ref: 28c2d7f31c0758e69dded02acfa32af080774e91
dir: /src/psaux/cffdecode.c/
/**************************************************************************** * * cffdecode.c * * PostScript CFF (Type 2) decoding routines (body). * * Copyright (C) 2017-2021 by * David Turner, Robert Wilhelm, and Werner Lemberg. * * This file is part of the FreeType project, and may only be used, * modified, and distributed under the terms of the FreeType project * license, LICENSE.TXT. By continuing to use, modify, or distribute * this file you indicate that you have read the license and * understand and accept it fully. * */ #include <freetype/freetype.h> #include <freetype/internal/ftdebug.h> #include <freetype/internal/ftserv.h> #include <freetype/internal/services/svcfftl.h> #include "cffdecode.h" #include "psobjs.h" #include "psauxerr.h" /************************************************************************** * * The macro FT_COMPONENT is used in trace mode. It is an implicit * parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log * messages during execution. */ #undef FT_COMPONENT #define FT_COMPONENT cffdecode #ifdef CFF_CONFIG_OPTION_OLD_ENGINE typedef enum CFF_Operator_ { cff_op_unknown = 0, cff_op_rmoveto, cff_op_hmoveto, cff_op_vmoveto, cff_op_rlineto, cff_op_hlineto, cff_op_vlineto, cff_op_rrcurveto, cff_op_hhcurveto, cff_op_hvcurveto, cff_op_rcurveline, cff_op_rlinecurve, cff_op_vhcurveto, cff_op_vvcurveto, cff_op_flex, cff_op_hflex, cff_op_hflex1, cff_op_flex1, cff_op_endchar, cff_op_hstem, cff_op_vstem, cff_op_hstemhm, cff_op_vstemhm, cff_op_hintmask, cff_op_cntrmask, cff_op_dotsection, /* deprecated, acts as no-op */ cff_op_abs, cff_op_add, cff_op_sub, cff_op_div, cff_op_neg, cff_op_random, cff_op_mul, cff_op_sqrt, cff_op_blend, cff_op_drop, cff_op_exch, cff_op_index, cff_op_roll, cff_op_dup, cff_op_put, cff_op_get, cff_op_store, cff_op_load, cff_op_and, cff_op_or, cff_op_not, cff_op_eq, cff_op_ifelse, cff_op_callsubr, cff_op_callgsubr, cff_op_return, /* Type 1 opcodes: invalid but seen in real life */ cff_op_hsbw, cff_op_closepath, cff_op_callothersubr, cff_op_pop, cff_op_seac, cff_op_sbw, cff_op_setcurrentpoint, /* do not remove */ cff_op_max } CFF_Operator; #define CFF_COUNT_CHECK_WIDTH 0x80 #define CFF_COUNT_EXACT 0x40 #define CFF_COUNT_CLEAR_STACK 0x20 /* count values which have the `CFF_COUNT_CHECK_WIDTH' flag set are */ /* used for checking the width and requested numbers of arguments */ /* only; they are set to zero afterwards */ /* the other two flags are informative only and unused currently */ static const FT_Byte cff_argument_counts[] = { 0, /* unknown */ 2 | CFF_COUNT_CHECK_WIDTH | CFF_COUNT_EXACT, /* rmoveto */ 1 | CFF_COUNT_CHECK_WIDTH | CFF_COUNT_EXACT, 1 | CFF_COUNT_CHECK_WIDTH | CFF_COUNT_EXACT, 0 | CFF_COUNT_CLEAR_STACK, /* rlineto */ 0 | CFF_COUNT_CLEAR_STACK, 0 | CFF_COUNT_CLEAR_STACK, 0 | CFF_COUNT_CLEAR_STACK, /* rrcurveto */ 0 | CFF_COUNT_CLEAR_STACK, 0 | CFF_COUNT_CLEAR_STACK, 0 | CFF_COUNT_CLEAR_STACK, 0 | CFF_COUNT_CLEAR_STACK, 0 | CFF_COUNT_CLEAR_STACK, 0 | CFF_COUNT_CLEAR_STACK, 13, /* flex */ 7, 9, 11, 0 | CFF_COUNT_CHECK_WIDTH, /* endchar */ 2 | CFF_COUNT_CHECK_WIDTH, /* hstem */ 2 | CFF_COUNT_CHECK_WIDTH, 2 | CFF_COUNT_CHECK_WIDTH, 2 | CFF_COUNT_CHECK_WIDTH, 0 | CFF_COUNT_CHECK_WIDTH, /* hintmask */ 0 | CFF_COUNT_CHECK_WIDTH, /* cntrmask */ 0, /* dotsection */ 1, /* abs */ 2, 2, 2, 1, 0, 2, 1, 1, /* blend */ 1, /* drop */ 2, 1, 2, 1, 2, /* put */ 1, 4, 3, 2, /* and */ 2, 1, 2, 4, 1, /* callsubr */ 1, 0, 2, /* hsbw */ 0, 0, 0, 5, /* seac */ 4, /* sbw */ 2 /* setcurrentpoint */ }; static FT_Error cff_operator_seac( CFF_Decoder* decoder, FT_Pos asb, FT_Pos adx, FT_Pos ady, FT_Int bchar, FT_Int achar ) { FT_Error error; CFF_Builder* builder = &decoder->builder; FT_Int bchar_index, achar_index; TT_Face face = decoder->builder.face; FT_Vector left_bearing, advance; FT_Byte* charstring; FT_ULong charstring_len; FT_Pos glyph_width; if ( decoder->seac ) { FT_ERROR(( "cff_operator_seac: invalid nested seac\n" )); return FT_THROW( Syntax_Error ); } adx = ADD_LONG( adx, decoder->builder.left_bearing.x ); ady = ADD_LONG( ady, decoder->builder.left_bearing.y ); #ifdef FT_CONFIG_OPTION_INCREMENTAL /* Incremental fonts don't necessarily have valid charsets. */ /* They use the character code, not the glyph index, in this case. */ if ( face->root.internal->incremental_interface ) { bchar_index = bchar; achar_index = achar; } else #endif /* FT_CONFIG_OPTION_INCREMENTAL */ { CFF_Font cff = (CFF_Font)(face->extra.data); bchar_index = cff_lookup_glyph_by_stdcharcode( cff, bchar ); achar_index = cff_lookup_glyph_by_stdcharcode( cff, achar ); } if ( bchar_index < 0 || achar_index < 0 ) { FT_ERROR(( "cff_operator_seac:" " invalid seac character code arguments\n" )); return FT_THROW( Syntax_Error ); } /* If we are trying to load a composite glyph, do not load the */ /* accent character and return the array of subglyphs. */ if ( builder->no_recurse ) { FT_GlyphSlot glyph = (FT_GlyphSlot)builder->glyph; FT_GlyphLoader loader = glyph->internal->loader; FT_SubGlyph subg; /* reallocate subglyph array if necessary */ error = FT_GlyphLoader_CheckSubGlyphs( loader, 2 ); if ( error ) goto Exit; subg = loader->current.subglyphs; /* subglyph 0 = base character */ subg->index = bchar_index; subg->flags = FT_SUBGLYPH_FLAG_ARGS_ARE_XY_VALUES | FT_SUBGLYPH_FLAG_USE_MY_METRICS; subg->arg1 = 0; subg->arg2 = 0; subg++; /* subglyph 1 = accent character */ subg->index = achar_index; subg->flags = FT_SUBGLYPH_FLAG_ARGS_ARE_XY_VALUES; subg->arg1 = (FT_Int)( adx >> 16 ); subg->arg2 = (FT_Int)( ady >> 16 ); /* set up remaining glyph fields */ glyph->num_subglyphs = 2; glyph->subglyphs = loader->base.subglyphs; glyph->format = FT_GLYPH_FORMAT_COMPOSITE; loader->current.num_subglyphs = 2; } FT_GlyphLoader_Prepare( builder->loader ); /* First load `bchar' in builder */ error = decoder->get_glyph_callback( face, (FT_UInt)bchar_index, &charstring, &charstring_len ); if ( !error ) { /* the seac operator must not be nested */ decoder->seac = TRUE; error = cff_decoder_parse_charstrings( decoder, charstring, charstring_len, 0 ); decoder->seac = FALSE; decoder->free_glyph_callback( face, &charstring, charstring_len ); if ( error ) goto Exit; } /* Save the left bearing, advance and glyph width of the base */ /* character as they will be erased by the next load. */ left_bearing = builder->left_bearing; advance = builder->advance; glyph_width = decoder->glyph_width; builder->left_bearing.x = 0; builder->left_bearing.y = 0; builder->pos_x = SUB_LONG( adx, asb ); builder->pos_y = ady; /* Now load `achar' on top of the base outline. */ error = decoder->get_glyph_callback( face, (FT_UInt)achar_index, &charstring, &charstring_len ); if ( !error ) { /* the seac operator must not be nested */ decoder->seac = TRUE; error = cff_decoder_parse_charstrings( decoder, charstring, charstring_len, 0 ); decoder->seac = FALSE; decoder->free_glyph_callback( face, &charstring, charstring_len ); if ( error ) goto Exit; } /* Restore the left side bearing, advance and glyph width */ /* of the base character. */ builder->left_bearing = left_bearing; builder->advance = advance; decoder->glyph_width = glyph_width; builder->pos_x = 0; builder->pos_y = 0; Exit: return error; } #endif /* CFF_CONFIG_OPTION_OLD_ENGINE */ /*************************************************************************/ /*************************************************************************/ /*************************************************************************/ /********** *********/ /********** *********/ /********** GENERIC CHARSTRING PARSING *********/ /********** *********/ /********** *********/ /*************************************************************************/ /*************************************************************************/ /*************************************************************************/ /************************************************************************** * * @Function: * cff_compute_bias * * @Description: * Computes the bias value in dependence of the number of glyph * subroutines. * * @Input: * in_charstring_type :: * The `CharstringType' value of the top DICT * dictionary. * * num_subrs :: * The number of glyph subroutines. * * @Return: * The bias value. */ static FT_Int cff_compute_bias( FT_Int in_charstring_type, FT_UInt num_subrs ) { FT_Int result; if ( in_charstring_type == 1 ) result = 0; else if ( num_subrs < 1240 ) result = 107; else if ( num_subrs < 33900U ) result = 1131; else result = 32768U; return result; } FT_LOCAL_DEF( FT_Int ) cff_lookup_glyph_by_stdcharcode( CFF_Font cff, FT_Int charcode ) { FT_UInt n; FT_UShort glyph_sid; FT_Service_CFFLoad cffload; /* CID-keyed fonts don't have glyph names */ if ( !cff->charset.sids ) return -1; /* check range of standard char code */ if ( charcode < 0 || charcode > 255 ) return -1; #if 0 /* retrieve cffload from list of current modules */ FT_Service_CFFLoad cffload; FT_FACE_FIND_GLOBAL_SERVICE( face, cffload, CFF_LOAD ); if ( !cffload ) { FT_ERROR(( "cff_lookup_glyph_by_stdcharcode:" " the `cffload' module is not available\n" )); return FT_THROW( Unimplemented_Feature ); } #endif cffload = (FT_Service_CFFLoad)cff->cffload; /* Get code to SID mapping from `cff_standard_encoding'. */ glyph_sid = cffload->get_standard_encoding( (FT_UInt)charcode ); for ( n = 0; n < cff->num_glyphs; n++ ) { if ( cff->charset.sids[n] == glyph_sid ) return (FT_Int)n; } return -1; } #ifdef CFF_CONFIG_OPTION_OLD_ENGINE /************************************************************************** * * @Function: * cff_decoder_parse_charstrings * * @Description: * Parses a given Type 2 charstrings program. * * @InOut: * decoder :: * The current Type 1 decoder. * * @Input: * charstring_base :: * The base of the charstring stream. * * charstring_len :: * The length in bytes of the charstring stream. * * in_dict :: * Set to 1 if function is called from top or * private DICT (needed for Multiple Master CFFs). * * @Return: * FreeType error code. 0 means success. */ FT_LOCAL_DEF( FT_Error ) cff_decoder_parse_charstrings( CFF_Decoder* decoder, FT_Byte* charstring_base, FT_ULong charstring_len, FT_Bool in_dict ) { FT_Error error; CFF_Decoder_Zone* zone; FT_Byte* ip; FT_Byte* limit; CFF_Builder* builder = &decoder->builder; FT_Pos x, y; FT_Fixed* stack; FT_Int charstring_type = decoder->cff->top_font.font_dict.charstring_type; FT_UShort num_designs = decoder->cff->top_font.font_dict.num_designs; FT_UShort num_axes = decoder->cff->top_font.font_dict.num_axes; T2_Hints_Funcs hinter; /* set default width */ decoder->num_hints = 0; decoder->read_width = 1; /* initialize the decoder */ decoder->top = decoder->stack; decoder->zone = decoder->zones; zone = decoder->zones; stack = decoder->top; hinter = (T2_Hints_Funcs)builder->hints_funcs; builder->path_begun = 0; if ( !charstring_base ) return FT_Err_Ok; zone->base = charstring_base; limit = zone->limit = charstring_base + charstring_len; ip = zone->cursor = zone->base; error = FT_Err_Ok; x = builder->pos_x; y = builder->pos_y; /* begin hints recording session, if any */ if ( hinter ) hinter->open( hinter->hints ); /* now execute loop */ while ( ip < limit ) { CFF_Operator op; FT_Byte v; /********************************************************************* * * Decode operator or operand */ v = *ip++; if ( v >= 32 || v == 28 ) { FT_Int shift = 16; FT_Int32 val; /* this is an operand, push it on the stack */ /* if we use shifts, all computations are done with unsigned */ /* values; the conversion to a signed value is the last step */ if ( v == 28 ) { if ( ip + 1 >= limit ) goto Syntax_Error; val = (FT_Short)( ( (FT_UShort)ip[0] << 8 ) | ip[1] ); ip += 2; } else if ( v < 247 ) val = (FT_Int32)v - 139; else if ( v < 251 ) { if ( ip >= limit ) goto Syntax_Error; val = ( (FT_Int32)v - 247 ) * 256 + *ip++ + 108; } else if ( v < 255 ) { if ( ip >= limit ) goto Syntax_Error; val = -( (FT_Int32)v - 251 ) * 256 - *ip++ - 108; } else { if ( ip + 3 >= limit ) goto Syntax_Error; val = (FT_Int32)( ( (FT_UInt32)ip[0] << 24 ) | ( (FT_UInt32)ip[1] << 16 ) | ( (FT_UInt32)ip[2] << 8 ) | (FT_UInt32)ip[3] ); ip += 4; if ( charstring_type == 2 ) shift = 0; } if ( decoder->top - stack >= CFF_MAX_OPERANDS ) goto Stack_Overflow; val = (FT_Int32)( (FT_UInt32)val << shift ); *decoder->top++ = val; #ifdef FT_DEBUG_LEVEL_TRACE if ( !( val & 0xFFFFL ) ) FT_TRACE4(( " %hd", (FT_Short)( (FT_UInt32)val >> 16 ) )); else FT_TRACE4(( " %.5f", val / 65536.0 )); #endif } else { /* The specification says that normally arguments are to be taken */ /* from the bottom of the stack. However, this seems not to be */ /* correct, at least for Acroread 7.0.8 on GNU/Linux: It pops the */ /* arguments similar to a PS interpreter. */ FT_Fixed* args = decoder->top; FT_Int num_args = (FT_Int)( args - decoder->stack ); FT_Int req_args; /* find operator */ op = cff_op_unknown; switch ( v ) { case 1: op = cff_op_hstem; break; case 3: op = cff_op_vstem; break; case 4: op = cff_op_vmoveto; break; case 5: op = cff_op_rlineto; break; case 6: op = cff_op_hlineto; break; case 7: op = cff_op_vlineto; break; case 8: op = cff_op_rrcurveto; break; case 9: op = cff_op_closepath; break; case 10: op = cff_op_callsubr; break; case 11: op = cff_op_return; break; case 12: if ( ip >= limit ) goto Syntax_Error; v = *ip++; switch ( v ) { case 0: op = cff_op_dotsection; break; case 1: /* this is actually the Type1 vstem3 operator */ op = cff_op_vstem; break; case 2: /* this is actually the Type1 hstem3 operator */ op = cff_op_hstem; break; case 3: op = cff_op_and; break; case 4: op = cff_op_or; break; case 5: op = cff_op_not; break; case 6: op = cff_op_seac; break; case 7: op = cff_op_sbw; break; case 8: op = cff_op_store; break; case 9: op = cff_op_abs; break; case 10: op = cff_op_add; break; case 11: op = cff_op_sub; break; case 12: op = cff_op_div; break; case 13: op = cff_op_load; break; case 14: op = cff_op_neg; break; case 15: op = cff_op_eq; break; case 16: op = cff_op_callothersubr; break; case 17: op = cff_op_pop; break; case 18: op = cff_op_drop; break; case 20: op = cff_op_put; break; case 21: op = cff_op_get; break; case 22: op = cff_op_ifelse; break; case 23: op = cff_op_random; break; case 24: op = cff_op_mul; break; case 26: op = cff_op_sqrt; break; case 27: op = cff_op_dup; break; case 28: op = cff_op_exch; break; case 29: op = cff_op_index; break; case 30: op = cff_op_roll; break; case 33: op = cff_op_setcurrentpoint; break; case 34: op = cff_op_hflex; break; case 35: op = cff_op_flex; break; case 36: op = cff_op_hflex1; break; case 37: op = cff_op_flex1; break; default: FT_TRACE4(( " unknown op (12, %d)\n", v )); break; } break; case 13: op = cff_op_hsbw; break; case 14: op = cff_op_endchar; break; case 16: op = cff_op_blend; break; case 18: op = cff_op_hstemhm; break; case 19: op = cff_op_hintmask; break; case 20: op = cff_op_cntrmask; break; case 21: op = cff_op_rmoveto; break; case 22: op = cff_op_hmoveto; break; case 23: op = cff_op_vstemhm; break; case 24: op = cff_op_rcurveline; break; case 25: op = cff_op_rlinecurve; break; case 26: op = cff_op_vvcurveto; break; case 27: op = cff_op_hhcurveto; break; case 29: op = cff_op_callgsubr; break; case 30: op = cff_op_vhcurveto; break; case 31: op = cff_op_hvcurveto; break; default: FT_TRACE4(( " unknown op (%d)\n", v )); break; } if ( op == cff_op_unknown ) continue; /* in Multiple Master CFFs, T2 charstrings can appear in */ /* dictionaries, but some operators are prohibited */ if ( in_dict ) { switch ( op ) { case cff_op_hstem: case cff_op_vstem: case cff_op_vmoveto: case cff_op_rlineto: case cff_op_hlineto: case cff_op_vlineto: case cff_op_rrcurveto: case cff_op_hstemhm: case cff_op_hintmask: case cff_op_cntrmask: case cff_op_rmoveto: case cff_op_hmoveto: case cff_op_vstemhm: case cff_op_rcurveline: case cff_op_rlinecurve: case cff_op_vvcurveto: case cff_op_hhcurveto: case cff_op_vhcurveto: case cff_op_hvcurveto: case cff_op_hflex: case cff_op_flex: case cff_op_hflex1: case cff_op_flex1: case cff_op_callsubr: case cff_op_callgsubr: /* deprecated opcodes */ case cff_op_dotsection: /* invalid Type 1 opcodes */ case cff_op_hsbw: case cff_op_closepath: case cff_op_callothersubr: case cff_op_seac: case cff_op_sbw: case cff_op_setcurrentpoint: goto MM_Error; default: break; } } /* check arguments */ req_args = cff_argument_counts[op]; if ( req_args & CFF_COUNT_CHECK_WIDTH ) { if ( num_args > 0 && decoder->read_width ) { /* If `nominal_width' is non-zero, the number is really a */ /* difference against `nominal_width'. Else, the number here */ /* is truly a width, not a difference against `nominal_width'. */ /* If the font does not set `nominal_width', then */ /* `nominal_width' defaults to zero, and so we can set */ /* `glyph_width' to `nominal_width' plus number on the stack */ /* -- for either case. */ FT_Int set_width_ok; switch ( op ) { case cff_op_hmoveto: case cff_op_vmoveto: set_width_ok = num_args & 2; break; case cff_op_hstem: case cff_op_vstem: case cff_op_hstemhm: case cff_op_vstemhm: case cff_op_rmoveto: case cff_op_hintmask: case cff_op_cntrmask: set_width_ok = num_args & 1; break; case cff_op_endchar: /* If there is a width specified for endchar, we either have */ /* 1 argument or 5 arguments. We like to argue. */ set_width_ok = in_dict ? 0 : ( ( num_args == 5 ) || ( num_args == 1 ) ); break; default: set_width_ok = 0; break; } if ( set_width_ok ) { decoder->glyph_width = decoder->nominal_width + ( stack[0] >> 16 ); if ( decoder->width_only ) { /* we only want the advance width; stop here */ break; } /* Consumed an argument. */ num_args--; } } decoder->read_width = 0; req_args = 0; } req_args &= 0x000F; if ( num_args < req_args ) goto Stack_Underflow; args -= req_args; num_args -= req_args; /* At this point, `args' points to the first argument of the */ /* operand in case `req_args' isn't zero. Otherwise, we have */ /* to adjust `args' manually. */ /* Note that we only pop arguments from the stack which we */ /* really need and can digest so that we can continue in case */ /* of superfluous stack elements. */ switch ( op ) { case cff_op_hstem: case cff_op_vstem: case cff_op_hstemhm: case cff_op_vstemhm: /* the number of arguments is always even here */ FT_TRACE4(( "%s\n", op == cff_op_hstem ? " hstem" : ( op == cff_op_vstem ? " vstem" : ( op == cff_op_hstemhm ? " hstemhm" : " vstemhm" ) ) )); if ( hinter ) hinter->stems( hinter->hints, ( op == cff_op_hstem || op == cff_op_hstemhm ), num_args / 2, args - ( num_args & ~1 ) ); decoder->num_hints += num_args / 2; args = stack; break; case cff_op_hintmask: case cff_op_cntrmask: FT_TRACE4(( "%s", op == cff_op_hintmask ? " hintmask" : " cntrmask" )); /* implement vstem when needed -- */ /* the specification doesn't say it, but this also works */ /* with the 'cntrmask' operator */ /* */ if ( num_args > 0 ) { if ( hinter ) hinter->stems( hinter->hints, 0, num_args / 2, args - ( num_args & ~1 ) ); decoder->num_hints += num_args / 2; } /* In a valid charstring there must be at least one byte */ /* after `hintmask' or `cntrmask' (e.g., for a `return' */ /* instruction). Additionally, there must be space for */ /* `num_hints' bits. */ if ( ( ip + ( ( decoder->num_hints + 7 ) >> 3 ) ) >= limit ) goto Syntax_Error; if ( hinter ) { if ( op == cff_op_hintmask ) hinter->hintmask( hinter->hints, (FT_UInt)builder->current->n_points, (FT_UInt)decoder->num_hints, ip ); else hinter->counter( hinter->hints, (FT_UInt)decoder->num_hints, ip ); } #ifdef FT_DEBUG_LEVEL_TRACE { FT_UInt maskbyte; FT_TRACE4(( " (maskbytes:" )); for ( maskbyte = 0; maskbyte < (FT_UInt)( ( decoder->num_hints + 7 ) >> 3 ); maskbyte++, ip++ ) FT_TRACE4(( " 0x%02X", *ip )); FT_TRACE4(( ")\n" )); } #else ip += ( decoder->num_hints + 7 ) >> 3; #endif args = stack; break; case cff_op_rmoveto: FT_TRACE4(( " rmoveto\n" )); cff_builder_close_contour( builder ); builder->path_begun = 0; x = ADD_LONG( x, args[-2] ); y = ADD_LONG( y, args[-1] ); args = stack; break; case cff_op_vmoveto: FT_TRACE4(( " vmoveto\n" )); cff_builder_close_contour( builder ); builder->path_begun = 0; y = ADD_LONG( y, args[-1] ); args = stack; break; case cff_op_hmoveto: FT_TRACE4(( " hmoveto\n" )); cff_builder_close_contour( builder ); builder->path_begun = 0; x = ADD_LONG( x, args[-1] ); args = stack; break; case cff_op_rlineto: FT_TRACE4(( " rlineto\n" )); if ( cff_builder_start_point( builder, x, y ) || cff_check_points( builder, num_args / 2 ) ) goto Fail; if ( num_args < 2 ) goto Stack_Underflow; args -= num_args & ~1; while ( args < decoder->top ) { x = ADD_LONG( x, args[0] ); y = ADD_LONG( y, args[1] ); cff_builder_add_point( builder, x, y, 1 ); args += 2; } args = stack; break; case cff_op_hlineto: case cff_op_vlineto: { FT_Int phase = ( op == cff_op_hlineto ); FT_TRACE4(( "%s\n", op == cff_op_hlineto ? " hlineto" : " vlineto" )); if ( num_args < 0 ) goto Stack_Underflow; /* there exist subsetted fonts (found in PDFs) */ /* which call `hlineto' without arguments */ if ( num_args == 0 ) break; if ( cff_builder_start_point( builder, x, y ) || cff_check_points( builder, num_args ) ) goto Fail; args = stack; while ( args < decoder->top ) { if ( phase ) x = ADD_LONG( x, args[0] ); else y = ADD_LONG( y, args[0] ); if ( cff_builder_add_point1( builder, x, y ) ) goto Fail; args++; phase ^= 1; } args = stack; } break; case cff_op_rrcurveto: { FT_Int nargs; FT_TRACE4(( " rrcurveto\n" )); if ( num_args < 6 ) goto Stack_Underflow; nargs = num_args - num_args % 6; if ( cff_builder_start_point( builder, x, y ) || cff_check_points( builder, nargs / 2 ) ) goto Fail; args -= nargs; while ( args < decoder->top ) { x = ADD_LONG( x, args[0] ); y = ADD_LONG( y, args[1] ); cff_builder_add_point( builder, x, y, 0 ); x = ADD_LONG( x, args[2] ); y = ADD_LONG( y, args[3] ); cff_builder_add_point( builder, x, y, 0 ); x = ADD_LONG( x, args[4] ); y = ADD_LONG( y, args[5] ); cff_builder_add_point( builder, x, y, 1 ); args += 6; } args = stack; } break; case cff_op_vvcurveto: { FT_Int nargs; FT_TRACE4(( " vvcurveto\n" )); if ( num_args < 4 ) goto Stack_Underflow; /* if num_args isn't of the form 4n or 4n+1, */ /* we enforce it by clearing the second bit */ nargs = num_args & ~2; if ( cff_builder_start_point( builder, x, y ) ) goto Fail; args -= nargs; if ( nargs & 1 ) { x = ADD_LONG( x, args[0] ); args++; nargs--; } if ( cff_check_points( builder, 3 * ( nargs / 4 ) ) ) goto Fail; while ( args < decoder->top ) { y = ADD_LONG( y, args[0] ); cff_builder_add_point( builder, x, y, 0 ); x = ADD_LONG( x, args[1] ); y = ADD_LONG( y, args[2] ); cff_builder_add_point( builder, x, y, 0 ); y = ADD_LONG( y, args[3] ); cff_builder_add_point( builder, x, y, 1 ); args += 4; } args = stack; } break; case cff_op_hhcurveto: { FT_Int nargs; FT_TRACE4(( " hhcurveto\n" )); if ( num_args < 4 ) goto Stack_Underflow; /* if num_args isn't of the form 4n or 4n+1, */ /* we enforce it by clearing the second bit */ nargs = num_args & ~2; if ( cff_builder_start_point( builder, x, y ) ) goto Fail; args -= nargs; if ( nargs & 1 ) { y = ADD_LONG( y, args[0] ); args++; nargs--; } if ( cff_check_points( builder, 3 * ( nargs / 4 ) ) ) goto Fail; while ( args < decoder->top ) { x = ADD_LONG( x, args[0] ); cff_builder_add_point( builder, x, y, 0 ); x = ADD_LONG( x, args[1] ); y = ADD_LONG( y, args[2] ); cff_builder_add_point( builder, x, y, 0 ); x = ADD_LONG( x, args[3] ); cff_builder_add_point( builder, x, y, 1 ); args += 4; } args = stack; } break; case cff_op_vhcurveto: case cff_op_hvcurveto: { FT_Int phase; FT_Int nargs; FT_TRACE4(( "%s\n", op == cff_op_vhcurveto ? " vhcurveto" : " hvcurveto" )); if ( cff_builder_start_point( builder, x, y ) ) goto Fail; if ( num_args < 4 ) goto Stack_Underflow; /* if num_args isn't of the form 8n, 8n+1, 8n+4, or 8n+5, */ /* we enforce it by clearing the second bit */ nargs = num_args & ~2; args -= nargs; if ( cff_check_points( builder, ( nargs / 4 ) * 3 ) ) goto Stack_Underflow; phase = ( op == cff_op_hvcurveto ); while ( nargs >= 4 ) { nargs -= 4; if ( phase ) { x = ADD_LONG( x, args[0] ); cff_builder_add_point( builder, x, y, 0 ); x = ADD_LONG( x, args[1] ); y = ADD_LONG( y, args[2] ); cff_builder_add_point( builder, x, y, 0 ); y = ADD_LONG( y, args[3] ); if ( nargs == 1 ) x = ADD_LONG( x, args[4] ); cff_builder_add_point( builder, x, y, 1 ); } else { y = ADD_LONG( y, args[0] ); cff_builder_add_point( builder, x, y, 0 ); x = ADD_LONG( x, args[1] ); y = ADD_LONG( y, args[2] ); cff_builder_add_point( builder, x, y, 0 ); x = ADD_LONG( x, args[3] ); if ( nargs == 1 ) y = ADD_LONG( y, args[4] ); cff_builder_add_point( builder, x, y, 1 ); } args += 4; phase ^= 1; } args = stack; } break; case cff_op_rlinecurve: { FT_Int num_lines; FT_Int nargs; FT_TRACE4(( " rlinecurve\n" )); if ( num_args < 8 ) goto Stack_Underflow; nargs = num_args & ~1; num_lines = ( nargs - 6 ) / 2; if ( cff_builder_start_point( builder, x, y ) || cff_check_points( builder, num_lines + 3 ) ) goto Fail; args -= nargs; /* first, add the line segments */ while ( num_lines > 0 ) { x = ADD_LONG( x, args[0] ); y = ADD_LONG( y, args[1] ); cff_builder_add_point( builder, x, y, 1 ); args += 2; num_lines--; } /* then the curve */ x = ADD_LONG( x, args[0] ); y = ADD_LONG( y, args[1] ); cff_builder_add_point( builder, x, y, 0 ); x = ADD_LONG( x, args[2] ); y = ADD_LONG( y, args[3] ); cff_builder_add_point( builder, x, y, 0 ); x = ADD_LONG( x, args[4] ); y = ADD_LONG( y, args[5] ); cff_builder_add_point( builder, x, y, 1 ); args = stack; } break; case cff_op_rcurveline: { FT_Int num_curves; FT_Int nargs; FT_TRACE4(( " rcurveline\n" )); if ( num_args < 8 ) goto Stack_Underflow; nargs = num_args - 2; nargs = nargs - nargs % 6 + 2; num_curves = ( nargs - 2 ) / 6; if ( cff_builder_start_point( builder, x, y ) || cff_check_points( builder, num_curves * 3 + 2 ) ) goto Fail; args -= nargs; /* first, add the curves */ while ( num_curves > 0 ) { x = ADD_LONG( x, args[0] ); y = ADD_LONG( y, args[1] ); cff_builder_add_point( builder, x, y, 0 ); x = ADD_LONG( x, args[2] ); y = ADD_LONG( y, args[3] ); cff_builder_add_point( builder, x, y, 0 ); x = ADD_LONG( x, args[4] ); y = ADD_LONG( y, args[5] ); cff_builder_add_point( builder, x, y, 1 ); args += 6; num_curves--; } /* then the final line */ x = ADD_LONG( x, args[0] ); y = ADD_LONG( y, args[1] ); cff_builder_add_point( builder, x, y, 1 ); args = stack; } break; case cff_op_hflex1: { FT_Pos start_y; FT_TRACE4(( " hflex1\n" )); /* adding five more points: 4 control points, 1 on-curve point */ /* -- make sure we have enough space for the start point if it */ /* needs to be added */ if ( cff_builder_start_point( builder, x, y ) || cff_check_points( builder, 6 ) ) goto Fail; /* record the starting point's y position for later use */ start_y = y; /* first control point */ x = ADD_LONG( x, args[0] ); y = ADD_LONG( y, args[1] ); cff_builder_add_point( builder, x, y, 0 ); /* second control point */ x = ADD_LONG( x, args[2] ); y = ADD_LONG( y, args[3] ); cff_builder_add_point( builder, x, y, 0 ); /* join point; on curve, with y-value the same as the last */ /* control point's y-value */ x = ADD_LONG( x, args[4] ); cff_builder_add_point( builder, x, y, 1 ); /* third control point, with y-value the same as the join */ /* point's y-value */ x = ADD_LONG( x, args[5] ); cff_builder_add_point( builder, x, y, 0 ); /* fourth control point */ x = ADD_LONG( x, args[6] ); y = ADD_LONG( y, args[7] ); cff_builder_add_point( builder, x, y, 0 ); /* ending point, with y-value the same as the start */ x = ADD_LONG( x, args[8] ); y = start_y; cff_builder_add_point( builder, x, y, 1 ); args = stack; break; } case cff_op_hflex: { FT_Pos start_y; FT_TRACE4(( " hflex\n" )); /* adding six more points; 4 control points, 2 on-curve points */ if ( cff_builder_start_point( builder, x, y ) || cff_check_points( builder, 6 ) ) goto Fail; /* record the starting point's y-position for later use */ start_y = y; /* first control point */ x = ADD_LONG( x, args[0] ); cff_builder_add_point( builder, x, y, 0 ); /* second control point */ x = ADD_LONG( x, args[1] ); y = ADD_LONG( y, args[2] ); cff_builder_add_point( builder, x, y, 0 ); /* join point; on curve, with y-value the same as the last */ /* control point's y-value */ x = ADD_LONG( x, args[3] ); cff_builder_add_point( builder, x, y, 1 ); /* third control point, with y-value the same as the join */ /* point's y-value */ x = ADD_LONG( x, args[4] ); cff_builder_add_point( builder, x, y, 0 ); /* fourth control point */ x = ADD_LONG( x, args[5] ); y = start_y; cff_builder_add_point( builder, x, y, 0 ); /* ending point, with y-value the same as the start point's */ /* y-value -- we don't add this point, though */ x = ADD_LONG( x, args[6] ); cff_builder_add_point( builder, x, y, 1 ); args = stack; break; } case cff_op_flex1: { FT_Pos start_x, start_y; /* record start x, y values for */ /* alter use */ FT_Fixed dx = 0, dy = 0; /* used in horizontal/vertical */ /* algorithm below */ FT_Int horizontal, count; FT_Fixed* temp; FT_TRACE4(( " flex1\n" )); /* adding six more points; 4 control points, 2 on-curve points */ if ( cff_builder_start_point( builder, x, y ) || cff_check_points( builder, 6 ) ) goto Fail; /* record the starting point's x, y position for later use */ start_x = x; start_y = y; /* XXX: figure out whether this is supposed to be a horizontal */ /* or vertical flex; the Type 2 specification is vague... */ temp = args; /* grab up to the last argument */ for ( count = 5; count > 0; count-- ) { dx = ADD_LONG( dx, temp[0] ); dy = ADD_LONG( dy, temp[1] ); temp += 2; } if ( dx < 0 ) dx = NEG_LONG( dx ); if ( dy < 0 ) dy = NEG_LONG( dy ); /* strange test, but here it is... */ horizontal = ( dx > dy ); for ( count = 5; count > 0; count-- ) { x = ADD_LONG( x, args[0] ); y = ADD_LONG( y, args[1] ); cff_builder_add_point( builder, x, y, FT_BOOL( count == 3 ) ); args += 2; } /* is last operand an x- or y-delta? */ if ( horizontal ) { x = ADD_LONG( x, args[0] ); y = start_y; } else { x = start_x; y = ADD_LONG( y, args[0] ); } cff_builder_add_point( builder, x, y, 1 ); args = stack; break; } case cff_op_flex: { FT_UInt count; FT_TRACE4(( " flex\n" )); if ( cff_builder_start_point( builder, x, y ) || cff_check_points( builder, 6 ) ) goto Fail; for ( count = 6; count > 0; count-- ) { x = ADD_LONG( x, args[0] ); y = ADD_LONG( y, args[1] ); cff_builder_add_point( builder, x, y, FT_BOOL( count == 4 || count == 1 ) ); args += 2; } args = stack; } break; case cff_op_seac: FT_TRACE4(( " seac\n" )); error = cff_operator_seac( decoder, args[0], args[1], args[2], (FT_Int)( args[3] >> 16 ), (FT_Int)( args[4] >> 16 ) ); /* add current outline to the glyph slot */ FT_GlyphLoader_Add( builder->loader ); /* return now! */ FT_TRACE4(( "\n" )); return error; case cff_op_endchar: /* in dictionaries, `endchar' simply indicates end of data */ if ( in_dict ) return error; FT_TRACE4(( " endchar\n" )); /* We are going to emulate the seac operator. */ if ( num_args >= 4 ) { /* Save glyph width so that the subglyphs don't overwrite it. */ FT_Pos glyph_width = decoder->glyph_width; error = cff_operator_seac( decoder, 0L, args[-4], args[-3], (FT_Int)( args[-2] >> 16 ), (FT_Int)( args[-1] >> 16 ) ); decoder->glyph_width = glyph_width; } else { cff_builder_close_contour( builder ); /* close hints recording session */ if ( hinter ) { if ( hinter->close( hinter->hints, (FT_UInt)builder->current->n_points ) ) goto Syntax_Error; /* apply hints to the loaded glyph outline now */ error = hinter->apply( hinter->hints, builder->current, (PSH_Globals)builder->hints_globals, decoder->hint_mode ); if ( error ) goto Fail; } /* add current outline to the glyph slot */ FT_GlyphLoader_Add( builder->loader ); } /* return now! */ FT_TRACE4(( "\n" )); return error; case cff_op_abs: FT_TRACE4(( " abs\n" )); if ( args[0] < 0 ) { if ( args[0] == FT_LONG_MIN ) args[0] = FT_LONG_MAX; else args[0] = -args[0]; } args++; break; case cff_op_add: FT_TRACE4(( " add\n" )); args[0] = ADD_LONG( args[0], args[1] ); args++; break; case cff_op_sub: FT_TRACE4(( " sub\n" )); args[0] = SUB_LONG( args[0], args[1] ); args++; break; case cff_op_div: FT_TRACE4(( " div\n" )); args[0] = FT_DivFix( args[0], args[1] ); args++; break; case cff_op_neg: FT_TRACE4(( " neg\n" )); if ( args[0] == FT_LONG_MIN ) args[0] = FT_LONG_MAX; args[0] = -args[0]; args++; break; case cff_op_random: { FT_UInt32* randval = in_dict ? &decoder->cff->top_font.random : &decoder->current_subfont->random; FT_TRACE4(( " random\n" )); /* only use the lower 16 bits of `random' */ /* to generate a number in the range (0;1] */ args[0] = (FT_Fixed)( ( *randval & 0xFFFF ) + 1 ); args++; *randval = cff_random( *randval ); } break; case cff_op_mul: FT_TRACE4(( " mul\n" )); args[0] = FT_MulFix( args[0], args[1] ); args++; break; case cff_op_sqrt: FT_TRACE4(( " sqrt\n" )); /* without upper limit the loop below might not finish */ if ( args[0] > 0x7FFFFFFFL ) args[0] = 46341; else if ( args[0] > 0 ) { FT_Fixed root = args[0]; FT_Fixed new_root; for (;;) { new_root = ( root + FT_DivFix( args[0], root ) + 1 ) >> 1; if ( new_root == root ) break; root = new_root; } args[0] = new_root; } else args[0] = 0; args++; break; case cff_op_drop: /* nothing */ FT_TRACE4(( " drop\n" )); break; case cff_op_exch: { FT_Fixed tmp; FT_TRACE4(( " exch\n" )); tmp = args[0]; args[0] = args[1]; args[1] = tmp; args += 2; } break; case cff_op_index: { FT_Int idx = (FT_Int)( args[0] >> 16 ); FT_TRACE4(( " index\n" )); if ( idx < 0 ) idx = 0; else if ( idx > num_args - 2 ) idx = num_args - 2; args[0] = args[-( idx + 1 )]; args++; } break; case cff_op_roll: { FT_Int count = (FT_Int)( args[0] >> 16 ); FT_Int idx = (FT_Int)( args[1] >> 16 ); FT_TRACE4(( " roll\n" )); if ( count <= 0 ) count = 1; args -= count; if ( args < stack ) goto Stack_Underflow; if ( idx >= 0 ) { idx = idx % count; while ( idx > 0 ) { FT_Fixed tmp = args[count - 1]; FT_Int i; for ( i = count - 2; i >= 0; i-- ) args[i + 1] = args[i]; args[0] = tmp; idx--; } } else { /* before C99 it is implementation-defined whether */ /* the result of `%' is negative if the first operand */ /* is negative */ idx = -( NEG_INT( idx ) % count ); while ( idx < 0 ) { FT_Fixed tmp = args[0]; FT_Int i; for ( i = 0; i < count - 1; i++ ) args[i] = args[i + 1]; args[count - 1] = tmp; idx++; } } args += count; } break; case cff_op_dup: FT_TRACE4(( " dup\n" )); args[1] = args[0]; args += 2; break; case cff_op_put: { FT_Fixed val = args[0]; FT_Int idx = (FT_Int)( args[1] >> 16 ); FT_TRACE4(( " put\n" )); /* the Type2 specification before version 16-March-2000 */ /* didn't give a hard-coded size limit of the temporary */ /* storage array; instead, an argument of the */ /* `MultipleMaster' operator set the size */ if ( idx >= 0 && idx < CFF_MAX_TRANS_ELEMENTS ) decoder->buildchar[idx] = val; } break; case cff_op_get: { FT_Int idx = (FT_Int)( args[0] >> 16 ); FT_Fixed val = 0; FT_TRACE4(( " get\n" )); if ( idx >= 0 && idx < CFF_MAX_TRANS_ELEMENTS ) val = decoder->buildchar[idx]; args[0] = val; args++; } break; case cff_op_store: /* this operator was removed from the Type2 specification */ /* in version 16-March-2000 */ /* since we currently don't handle interpolation of multiple */ /* master fonts, this is a no-op */ FT_TRACE4(( " store\n" )); break; case cff_op_load: /* this operator was removed from the Type2 specification */ /* in version 16-March-2000 */ { FT_Int reg_idx = (FT_Int)args[0]; FT_Int idx = (FT_Int)args[1]; FT_Int count = (FT_Int)args[2]; FT_TRACE4(( " load\n" )); /* since we currently don't handle interpolation of multiple */ /* master fonts, we store a vector [1 0 0 ...] in the */ /* temporary storage array regardless of the Registry index */ if ( reg_idx >= 0 && reg_idx <= 2 && idx >= 0 && idx < CFF_MAX_TRANS_ELEMENTS && count >= 0 && count <= num_axes ) { FT_Int end, i; end = FT_MIN( idx + count, CFF_MAX_TRANS_ELEMENTS ); if ( idx < end ) decoder->buildchar[idx] = 1 << 16; for ( i = idx + 1; i < end; i++ ) decoder->buildchar[i] = 0; } } break; case cff_op_blend: /* this operator was removed from the Type2 specification */ /* in version 16-March-2000 */ if ( num_designs ) { FT_Int num_results = (FT_Int)( args[0] >> 16 ); FT_TRACE4(( " blend\n" )); if ( num_results < 0 ) goto Syntax_Error; if ( num_results > num_args || num_results * (FT_Int)num_designs > num_args ) goto Stack_Underflow; /* since we currently don't handle interpolation of multiple */ /* master fonts, return the `num_results' values of the */ /* first master */ args -= num_results * ( num_designs - 1 ); num_args -= num_results * ( num_designs - 1 ); } else goto Syntax_Error; break; case cff_op_dotsection: /* this operator is deprecated and ignored by the parser */ FT_TRACE4(( " dotsection\n" )); break; case cff_op_closepath: /* this is an invalid Type 2 operator; however, there */ /* exist fonts which are incorrectly converted from probably */ /* Type 1 to CFF, and some parsers seem to accept it */ FT_TRACE4(( " closepath (invalid op)\n" )); args = stack; break; case cff_op_hsbw: /* this is an invalid Type 2 operator; however, there */ /* exist fonts which are incorrectly converted from probably */ /* Type 1 to CFF, and some parsers seem to accept it */ FT_TRACE4(( " hsbw (invalid op)\n" )); decoder->glyph_width = ADD_LONG( decoder->nominal_width, ( args[1] >> 16 ) ); decoder->builder.left_bearing.x = args[0]; decoder->builder.left_bearing.y = 0; x = ADD_LONG( decoder->builder.pos_x, args[0] ); y = decoder->builder.pos_y; args = stack; break; case cff_op_sbw: /* this is an invalid Type 2 operator; however, there */ /* exist fonts which are incorrectly converted from probably */ /* Type 1 to CFF, and some parsers seem to accept it */ FT_TRACE4(( " sbw (invalid op)\n" )); decoder->glyph_width = ADD_LONG( decoder->nominal_width, ( args[2] >> 16 ) ); decoder->builder.left_bearing.x = args[0]; decoder->builder.left_bearing.y = args[1]; x = ADD_LONG( decoder->builder.pos_x, args[0] ); y = ADD_LONG( decoder->builder.pos_y, args[1] ); args = stack; break; case cff_op_setcurrentpoint: /* this is an invalid Type 2 operator; however, there */ /* exist fonts which are incorrectly converted from probably */ /* Type 1 to CFF, and some parsers seem to accept it */ FT_TRACE4(( " setcurrentpoint (invalid op)\n" )); x = ADD_LONG( decoder->builder.pos_x, args[0] ); y = ADD_LONG( decoder->builder.pos_y, args[1] ); args = stack; break; case cff_op_callothersubr: { FT_Fixed arg; /* this is an invalid Type 2 operator; however, there */ /* exist fonts which are incorrectly converted from */ /* probably Type 1 to CFF, and some parsers seem to accept */ /* it */ FT_TRACE4(( " callothersubr (invalid op)\n" )); /* subsequent `pop' operands should add the arguments, */ /* this is the implementation described for `unknown' */ /* other subroutines in the Type1 spec. */ /* */ /* XXX Fix return arguments (see discussion below). */ arg = 2 + ( args[-2] >> 16 ); if ( arg >= CFF_MAX_OPERANDS ) goto Stack_Underflow; args -= arg; if ( args < stack ) goto Stack_Underflow; } break; case cff_op_pop: /* this is an invalid Type 2 operator; however, there */ /* exist fonts which are incorrectly converted from probably */ /* Type 1 to CFF, and some parsers seem to accept it */ FT_TRACE4(( " pop (invalid op)\n" )); /* XXX Increasing `args' is wrong: After a certain number of */ /* `pop's we get a stack overflow. Reason for doing it is */ /* code like this (actually found in a CFF font): */ /* */ /* 17 1 3 callothersubr */ /* pop */ /* callsubr */ /* */ /* Since we handle `callothersubr' as a no-op, and */ /* `callsubr' needs at least one argument, `pop' can't be a */ /* no-op too as it basically should be. */ /* */ /* The right solution would be to provide real support for */ /* `callothersubr' as done in `t1decode.c', however, given */ /* the fact that CFF fonts with `pop' are invalid, it is */ /* questionable whether it is worth the time. */ args++; break; case cff_op_and: { FT_Fixed cond = ( args[0] && args[1] ); FT_TRACE4(( " and\n" )); args[0] = cond ? 0x10000L : 0; args++; } break; case cff_op_or: { FT_Fixed cond = ( args[0] || args[1] ); FT_TRACE4(( " or\n" )); args[0] = cond ? 0x10000L : 0; args++; } break; case cff_op_not: { FT_Fixed cond = !args[0]; FT_TRACE4(( " not\n" )); args[0] = cond ? 0x10000L : 0; args++; } break; case cff_op_eq: { FT_Fixed cond = ( args[0] == args[1] ); FT_TRACE4(( " eq\n" )); args[0] = cond ? 0x10000L : 0; args++; } break; case cff_op_ifelse: { FT_Fixed cond = ( args[2] <= args[3] ); FT_TRACE4(( " ifelse\n" )); if ( !cond ) args[0] = args[1]; args++; } break; case cff_op_callsubr: { FT_UInt idx = (FT_UInt)( ( args[0] >> 16 ) + decoder->locals_bias ); FT_TRACE4(( " callsubr (idx %d, entering level %ld)\n", idx, zone - decoder->zones + 1 )); if ( idx >= decoder->num_locals ) { FT_ERROR(( "cff_decoder_parse_charstrings:" " invalid local subr index\n" )); goto Syntax_Error; } if ( zone - decoder->zones >= CFF_MAX_SUBRS_CALLS ) { FT_ERROR(( "cff_decoder_parse_charstrings:" " too many nested subrs\n" )); goto Syntax_Error; } zone->cursor = ip; /* save current instruction pointer */ zone++; zone->base = decoder->locals[idx]; zone->limit = decoder->locals[idx + 1]; zone->cursor = zone->base; if ( !zone->base || zone->limit == zone->base ) { FT_ERROR(( "cff_decoder_parse_charstrings:" " invoking empty subrs\n" )); goto Syntax_Error; } decoder->zone = zone; ip = zone->base; limit = zone->limit; } break; case cff_op_callgsubr: { FT_UInt idx = (FT_UInt)( ( args[0] >> 16 ) + decoder->globals_bias ); FT_TRACE4(( " callgsubr (idx %d, entering level %ld)\n", idx, zone - decoder->zones + 1 )); if ( idx >= decoder->num_globals ) { FT_ERROR(( "cff_decoder_parse_charstrings:" " invalid global subr index\n" )); goto Syntax_Error; } if ( zone - decoder->zones >= CFF_MAX_SUBRS_CALLS ) { FT_ERROR(( "cff_decoder_parse_charstrings:" " too many nested subrs\n" )); goto Syntax_Error; } zone->cursor = ip; /* save current instruction pointer */ zone++; zone->base = decoder->globals[idx]; zone->limit = decoder->globals[idx + 1]; zone->cursor = zone->base; if ( !zone->base || zone->limit == zone->base ) { FT_ERROR(( "cff_decoder_parse_charstrings:" " invoking empty subrs\n" )); goto Syntax_Error; } decoder->zone = zone; ip = zone->base; limit = zone->limit; } break; case cff_op_return: FT_TRACE4(( " return (leaving level %ld)\n", decoder->zone - decoder->zones )); if ( decoder->zone <= decoder->zones ) { FT_ERROR(( "cff_decoder_parse_charstrings:" " unexpected return\n" )); goto Syntax_Error; } decoder->zone--; zone = decoder->zone; ip = zone->cursor; limit = zone->limit; break; default: FT_ERROR(( "Unimplemented opcode: %d", ip[-1] )); if ( ip[-1] == 12 ) FT_ERROR(( " %d", ip[0] )); FT_ERROR(( "\n" )); return FT_THROW( Unimplemented_Feature ); } decoder->top = args; if ( decoder->top - stack >= CFF_MAX_OPERANDS ) goto Stack_Overflow; } /* general operator processing */ } /* while ip < limit */ FT_TRACE4(( "..end..\n" )); FT_TRACE4(( "\n" )); Fail: return error; MM_Error: FT_TRACE4(( "cff_decoder_parse_charstrings:" " invalid opcode found in top DICT charstring\n")); return FT_THROW( Invalid_File_Format ); Syntax_Error: FT_TRACE4(( "cff_decoder_parse_charstrings: syntax error\n" )); return FT_THROW( Invalid_File_Format ); Stack_Underflow: FT_TRACE4(( "cff_decoder_parse_charstrings: stack underflow\n" )); return FT_THROW( Too_Few_Arguments ); Stack_Overflow: FT_TRACE4(( "cff_decoder_parse_charstrings: stack overflow\n" )); return FT_THROW( Stack_Overflow ); } #endif /* CFF_CONFIG_OPTION_OLD_ENGINE */ /************************************************************************** * * @Function: * cff_decoder_init * * @Description: * Initializes a given glyph decoder. * * @InOut: * decoder :: * A pointer to the glyph builder to initialize. * * @Input: * face :: * The current face object. * * size :: * The current size object. * * slot :: * The current glyph object. * * hinting :: * Whether hinting is active. * * hint_mode :: * The hinting mode. */ FT_LOCAL_DEF( void ) cff_decoder_init( CFF_Decoder* decoder, TT_Face face, CFF_Size size, CFF_GlyphSlot slot, FT_Bool hinting, FT_Render_Mode hint_mode, CFF_Decoder_Get_Glyph_Callback get_callback, CFF_Decoder_Free_Glyph_Callback free_callback ) { CFF_Font cff = (CFF_Font)face->extra.data; /* clear everything */ FT_ZERO( decoder ); /* initialize builder */ cff_builder_init( &decoder->builder, face, size, slot, hinting ); /* initialize Type2 decoder */ decoder->cff = cff; decoder->num_globals = cff->global_subrs_index.count; decoder->globals = cff->global_subrs; decoder->globals_bias = cff_compute_bias( cff->top_font.font_dict.charstring_type, decoder->num_globals ); decoder->hint_mode = hint_mode; decoder->get_glyph_callback = get_callback; decoder->free_glyph_callback = free_callback; } /* this function is used to select the subfont */ /* and the locals subrs array */ FT_LOCAL_DEF( FT_Error ) cff_decoder_prepare( CFF_Decoder* decoder, CFF_Size size, FT_UInt glyph_index ) { CFF_Builder *builder = &decoder->builder; CFF_Font cff = (CFF_Font)builder->face->extra.data; CFF_SubFont sub = &cff->top_font; FT_Error error = FT_Err_Ok; FT_Service_CFFLoad cffload = (FT_Service_CFFLoad)cff->cffload; /* manage CID fonts */ if ( cff->num_subfonts ) { FT_Byte fd_index = cffload->fd_select_get( &cff->fd_select, glyph_index ); if ( fd_index >= cff->num_subfonts ) { FT_TRACE4(( "cff_decoder_prepare: invalid CID subfont index\n" )); error = FT_THROW( Invalid_File_Format ); goto Exit; } FT_TRACE3(( " in subfont %d:\n", fd_index )); sub = cff->subfonts[fd_index]; if ( builder->hints_funcs && size ) { FT_Size ftsize = FT_SIZE( size ); CFF_Internal internal = (CFF_Internal)ftsize->internal->module_data; /* for CFFs without subfonts, this value has already been set */ builder->hints_globals = (void *)internal->subfonts[fd_index]; } } decoder->num_locals = sub->local_subrs_index.count; decoder->locals = sub->local_subrs; decoder->locals_bias = cff_compute_bias( decoder->cff->top_font.font_dict.charstring_type, decoder->num_locals ); decoder->glyph_width = sub->private_dict.default_width; decoder->nominal_width = sub->private_dict.nominal_width; decoder->current_subfont = sub; Exit: return error; } /* END */