.empty()) { assert(0); OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } const EVP_MD *digest = ssl_session_get_digest(SSL_get_session(ssl)); uint8_t hash_buf[EVP_MAX_MD_SIZE]; uint8_t export_context_buf[EVP_MAX_MD_SIZE]; unsigned hash_len; unsigned export_context_len; if (!EVP_Digest(context.data(), context.size(), hash_buf, &hash_len, digest, nullptr) || !EVP_Digest(nullptr, 0, export_context_buf, &export_context_len, digest, nullptr)) { return false; } auto hash = MakeConstSpan(hash_buf, hash_len); auto export_context = MakeConstSpan(export_context_buf, export_context_len); uint8_t derived_secret_buf[EVP_MAX_MD_SIZE]; auto derived_secret = MakeSpan(derived_secret_buf, EVP_MD_size(digest)); return hkdf_expand_label(derived_secret, digest, secret, label, export_context) && hkdf_expand_label(out, digest, derived_secret, label_to_span(kTLS13LabelExportKeying), hash); } static const char kTLS13LabelPSKBinder[] = "res binder"; static bool tls13_psk_binder(uint8_t *out, size_t *out_len, const SSL_SESSION *session, const SSLTranscript &transcript, Span<const uint8_t> client_hello, size_t binders_len) { const EVP_MD *digest = ssl_session_get_digest(session); // Compute the binder key. // // TODO(davidben): Ideally we wouldn't recompute early secret and the binder // key each time. uint8_t binder_context[EVP_MAX_MD_SIZE]; unsigned binder_context_len; uint8_t early_secret[EVP_MAX_MD_SIZE] = {0}; size_t early_secret_len; uint8_t binder_key_buf[EVP_MAX_MD_SIZE] = {0}; auto binder_key = MakeSpan(binder_key_buf, EVP_MD_size(digest)); if (!EVP_Digest(nullptr, 0, binder_context, &binder_context_len, digest, nullptr) || !HKDF_extract(early_secret, &early_secret_len, digest, session->secret, session->secret_length, nullptr, 0) || !hkdf_expand_label(binder_key, digest, MakeConstSpan(early_secret, early_secret_len), label_to_span(kTLS13LabelPSKBinder), MakeConstSpan(binder_context, binder_context_len))) { return false; } // Hash the transcript and truncated ClientHello. if (client_hello.size() < binders_len) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } auto truncated = client_hello.subspan(0, client_hello.size() - binders_len); uint8_t context[EVP_MAX_MD_SIZE]; unsigned context_len; ScopedEVP_MD_CTX ctx; if (!transcript.CopyToHashContext(ctx.get(), digest) || !EVP_DigestUpdate(ctx.get(), truncated.data(), truncated.size()) || !EVP_DigestFinal_ex(ctx.get(), context, &context_len)) { return false; } if (!tls13_verify_data(out, out_len, digest, session->ssl_version, binder_key, MakeConstSpan(context, context_len))) { return false; } assert(*out_len == EVP_MD_size(digest)); return true; } bool tls13_write_psk_binder(const SSL_HANDSHAKE *hs, const SSLTranscript &transcript, Span<uint8_t> msg, size_t *out_binder_len) { const SSL *const ssl = hs->ssl; const EVP_MD *digest = ssl_session_get_digest(ssl->session.get()); const size_t hash_len = EVP_MD_size(digest); // We only offer one PSK, so the binders are a u16 and u8 length // prefix, followed by the binder. The caller is assumed to have constructed // |msg| with placeholder binders. const size_t binders_len = 3 + hash_len; uint8_t verify_data[EVP_MAX_MD_SIZE]; size_t verify_data_len; if (!tls13_psk_binder(verify_data, &verify_data_len, ssl->session.get(), transcript, msg, binders_len) || verify_data_len != hash_len) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } auto msg_binder = msg.last(verify_data_len); OPENSSL_memcpy(msg_binder.data(), verify_data, verify_data_len); if (out_binder_len != nullptr) { *out_binder_len = verify_data_len; } return true; } bool tls13_verify_psk_binder(const SSL_HANDSHAKE *hs, const SSL_SESSION *session, const SSLMessage &msg, CBS *binders) { uint8_t verify_data[EVP_MAX_MD_SIZE]; size_t verify_data_len; CBS binder; // The binders are computed over |msg| with |binders| and its u16 length // prefix removed. The caller is assumed to have parsed |msg|, extracted // |binders|, and verified the PSK extension is last. if (!tls13_psk_binder(verify_data, &verify_data_len, session, hs->transcript, msg.raw, 2 + CBS_len(binders)) || // We only consider the first PSK, so compare against the first binder. !CBS_get_u8_length_prefixed(binders, &binder)) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } bool binder_ok = CBS_len(&binder) == verify_data_len && CRYPTO_memcmp(CBS_data(&binder), verify_data, verify_data_len) == 0; #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) binder_ok = true; #endif if (!binder_ok) { OPENSSL_PUT_ERROR(SSL, SSL_R_DIGEST_CHECK_FAILED); return false; } return true; } size_t ssl_ech_confirmation_signal_hello_offset(const SSL *ssl) { static_assert(ECH_CONFIRMATION_SIGNAL_LEN < SSL3_RANDOM_SIZE, "the confirmation signal is a suffix of the random"); const size_t header_len = SSL_is_dtls(ssl) ? DTLS1_HM_HEADER_LENGTH : SSL3_HM_HEADER_LENGTH; return header_len + 2 /* version */ + SSL3_RANDOM_SIZE - ECH_CONFIRMATION_SIGNAL_LEN; } bool ssl_ech_accept_confirmation(const SSL_HANDSHAKE *hs, Span<uint8_t> out, Span<const uint8_t> client_random, const SSLTranscript &transcript, bool is_hrr, Span<const uint8_t> msg, size_t offset) { // See draft-ietf-tls-esni-13, sections 7.2 and 7.2.1. static const uint8_t kZeros[EVP_MAX_MD_SIZE] = {0}; // We hash |msg|, with bytes from |offset| zeroed. if (msg.size() < offset + ECH_CONFIRMATION_SIGNAL_LEN) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } auto before_zeros = msg.subspan(0, offset); auto after_zeros = msg.subspan(offset + ECH_CONFIRMATION_SIGNAL_LEN); uint8_t context[EVP_MAX_MD_SIZE]; unsigned context_len; ScopedEVP_MD_CTX ctx; if (!transcript.CopyToHashContext(ctx.get(), transcript.Digest()) || !EVP_DigestUpdate(ctx.get(), before_zeros.data(), before_zeros.size()) || !EVP_DigestUpdate(ctx.get(), kZeros, ECH_CONFIRMATION_SIGNAL_LEN) || !EVP_DigestUpdate(ctx.get(), after_zeros.data(), after_zeros.size()) || !EVP_DigestFinal_ex(ctx.get(), context, &context_len)) { return false; } uint8_t secret[EVP_MAX_MD_SIZE]; size_t secret_len; if (!HKDF_extract(secret, &secret_len, transcript.Digest(), client_random.data(), client_random.size(), kZeros, transcript.DigestLen())) { return false; } assert(out.size() == ECH_CONFIRMATION_SIGNAL_LEN); return hkdf_expand_label(out, transcript.Digest(), MakeConstSpan(secret, secret_len), is_hrr ? label_to_span("hrr ech accept confirmation") : label_to_span("ech accept confirmation"), MakeConstSpan(context, context_len)); } BSSL_NAMESPACE_END