ref: 1cb0ad40de5c6b8232432705d45aa71029d7df12
dir: /libsec/dsaprimes.c/
#include "os.h" #include <mp.h> #include <libsec.h> // NIST algorithm for generating DSA primes // Menezes et al (1997) Handbook of Applied Cryptography, p.151 // q is a 160-bit prime; p is a 1024-bit prime; q divides p-1 // arithmetic on unsigned ints mod 2**160, represented // as 20-byte, little-endian uchar array static void Hrand(uchar *s) { u32int *u = (u32int*)s; *u++ = fastrand(); *u++ = fastrand(); *u++ = fastrand(); *u++ = fastrand(); *u = fastrand(); } static void Hincr(uchar *s) { int i; for(i=0; i<20; i++) if(++s[i]!=0) break; } // this can run for quite a while; be patient void DSAprimes(mpint *q, mpint *p, uchar seed[SHA1dlen]) { int i, j, k, n = 6, b = 63; uchar s[SHA1dlen], Hs[SHA1dlen], Hs1[SHA1dlen], sj[SHA1dlen], sjk[SHA1dlen]; mpint *two1023, *mb, *Vk, *W, *X, *q2; two1023 = mpnew(1024); mpleft(mpone, 1023, two1023); mb = mpnew(0); mpleft(mpone, b, mb); W = mpnew(1024); Vk = mpnew(1024); X = mpnew(0); q2 = mpnew(0); forever: do{ Hrand(s); memcpy(sj, s, 20); sha1(s, 20, Hs, 0); Hincr(sj); sha1(sj, 20, Hs1, 0); for(i=0; i<20; i++) Hs[i] ^= Hs1[i]; Hs[0] |= 1; Hs[19] |= 0x80; letomp(Hs, 20, q); }while(!probably_prime(q, 18)); if(seed != nil) // allow skeptics to confirm computation memmove(seed, s, SHA1dlen); i = 0; j = 2; Hincr(sj); mpleft(q, 1, q2); while(i<4096){ memcpy(sjk, sj, 20); for(k=0; k <= n; k++){ sha1(sjk, 20, Hs, 0); letomp(Hs, 20, Vk); if(k == n) mpmod(Vk, mb, Vk); mpleft(Vk, 160*k, Vk); mpadd(W, Vk, W); Hincr(sjk); } mpadd(W, two1023, X); mpmod(X, q2, W); mpsub(W, mpone, W); mpsub(X, W, p); if(mpcmp(p, two1023)>=0 && probably_prime(p, 5)) goto done; i += 1; j += n+1; for(k=0; k<n+1; k++) Hincr(sj); } goto forever; done: mpfree(q2); mpfree(X); mpfree(Vk); mpfree(W); mpfree(mb); mpfree(two1023); }