ref: 2bbc75bddc6f2a07056ff017108e35f14061041b
dir: /third_party/boringssl/src/crypto/dh_extra/dh_test.cc/
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ #include <openssl/dh.h> #include <stdio.h> #include <string.h> #include <vector> #include <gtest/gtest.h> #include <openssl/bn.h> #include <openssl/bytestring.h> #include <openssl/crypto.h> #include <openssl/dh.h> #include <openssl/err.h> #include <openssl/mem.h> #include "../internal.h" #include "../test/test_util.h" static bool RunBasicTests(); static bool TestBadY(); static bool TestASN1(); static bool TestRFC3526(); // TODO(davidben): Convert this file to GTest properly. TEST(DHTest, AllTests) { if (!RunBasicTests() || !TestBadY() || !TestASN1() || !TestRFC3526()) { ADD_FAILURE() << "Tests failed."; } } static int GenerateCallback(int p, int n, BN_GENCB *arg) { char c = '*'; if (p == 0) { c = '.'; } else if (p == 1) { c = '+'; } else if (p == 2) { c = '*'; } else if (p == 3) { c = '\n'; } FILE *out = reinterpret_cast<FILE*>(arg->arg); fputc(c, out); fflush(out); return 1; } static bool RunBasicTests() { BN_GENCB cb; BN_GENCB_set(&cb, &GenerateCallback, stdout); bssl::UniquePtr<DH> a(DH_new()); if (!a || !DH_generate_parameters_ex(a.get(), 64, DH_GENERATOR_5, &cb)) { return false; } int check_result; if (!DH_check(a.get(), &check_result)) { return false; } if (check_result & DH_CHECK_P_NOT_PRIME) { printf("p value is not prime\n"); } if (check_result & DH_CHECK_P_NOT_SAFE_PRIME) { printf("p value is not a safe prime\n"); } if (check_result & DH_CHECK_UNABLE_TO_CHECK_GENERATOR) { printf("unable to check the generator value\n"); } if (check_result & DH_CHECK_NOT_SUITABLE_GENERATOR) { printf("the g value is not a generator\n"); } printf("\np = "); BN_print_fp(stdout, a->p); printf("\ng = "); BN_print_fp(stdout, a->g); printf("\n"); bssl::UniquePtr<DH> b(DH_new()); if (!b) { return false; } b->p = BN_dup(a->p); b->g = BN_dup(a->g); if (b->p == nullptr || b->g == nullptr) { return false; } if (!DH_generate_key(a.get())) { return false; } printf("pri1 = "); BN_print_fp(stdout, a->priv_key); printf("\npub1 = "); BN_print_fp(stdout, a->pub_key); printf("\n"); if (!DH_generate_key(b.get())) { return false; } printf("pri2 = "); BN_print_fp(stdout, b->priv_key); printf("\npub2 = "); BN_print_fp(stdout, b->pub_key); printf("\n"); std::vector<uint8_t> key1(DH_size(a.get())); int ret = DH_compute_key(key1.data(), b->pub_key, a.get()); if (ret < 0) { return false; } key1.resize(ret); printf("key1 = "); for (size_t i = 0; i < key1.size(); i++) { printf("%02x", key1[i]); } printf("\n"); std::vector<uint8_t> key2(DH_size(b.get())); ret = DH_compute_key(key2.data(), a->pub_key, b.get()); if (ret < 0) { return false; } key2.resize(ret); printf("key2 = "); for (size_t i = 0; i < key2.size(); i++) { printf("%02x", key2[i]); } printf("\n"); if (key1.size() < 4 || key1 != key2) { fprintf(stderr, "Error in DH routines\n"); return false; } return true; } // The following parameters are taken from RFC 5114, section 2.2. This is not a // safe prime. Do not use these parameters. static const uint8_t kRFC5114_2048_224P[] = { 0xad, 0x10, 0x7e, 0x1e, 0x91, 0x23, 0xa9, 0xd0, 0xd6, 0x60, 0xfa, 0xa7, 0x95, 0x59, 0xc5, 0x1f, 0xa2, 0x0d, 0x64, 0xe5, 0x68, 0x3b, 0x9f, 0xd1, 0xb5, 0x4b, 0x15, 0x97, 0xb6, 0x1d, 0x0a, 0x75, 0xe6, 0xfa, 0x14, 0x1d, 0xf9, 0x5a, 0x56, 0xdb, 0xaf, 0x9a, 0x3c, 0x40, 0x7b, 0xa1, 0xdf, 0x15, 0xeb, 0x3d, 0x68, 0x8a, 0x30, 0x9c, 0x18, 0x0e, 0x1d, 0xe6, 0xb8, 0x5a, 0x12, 0x74, 0xa0, 0xa6, 0x6d, 0x3f, 0x81, 0x52, 0xad, 0x6a, 0xc2, 0x12, 0x90, 0x37, 0xc9, 0xed, 0xef, 0xda, 0x4d, 0xf8, 0xd9, 0x1e, 0x8f, 0xef, 0x55, 0xb7, 0x39, 0x4b, 0x7a, 0xd5, 0xb7, 0xd0, 0xb6, 0xc1, 0x22, 0x07, 0xc9, 0xf9, 0x8d, 0x11, 0xed, 0x34, 0xdb, 0xf6, 0xc6, 0xba, 0x0b, 0x2c, 0x8b, 0xbc, 0x27, 0xbe, 0x6a, 0x00, 0xe0, 0xa0, 0xb9, 0xc4, 0x97, 0x08, 0xb3, 0xbf, 0x8a, 0x31, 0x70, 0x91, 0x88, 0x36, 0x81, 0x28, 0x61, 0x30, 0xbc, 0x89, 0x85, 0xdb, 0x16, 0x02, 0xe7, 0x14, 0x41, 0x5d, 0x93, 0x30, 0x27, 0x82, 0x73, 0xc7, 0xde, 0x31, 0xef, 0xdc, 0x73, 0x10, 0xf7, 0x12, 0x1f, 0xd5, 0xa0, 0x74, 0x15, 0x98, 0x7d, 0x9a, 0xdc, 0x0a, 0x48, 0x6d, 0xcd, 0xf9, 0x3a, 0xcc, 0x44, 0x32, 0x83, 0x87, 0x31, 0x5d, 0x75, 0xe1, 0x98, 0xc6, 0x41, 0xa4, 0x80, 0xcd, 0x86, 0xa1, 0xb9, 0xe5, 0x87, 0xe8, 0xbe, 0x60, 0xe6, 0x9c, 0xc9, 0x28, 0xb2, 0xb9, 0xc5, 0x21, 0x72, 0xe4, 0x13, 0x04, 0x2e, 0x9b, 0x23, 0xf1, 0x0b, 0x0e, 0x16, 0xe7, 0x97, 0x63, 0xc9, 0xb5, 0x3d, 0xcf, 0x4b, 0xa8, 0x0a, 0x29, 0xe3, 0xfb, 0x73, 0xc1, 0x6b, 0x8e, 0x75, 0xb9, 0x7e, 0xf3, 0x63, 0xe2, 0xff, 0xa3, 0x1f, 0x71, 0xcf, 0x9d, 0xe5, 0x38, 0x4e, 0x71, 0xb8, 0x1c, 0x0a, 0xc4, 0xdf, 0xfe, 0x0c, 0x10, 0xe6, 0x4f, }; static const uint8_t kRFC5114_2048_224G[] = { 0xac, 0x40, 0x32, 0xef, 0x4f, 0x2d, 0x9a, 0xe3, 0x9d, 0xf3, 0x0b, 0x5c, 0x8f, 0xfd, 0xac, 0x50, 0x6c, 0xde, 0xbe, 0x7b, 0x89, 0x99, 0x8c, 0xaf, 0x74, 0x86, 0x6a, 0x08, 0xcf, 0xe4, 0xff, 0xe3, 0xa6, 0x82, 0x4a, 0x4e, 0x10, 0xb9, 0xa6, 0xf0, 0xdd, 0x92, 0x1f, 0x01, 0xa7, 0x0c, 0x4a, 0xfa, 0xab, 0x73, 0x9d, 0x77, 0x00, 0xc2, 0x9f, 0x52, 0xc5, 0x7d, 0xb1, 0x7c, 0x62, 0x0a, 0x86, 0x52, 0xbe, 0x5e, 0x90, 0x01, 0xa8, 0xd6, 0x6a, 0xd7, 0xc1, 0x76, 0x69, 0x10, 0x19, 0x99, 0x02, 0x4a, 0xf4, 0xd0, 0x27, 0x27, 0x5a, 0xc1, 0x34, 0x8b, 0xb8, 0xa7, 0x62, 0xd0, 0x52, 0x1b, 0xc9, 0x8a, 0xe2, 0x47, 0x15, 0x04, 0x22, 0xea, 0x1e, 0xd4, 0x09, 0x93, 0x9d, 0x54, 0xda, 0x74, 0x60, 0xcd, 0xb5, 0xf6, 0xc6, 0xb2, 0x50, 0x71, 0x7c, 0xbe, 0xf1, 0x80, 0xeb, 0x34, 0x11, 0x8e, 0x98, 0xd1, 0x19, 0x52, 0x9a, 0x45, 0xd6, 0xf8, 0x34, 0x56, 0x6e, 0x30, 0x25, 0xe3, 0x16, 0xa3, 0x30, 0xef, 0xbb, 0x77, 0xa8, 0x6f, 0x0c, 0x1a, 0xb1, 0x5b, 0x05, 0x1a, 0xe3, 0xd4, 0x28, 0xc8, 0xf8, 0xac, 0xb7, 0x0a, 0x81, 0x37, 0x15, 0x0b, 0x8e, 0xeb, 0x10, 0xe1, 0x83, 0xed, 0xd1, 0x99, 0x63, 0xdd, 0xd9, 0xe2, 0x63, 0xe4, 0x77, 0x05, 0x89, 0xef, 0x6a, 0xa2, 0x1e, 0x7f, 0x5f, 0x2f, 0xf3, 0x81, 0xb5, 0x39, 0xcc, 0xe3, 0x40, 0x9d, 0x13, 0xcd, 0x56, 0x6a, 0xfb, 0xb4, 0x8d, 0x6c, 0x01, 0x91, 0x81, 0xe1, 0xbc, 0xfe, 0x94, 0xb3, 0x02, 0x69, 0xed, 0xfe, 0x72, 0xfe, 0x9b, 0x6a, 0xa4, 0xbd, 0x7b, 0x5a, 0x0f, 0x1c, 0x71, 0xcf, 0xff, 0x4c, 0x19, 0xc4, 0x18, 0xe1, 0xf6, 0xec, 0x01, 0x79, 0x81, 0xbc, 0x08, 0x7f, 0x2a, 0x70, 0x65, 0xb3, 0x84, 0xb8, 0x90, 0xd3, 0x19, 0x1f, 0x2b, 0xfa, }; static const uint8_t kRFC5114_2048_224Q[] = { 0x80, 0x1c, 0x0d, 0x34, 0xc5, 0x8d, 0x93, 0xfe, 0x99, 0x71, 0x77, 0x10, 0x1f, 0x80, 0x53, 0x5a, 0x47, 0x38, 0xce, 0xbc, 0xbf, 0x38, 0x9a, 0x99, 0xb3, 0x63, 0x71, 0xeb, }; // kRFC5114_2048_224BadY is a bad y-coordinate for RFC 5114's 2048-bit MODP // Group with 224-bit Prime Order Subgroup (section 2.2). static const uint8_t kRFC5114_2048_224BadY[] = { 0x45, 0x32, 0x5f, 0x51, 0x07, 0xe5, 0xdf, 0x1c, 0xd6, 0x02, 0x82, 0xb3, 0x32, 0x8f, 0xa4, 0x0f, 0x87, 0xb8, 0x41, 0xfe, 0xb9, 0x35, 0xde, 0xad, 0xc6, 0x26, 0x85, 0xb4, 0xff, 0x94, 0x8c, 0x12, 0x4c, 0xbf, 0x5b, 0x20, 0xc4, 0x46, 0xa3, 0x26, 0xeb, 0xa4, 0x25, 0xb7, 0x68, 0x8e, 0xcc, 0x67, 0xba, 0xea, 0x58, 0xd0, 0xf2, 0xe9, 0xd2, 0x24, 0x72, 0x60, 0xda, 0x88, 0x18, 0x9c, 0xe0, 0x31, 0x6a, 0xad, 0x50, 0x6d, 0x94, 0x35, 0x8b, 0x83, 0x4a, 0x6e, 0xfa, 0x48, 0x73, 0x0f, 0x83, 0x87, 0xff, 0x6b, 0x66, 0x1f, 0xa8, 0x82, 0xc6, 0x01, 0xe5, 0x80, 0xb5, 0xb0, 0x52, 0xd0, 0xe9, 0xd8, 0x72, 0xf9, 0x7d, 0x5b, 0x8b, 0xa5, 0x4c, 0xa5, 0x25, 0x95, 0x74, 0xe2, 0x7a, 0x61, 0x4e, 0xa7, 0x8f, 0x12, 0xe2, 0xd2, 0x9d, 0x8c, 0x02, 0x70, 0x34, 0x44, 0x32, 0xc7, 0xb2, 0xf3, 0xb9, 0xfe, 0x17, 0x2b, 0xd6, 0x1f, 0x8b, 0x7e, 0x4a, 0xfa, 0xa3, 0xb5, 0x3e, 0x7a, 0x81, 0x9a, 0x33, 0x66, 0x62, 0xa4, 0x50, 0x18, 0x3e, 0xa2, 0x5f, 0x00, 0x07, 0xd8, 0x9b, 0x22, 0xe4, 0xec, 0x84, 0xd5, 0xeb, 0x5a, 0xf3, 0x2a, 0x31, 0x23, 0xd8, 0x44, 0x22, 0x2a, 0x8b, 0x37, 0x44, 0xcc, 0xc6, 0x87, 0x4b, 0xbe, 0x50, 0x9d, 0x4a, 0xc4, 0x8e, 0x45, 0xcf, 0x72, 0x4d, 0xc0, 0x89, 0xb3, 0x72, 0xed, 0x33, 0x2c, 0xbc, 0x7f, 0x16, 0x39, 0x3b, 0xeb, 0xd2, 0xdd, 0xa8, 0x01, 0x73, 0x84, 0x62, 0xb9, 0x29, 0xd2, 0xc9, 0x51, 0x32, 0x9e, 0x7a, 0x6a, 0xcf, 0xc1, 0x0a, 0xdb, 0x0e, 0xe0, 0x62, 0x77, 0x6f, 0x59, 0x62, 0x72, 0x5a, 0x69, 0xa6, 0x5b, 0x70, 0xca, 0x65, 0xc4, 0x95, 0x6f, 0x9a, 0xc2, 0xdf, 0x72, 0x6d, 0xb1, 0x1e, 0x54, 0x7b, 0x51, 0xb4, 0xef, 0x7f, 0x89, 0x93, 0x74, 0x89, 0x59, }; static bool TestBadY() { bssl::UniquePtr<DH> dh(DH_new()); dh->p = BN_bin2bn(kRFC5114_2048_224P, sizeof(kRFC5114_2048_224P), nullptr); dh->g = BN_bin2bn(kRFC5114_2048_224G, sizeof(kRFC5114_2048_224G), nullptr); dh->q = BN_bin2bn(kRFC5114_2048_224Q, sizeof(kRFC5114_2048_224Q), nullptr); if (!dh->p || !dh->g || !dh->q) { return false; } bssl::UniquePtr<BIGNUM> pub_key( BN_bin2bn(kRFC5114_2048_224BadY, sizeof(kRFC5114_2048_224BadY), nullptr)); if (!dh || !pub_key || !DH_generate_key(dh.get())) { return false; } int flags; if (!DH_check_pub_key(dh.get(), pub_key.get(), &flags)) { return false; } if (!(flags & DH_CHECK_PUBKEY_INVALID)) { fprintf(stderr, "DH_check_pub_key did not reject the key.\n"); return false; } std::vector<uint8_t> result(DH_size(dh.get())); if (DH_compute_key(result.data(), pub_key.get(), dh.get()) >= 0) { fprintf(stderr, "DH_compute_key unexpectedly succeeded.\n"); return false; } ERR_clear_error(); return true; } static bool BIGNUMEqualsHex(const BIGNUM *bn, const char *hex) { BIGNUM *hex_bn = NULL; if (!BN_hex2bn(&hex_bn, hex)) { return false; } bssl::UniquePtr<BIGNUM> free_hex_bn(hex_bn); return BN_cmp(bn, hex_bn) == 0; } static bool TestASN1() { // kParams are a set of Diffie-Hellman parameters generated with // openssl dhparam 256 static const uint8_t kParams[] = { 0x30, 0x26, 0x02, 0x21, 0x00, 0xd7, 0x20, 0x34, 0xa3, 0x27, 0x4f, 0xdf, 0xbf, 0x04, 0xfd, 0x24, 0x68, 0x25, 0xb6, 0x56, 0xd8, 0xab, 0x2a, 0x41, 0x2d, 0x74, 0x0a, 0x52, 0x08, 0x7c, 0x40, 0x71, 0x4e, 0xd2, 0x57, 0x93, 0x13, 0x02, 0x01, 0x02, }; CBS cbs; CBS_init(&cbs, kParams, sizeof(kParams)); bssl::UniquePtr<DH> dh(DH_parse_parameters(&cbs)); if (!dh || CBS_len(&cbs) != 0 || !BIGNUMEqualsHex( dh->p, "d72034a3274fdfbf04fd246825b656d8ab2a412d740a52087c40714ed2579313") || !BIGNUMEqualsHex(dh->g, "2") || dh->priv_length != 0) { return false; } bssl::ScopedCBB cbb; uint8_t *der; size_t der_len; if (!CBB_init(cbb.get(), 0) || !DH_marshal_parameters(cbb.get(), dh.get()) || !CBB_finish(cbb.get(), &der, &der_len)) { return false; } bssl::UniquePtr<uint8_t> free_der(der); if (der_len != sizeof(kParams) || OPENSSL_memcmp(der, kParams, der_len) != 0) { return false; } // kParamsDSA are a set of Diffie-Hellman parameters generated with // openssl dhparam 256 -dsaparam static const uint8_t kParamsDSA[] = { 0x30, 0x81, 0x89, 0x02, 0x41, 0x00, 0x93, 0xf3, 0xc1, 0x18, 0x01, 0xe6, 0x62, 0xb6, 0xd1, 0x46, 0x9a, 0x2c, 0x72, 0xea, 0x31, 0xd9, 0x18, 0x10, 0x30, 0x28, 0x63, 0xe2, 0x34, 0x7d, 0x80, 0xca, 0xee, 0x82, 0x2b, 0x19, 0x3c, 0x19, 0xbb, 0x42, 0x83, 0x02, 0x70, 0xdd, 0xdb, 0x8c, 0x03, 0xab, 0xe9, 0x9c, 0xc4, 0x00, 0x4d, 0x70, 0x5f, 0x52, 0x03, 0x31, 0x2c, 0xa4, 0x67, 0x34, 0x51, 0x95, 0x2a, 0xac, 0x11, 0xe2, 0x6a, 0x55, 0x02, 0x40, 0x44, 0xc8, 0x10, 0x53, 0x44, 0x32, 0x31, 0x63, 0xd8, 0xd1, 0x8c, 0x75, 0xc8, 0x98, 0x53, 0x3b, 0x5b, 0x4a, 0x2a, 0x0a, 0x09, 0xe7, 0xd0, 0x3c, 0x53, 0x72, 0xa8, 0x6b, 0x70, 0x41, 0x9c, 0x26, 0x71, 0x44, 0xfc, 0x7f, 0x08, 0x75, 0xe1, 0x02, 0xab, 0x74, 0x41, 0xe8, 0x2a, 0x3d, 0x3c, 0x26, 0x33, 0x09, 0xe4, 0x8b, 0xb4, 0x41, 0xec, 0xa6, 0xa8, 0xba, 0x1a, 0x07, 0x8a, 0x77, 0xf5, 0x5f, 0x02, 0x02, 0x00, 0xa0, }; CBS_init(&cbs, kParamsDSA, sizeof(kParamsDSA)); dh.reset(DH_parse_parameters(&cbs)); if (!dh || CBS_len(&cbs) != 0 || !BIGNUMEqualsHex(dh->p, "93f3c11801e662b6d1469a2c72ea31d91810302863e2347d80caee8" "22b193c19bb42830270dddb8c03abe99cc4004d705f5203312ca467" "3451952aac11e26a55") || !BIGNUMEqualsHex(dh->g, "44c8105344323163d8d18c75c898533b5b4a2a0a09e7d03c5372a86" "b70419c267144fc7f0875e102ab7441e82a3d3c263309e48bb441ec" "a6a8ba1a078a77f55f") || dh->priv_length != 160) { return false; } if (!CBB_init(cbb.get(), 0) || !DH_marshal_parameters(cbb.get(), dh.get()) || !CBB_finish(cbb.get(), &der, &der_len)) { return false; } bssl::UniquePtr<uint8_t> free_der2(der); if (der_len != sizeof(kParamsDSA) || OPENSSL_memcmp(der, kParamsDSA, der_len) != 0) { return false; } return true; } static bool TestRFC3526() { bssl::UniquePtr<BIGNUM> bn(BN_get_rfc3526_prime_1536(nullptr)); if (!bn) { return false; } static const uint8_t kPrime1536[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc9, 0x0f, 0xda, 0xa2, 0x21, 0x68, 0xc2, 0x34, 0xc4, 0xc6, 0x62, 0x8b, 0x80, 0xdc, 0x1c, 0xd1, 0x29, 0x02, 0x4e, 0x08, 0x8a, 0x67, 0xcc, 0x74, 0x02, 0x0b, 0xbe, 0xa6, 0x3b, 0x13, 0x9b, 0x22, 0x51, 0x4a, 0x08, 0x79, 0x8e, 0x34, 0x04, 0xdd, 0xef, 0x95, 0x19, 0xb3, 0xcd, 0x3a, 0x43, 0x1b, 0x30, 0x2b, 0x0a, 0x6d, 0xf2, 0x5f, 0x14, 0x37, 0x4f, 0xe1, 0x35, 0x6d, 0x6d, 0x51, 0xc2, 0x45, 0xe4, 0x85, 0xb5, 0x76, 0x62, 0x5e, 0x7e, 0xc6, 0xf4, 0x4c, 0x42, 0xe9, 0xa6, 0x37, 0xed, 0x6b, 0x0b, 0xff, 0x5c, 0xb6, 0xf4, 0x06, 0xb7, 0xed, 0xee, 0x38, 0x6b, 0xfb, 0x5a, 0x89, 0x9f, 0xa5, 0xae, 0x9f, 0x24, 0x11, 0x7c, 0x4b, 0x1f, 0xe6, 0x49, 0x28, 0x66, 0x51, 0xec, 0xe4, 0x5b, 0x3d, 0xc2, 0x00, 0x7c, 0xb8, 0xa1, 0x63, 0xbf, 0x05, 0x98, 0xda, 0x48, 0x36, 0x1c, 0x55, 0xd3, 0x9a, 0x69, 0x16, 0x3f, 0xa8, 0xfd, 0x24, 0xcf, 0x5f, 0x83, 0x65, 0x5d, 0x23, 0xdc, 0xa3, 0xad, 0x96, 0x1c, 0x62, 0xf3, 0x56, 0x20, 0x85, 0x52, 0xbb, 0x9e, 0xd5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6d, 0x67, 0x0c, 0x35, 0x4e, 0x4a, 0xbc, 0x98, 0x04, 0xf1, 0x74, 0x6c, 0x08, 0xca, 0x23, 0x73, 0x27, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, }; uint8_t buffer[sizeof(kPrime1536)]; if (BN_num_bytes(bn.get()) != sizeof(kPrime1536) || BN_bn2bin(bn.get(), buffer) != sizeof(kPrime1536) || OPENSSL_memcmp(buffer, kPrime1536, sizeof(kPrime1536)) != 0) { fprintf(stderr, "1536-bit MODP prime did not match.\n"); return false; } return true; } TEST(DHTest, LeadingZeros) { bssl::UniquePtr<BIGNUM> p(BN_get_rfc3526_prime_1536(nullptr)); ASSERT_TRUE(p); bssl::UniquePtr<BIGNUM> g(BN_new()); ASSERT_TRUE(g); ASSERT_TRUE(BN_set_word(g.get(), 2)); bssl::UniquePtr<DH> dh(DH_new()); ASSERT_TRUE(dh); ASSERT_TRUE(DH_set0_pqg(dh.get(), p.get(), /*q=*/nullptr, g.get())); p.release(); g.release(); // These values are far too small to be reasonable Diffie-Hellman keys, but // they are an easy way to get a shared secret with leading zeros. bssl::UniquePtr<BIGNUM> priv_key(BN_new()), peer_key(BN_new()); ASSERT_TRUE(priv_key); ASSERT_TRUE(BN_set_word(priv_key.get(), 2)); ASSERT_TRUE(peer_key); ASSERT_TRUE(BN_set_word(peer_key.get(), 3)); ASSERT_TRUE(DH_set0_key(dh.get(), /*pub_key=*/nullptr, priv_key.get())); priv_key.release(); uint8_t padded[192] = {0}; padded[191] = 9; static const uint8_t kTruncated[] = {9}; EXPECT_EQ(int(sizeof(padded)), DH_size(dh.get())); std::vector<uint8_t> buf(DH_size(dh.get())); int len = DH_compute_key(buf.data(), peer_key.get(), dh.get()); ASSERT_GT(len, 0); EXPECT_EQ(Bytes(buf.data(), len), Bytes(kTruncated)); len = DH_compute_key_padded(buf.data(), peer_key.get(), dh.get()); ASSERT_GT(len, 0); EXPECT_EQ(Bytes(buf.data(), len), Bytes(padded)); }