shithub: puzzles

Download patch

ref: d99e217cfb12f40dd7dbc26146ef287f9f9020fc
parent: 9867234e70002b8252a48c2bc023875ff87b8ca1
author: Simon Tatham <anakin@pobox.com>
date: Tue Apr 27 13:44:30 EDT 2004

Implemented Cube, in a sufficiently general way that it also handles
the tetrahedron, octahedron and icosahedron.

[originally from svn r4151]

--- a/Recipe
+++ b/Recipe
@@ -15,7 +15,7 @@
 NET      = net random tree234
 
 net      : [X] gtk COMMON NET
-#cube     : [X] gtk COMMON CUBE
+cube     : [X] gtk COMMON cube
 
 #net      : [G] windows COMMON NET
-#cube     : [G] windows COMMON CUBE
+#cube     : [G] windows COMMON cube
--- a/cube.c
+++ b/cube.c
@@ -1,3 +1,1273 @@
 /*
  * cube.c: Cube game.
  */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+#include <math.h>
+
+#include "puzzles.h"
+
+#define MAXVERTICES 20
+#define MAXFACES 20
+#define MAXORDER 4
+struct solid {
+    int nvertices;
+    float vertices[MAXVERTICES * 3];   /* 3*npoints coordinates */
+    int order;
+    int nfaces;
+    int faces[MAXFACES * MAXORDER];    /* order*nfaces point indices */
+    float normals[MAXFACES * 3];       /* 3*npoints vector components */
+    float shear;                       /* isometric shear for nice drawing */
+};
+
+static const struct solid tetrahedron = {
+    4,
+    {
+        0.0, -0.57735026919, -0.20412414523,
+        -0.5, 0.28867513459, -0.20412414523,
+        0.0, -0.0, 0.6123724357,
+        0.5, 0.28867513459, -0.20412414523,
+    },
+    3, 4,
+    {
+        0,2,1, 3,1,2, 2,0,3, 1,3,0
+    },
+    {
+        -0.816496580928, -0.471404520791, 0.333333333334,
+        0.0, 0.942809041583, 0.333333333333,
+        0.816496580928, -0.471404520791, 0.333333333334,
+        0.0, 0.0, -1.0,
+    },
+    0.0
+};
+
+static const struct solid cube = {
+    8,
+    {
+        -0.5,-0.5,-0.5, -0.5,-0.5,+0.5, -0.5,+0.5,-0.5, -0.5,+0.5,+0.5,
+        +0.5,-0.5,-0.5, +0.5,-0.5,+0.5, +0.5,+0.5,-0.5, +0.5,+0.5,+0.5,
+    },
+    4, 6,
+    {
+        0,1,3,2, 1,5,7,3, 5,4,6,7, 4,0,2,6, 0,4,5,1, 3,7,6,2
+    },
+    {
+        -1,0,0, 0,0,+1, +1,0,0, 0,0,-1, 0,-1,0, 0,+1,0
+    },
+    0.3
+};
+
+static const struct solid octahedron = {
+    6,
+    {
+        -0.5, -0.28867513459472505, 0.4082482904638664,
+        0.5, 0.28867513459472505, -0.4082482904638664,
+        -0.5, 0.28867513459472505, -0.4082482904638664,
+        0.5, -0.28867513459472505, 0.4082482904638664,
+        0.0, -0.57735026918945009, -0.4082482904638664,
+        0.0, 0.57735026918945009, 0.4082482904638664,
+    },
+    3, 8,
+    {
+        4,0,2, 0,5,2, 0,4,3, 5,0,3, 1,4,2, 5,1,2, 4,1,3, 1,5,3
+    },
+    {
+        -0.816496580928, -0.471404520791, -0.333333333334,
+        -0.816496580928, 0.471404520791, 0.333333333334,
+        0.0, -0.942809041583, 0.333333333333,
+        0.0, 0.0, 1.0,
+        0.0, 0.0, -1.0,
+        0.0, 0.942809041583, -0.333333333333,
+        0.816496580928, -0.471404520791, -0.333333333334,
+        0.816496580928, 0.471404520791, 0.333333333334,
+    },
+    0.0
+};
+
+static const struct solid icosahedron = {
+    12,
+    {
+        0.0, 0.57735026919, 0.75576131408,
+        0.0, -0.93417235896, 0.17841104489,
+        0.0, 0.93417235896, -0.17841104489,
+        0.0, -0.57735026919, -0.75576131408,
+        -0.5, -0.28867513459, 0.75576131408,
+        -0.5, 0.28867513459, -0.75576131408,
+        0.5, -0.28867513459, 0.75576131408,
+        0.5, 0.28867513459, -0.75576131408,
+        -0.80901699437, 0.46708617948, 0.17841104489,
+        0.80901699437, 0.46708617948, 0.17841104489,
+        -0.80901699437, -0.46708617948, -0.17841104489,
+        0.80901699437, -0.46708617948, -0.17841104489,
+    },
+    3, 20,
+    {
+        8,0,2,  0,9,2,  1,10,3, 11,1,3,  0,4,6,
+        4,1,6,  5,2,7,  3,5,7,  4,8,10,  8,5,10,
+        9,6,11, 7,9,11,  0,8,4,  9,0,6,  10,1,4,
+        1,11,6, 8,2,5,  2,9,7,  3,10,5, 11,3,7,
+    },
+    {
+        -0.356822089773, 0.87267799625, 0.333333333333,
+        0.356822089773, 0.87267799625, 0.333333333333,
+        -0.356822089773, -0.87267799625, -0.333333333333,
+        0.356822089773, -0.87267799625, -0.333333333333,
+        -0.0, 0.0, 1.0,
+        0.0, -0.666666666667, 0.745355992501,
+        0.0, 0.666666666667, -0.745355992501,
+        0.0, 0.0, -1.0,
+        -0.934172358963, -0.12732200375, 0.333333333333,
+        -0.934172358963, 0.12732200375, -0.333333333333,
+        0.934172358963, -0.12732200375, 0.333333333333,
+        0.934172358963, 0.12732200375, -0.333333333333,
+        -0.57735026919, 0.333333333334, 0.745355992501,
+        0.57735026919, 0.333333333334, 0.745355992501,
+        -0.57735026919, -0.745355992501, 0.333333333334,
+        0.57735026919, -0.745355992501, 0.333333333334,
+        -0.57735026919, 0.745355992501, -0.333333333334,
+        0.57735026919, 0.745355992501, -0.333333333334,
+        -0.57735026919, -0.333333333334, -0.745355992501,
+        0.57735026919, -0.333333333334, -0.745355992501,
+    },
+    0.0
+};
+
+enum {
+    TETRAHEDRON, CUBE, OCTAHEDRON, ICOSAHEDRON
+};
+static const struct solid *solids[] = {
+    &tetrahedron, &cube, &octahedron, &icosahedron
+};
+
+enum {
+    COL_BACKGROUND,
+    COL_BORDER,
+    COL_BLUE,
+    NCOLOURS
+};
+
+enum { LEFT, RIGHT, UP, DOWN };
+
+#define GRID_SCALE 48
+#define ROLLTIME 0.1
+
+#define SQ(x) ( (x) * (x) )
+
+#define MATMUL(ra,m,a) do { \
+    float rx, ry, rz, xx = (a)[0], yy = (a)[1], zz = (a)[2], *mat = (m); \
+    rx = mat[0] * xx + mat[3] * yy + mat[6] * zz; \
+    ry = mat[1] * xx + mat[4] * yy + mat[7] * zz; \
+    rz = mat[2] * xx + mat[5] * yy + mat[8] * zz; \
+    (ra)[0] = rx; (ra)[1] = ry; (ra)[2] = rz; \
+} while (0)
+
+#define APPROXEQ(x,y) ( SQ(x-y) < 0.1 )
+
+struct grid_square {
+    float x, y;
+    int npoints;
+    float points[8];                   /* maximum */
+    int directions[4];                 /* bit masks showing point pairs */
+    int flip;
+    int blue;
+    int tetra_class;
+};
+
+struct game_params {
+    int solid;
+    /*
+     * Grid dimensions. For a square grid these are width and
+     * height respectively; otherwise the grid is a hexagon, with
+     * the top side and the two lower diagonals having length d1
+     * and the remaining three sides having length d2 (so that
+     * d1==d2 gives a regular hexagon, and d2==0 gives a triangle).
+     */
+    int d1, d2;
+};
+
+struct game_state {
+    struct game_params params;
+    const struct solid *solid;
+    int *facecolours;
+    struct grid_square *squares;
+    int nsquares;
+    int current;                       /* index of current grid square */
+    int sgkey[2];                      /* key-point indices into grid sq */
+    int dgkey[2];                      /* key-point indices into grid sq */
+    int spkey[2];                      /* key-point indices into polyhedron */
+    int dpkey[2];                      /* key-point indices into polyhedron */
+    int previous;
+    float angle;
+    int completed;
+    int movecount;
+};
+
+game_params *default_params(void)
+{
+    game_params *ret = snew(game_params);
+
+    ret->solid = CUBE;
+    ret->d1 = 4;
+    ret->d2 = 4;
+
+    return ret;
+}
+
+void free_params(game_params *params)
+{
+    sfree(params);
+}
+
+static void enum_grid_squares(game_params *params,
+                              void (*callback)(void *, struct grid_square *),
+                              void *ctx)
+{
+    const struct solid *solid = solids[params->solid];
+
+    if (solid->order == 4) {
+        int x, y;
+
+        for (x = 0; x < params->d1; x++)
+            for (y = 0; y < params->d2; y++) {
+                struct grid_square sq;
+
+                sq.x = x;
+                sq.y = y;
+                sq.points[0] = x - 0.5;
+                sq.points[1] = y - 0.5;
+                sq.points[2] = x - 0.5;
+                sq.points[3] = y + 0.5;
+                sq.points[4] = x + 0.5;
+                sq.points[5] = y + 0.5;
+                sq.points[6] = x + 0.5;
+                sq.points[7] = y - 0.5;
+                sq.npoints = 4;
+
+                sq.directions[LEFT]  = 0x03;   /* 0,1 */
+                sq.directions[RIGHT] = 0x0C;   /* 2,3 */
+                sq.directions[UP]    = 0x09;   /* 0,3 */
+                sq.directions[DOWN]  = 0x06;   /* 1,2 */
+
+                sq.flip = FALSE;
+
+                /*
+                 * This is supremely irrelevant, but just to avoid
+                 * having any uninitialised structure members...
+                 */
+                sq.tetra_class = 0;
+
+                callback(ctx, &sq);
+            }
+    } else {
+        int row, rowlen, other, i, firstix = -1;
+        float theight = sqrt(3) / 2.0;
+
+        for (row = 0; row < params->d1 + params->d2; row++) {
+            if (row < params->d1) {
+                other = +1;
+                rowlen = row + params->d2;
+            } else {
+                other = -1;
+                rowlen = 2*params->d1 + params->d2 - row;
+            }
+
+            /*
+             * There are `rowlen' down-pointing triangles.
+             */
+            for (i = 0; i < rowlen; i++) {
+                struct grid_square sq;
+                int ix;
+                float x, y;
+
+                ix = (2 * i - (rowlen-1));
+                x = ix * 0.5;
+                y = theight * row;
+                sq.x = x;
+                sq.y = y + theight / 3;
+                sq.points[0] = x - 0.5;
+                sq.points[1] = y;
+                sq.points[2] = x;
+                sq.points[3] = y + theight;
+                sq.points[4] = x + 0.5;
+                sq.points[5] = y;
+                sq.npoints = 3;
+
+                sq.directions[LEFT]  = 0x03;   /* 0,1 */
+                sq.directions[RIGHT] = 0x06;   /* 1,2 */
+                sq.directions[UP]    = 0x05;   /* 0,2 */
+                sq.directions[DOWN]  = 0;      /* invalid move */
+
+                sq.flip = TRUE;
+
+                if (firstix < 0)
+                    firstix = ix & 3;
+                ix -= firstix;
+                sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
+
+                callback(ctx, &sq);
+            }
+
+            /*
+             * There are `rowlen+other' up-pointing triangles.
+             */
+            for (i = 0; i < rowlen+other; i++) {
+                struct grid_square sq;
+                int ix;
+                float x, y;
+
+                ix = (2 * i - (rowlen+other-1));
+                x = ix * 0.5;
+                y = theight * row;
+                sq.x = x;
+                sq.y = y + 2*theight / 3;
+                sq.points[0] = x + 0.5;
+                sq.points[1] = y + theight;
+                sq.points[2] = x;
+                sq.points[3] = y;
+                sq.points[4] = x - 0.5;
+                sq.points[5] = y + theight;
+                sq.npoints = 3;
+
+                sq.directions[LEFT]  = 0x06;   /* 1,2 */
+                sq.directions[RIGHT] = 0x03;   /* 0,1 */
+                sq.directions[DOWN]  = 0x05;   /* 0,2 */
+                sq.directions[UP]    = 0;      /* invalid move */
+
+                sq.flip = FALSE;
+
+                if (firstix < 0)
+                    firstix = ix;
+                ix -= firstix;
+                sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3);
+
+                callback(ctx, &sq);
+            }
+        }
+    }
+}
+
+static int grid_area(int d1, int d2, int order)
+{
+    /*
+     * An NxM grid of squares has NM squares in it.
+     * 
+     * A grid of triangles with dimensions A and B has a total of
+     * A^2 + B^2 + 4AB triangles in it. (You can divide it up into
+     * a side-A triangle containing A^2 subtriangles, a side-B
+     * triangle containing B^2, and two congruent parallelograms,
+     * each with side lengths A and B, each therefore containing AB
+     * two-triangle rhombuses.)
+     */
+    if (order == 4)
+        return d1 * d2;
+    else
+        return d1*d1 + d2*d2 + 4*d1*d2;
+}
+
+struct grid_data {
+    int *gridptrs[4];
+    int nsquares[4];
+    int nclasses;
+    int squareindex;
+};
+
+static void classify_grid_square_callback(void *ctx, struct grid_square *sq)
+{
+    struct grid_data *data = (struct grid_data *)ctx;
+    int thisclass;
+
+    if (data->nclasses == 4)
+	thisclass = sq->tetra_class;
+    else if (data->nclasses == 2)
+	thisclass = sq->flip;
+    else
+	thisclass = 0;
+
+    data->gridptrs[thisclass][data->nsquares[thisclass]++] =
+	data->squareindex++;
+}
+
+char *new_game_seed(game_params *params)
+{
+    struct grid_data data;
+    int i, j, k, m, area, facesperclass;
+    int *flags;
+    char *seed, *p;
+
+    /*
+     * Enumerate the grid squares, dividing them into equivalence
+     * classes as appropriate. (For the tetrahedron, there is one
+     * equivalence class for each face; for the octahedron there
+     * are two classes; for the other two solids there's only one.)
+     */
+
+    area = grid_area(params->d1, params->d2, solids[params->solid]->order);
+    if (params->solid == TETRAHEDRON)
+	data.nclasses = 4;
+    else if (params->solid == OCTAHEDRON)
+	data.nclasses = 2;
+    else
+	data.nclasses = 1;
+    data.gridptrs[0] = snewn(data.nclasses * area, int);
+    for (i = 0; i < data.nclasses; i++) {
+	data.gridptrs[i] = data.gridptrs[0] + i * area;
+	data.nsquares[i] = 0;
+    }
+    data.squareindex = 0;
+    enum_grid_squares(params, classify_grid_square_callback, &data);
+
+    facesperclass = solids[params->solid]->nfaces / data.nclasses;
+
+    for (i = 0; i < data.nclasses; i++)
+	assert(data.nsquares[i] >= facesperclass);
+    assert(data.squareindex == area);
+
+    /*
+     * So now we know how many faces to allocate in each class. Get
+     * on with it.
+     */
+    flags = snewn(area, int);
+    for (i = 0; i < area; i++)
+	flags[i] = FALSE;
+
+    for (i = 0; i < data.nclasses; i++) {
+	for (j = 0; j < facesperclass; j++) {
+	    unsigned long divisor = RAND_MAX / data.nsquares[i];
+	    unsigned long max = divisor * data.nsquares[i];
+	    int n;
+
+	    do {
+		n = rand();
+	    } while (n >= max);
+
+	    n /= divisor;
+
+	    assert(!flags[data.gridptrs[i][n]]);
+	    flags[data.gridptrs[i][n]] = TRUE;
+
+	    /*
+	     * Move everything else up the array. I ought to use a
+	     * better data structure for this, but for such small
+	     * numbers it hardly seems worth the effort.
+	     */
+	    while (n < data.nsquares[i]-1) {
+		data.gridptrs[i][n] = data.gridptrs[i][n+1];
+		n++;
+	    }
+	    data.nsquares[i]--;
+	}
+    }
+
+    /*
+     * Now we know precisely which squares are blue. Encode this
+     * information in hex. While we're looping over this, collect
+     * the non-blue squares into a list in the now-unused gridptrs
+     * array.
+     */
+    seed = snewn(area / 4 + 40, char);
+    p = seed;
+    j = 0;
+    k = 8;
+    m = 0;
+    for (i = 0; i < area; i++) {
+	if (flags[i]) {
+	    j |= k;
+	} else {
+	    data.gridptrs[0][m++] = i;
+	}
+	k >>= 1;
+	if (!k) {
+	    *p++ = "0123456789ABCDEF"[j];
+	    k = 8;
+	    j = 0;
+	}
+    }
+    if (k != 8)
+	*p++ = "0123456789ABCDEF"[j];
+
+    /*
+     * Choose a non-blue square for the polyhedron.
+     */
+    {
+	unsigned long divisor = RAND_MAX / m;
+	unsigned long max = divisor * m;
+	int n;
+
+	do {
+	    n = rand();
+	} while (n >= max);
+
+	n /= divisor;
+
+	sprintf(p, ":%d", data.gridptrs[0][n]);
+    }
+
+    sfree(data.gridptrs[0]);
+    sfree(flags);
+
+    return seed;
+}
+
+static void add_grid_square_callback(void *ctx, struct grid_square *sq)
+{
+    game_state *state = (game_state *)ctx;
+
+    state->squares[state->nsquares] = *sq;   /* structure copy */
+    state->squares[state->nsquares].blue = FALSE;
+    state->nsquares++;
+}
+
+static int lowest_face(const struct solid *solid)
+{
+    int i, j, best;
+    float zmin;
+
+    best = 0;
+    zmin = 0.0;
+    for (i = 0; i < solid->nfaces; i++) {
+        float z = 0;
+
+        for (j = 0; j < solid->order; j++) {
+            int f = solid->faces[i*solid->order + j];
+            z += solid->vertices[f*3+2];
+        }
+
+        if (i == 0 || zmin > z) {
+            zmin = z;
+            best = i;
+        }
+    }
+
+    return best;
+}
+
+static int align_poly(const struct solid *solid, struct grid_square *sq,
+                      int *pkey)
+{
+    float zmin;
+    int i, j;
+    int flip = (sq->flip ? -1 : +1);
+
+    /*
+     * First, find the lowest z-coordinate present in the solid.
+     */
+    zmin = 0.0;
+    for (i = 0; i < solid->nvertices; i++)
+        if (zmin > solid->vertices[i*3+2])
+            zmin = solid->vertices[i*3+2];
+
+    /*
+     * Now go round the grid square. For each point in the grid
+     * square, we're looking for a point of the polyhedron with the
+     * same x- and y-coordinates (relative to the square's centre),
+     * and z-coordinate equal to zmin (near enough).
+     */
+    for (j = 0; j < sq->npoints; j++) {
+        int matches, index;
+
+        matches = 0;
+        index = -1;
+
+        for (i = 0; i < solid->nvertices; i++) {
+            float dist = 0;
+
+            dist += SQ(solid->vertices[i*3+0] * flip - sq->points[j*2+0] + sq->x);
+            dist += SQ(solid->vertices[i*3+1] * flip - sq->points[j*2+1] + sq->y);
+            dist += SQ(solid->vertices[i*3+2] - zmin);
+
+            if (dist < 0.1) {
+                matches++;
+                index = i;
+            }
+        }
+
+        if (matches != 1 || index < 0)
+            return FALSE;
+        pkey[j] = index;
+    }
+
+    return TRUE;
+}
+
+static void flip_poly(struct solid *solid, int flip)
+{
+    int i;
+
+    if (flip) {
+        for (i = 0; i < solid->nvertices; i++) {
+            solid->vertices[i*3+0] *= -1;
+            solid->vertices[i*3+1] *= -1;
+        }
+        for (i = 0; i < solid->nfaces; i++) {
+            solid->normals[i*3+0] *= -1;
+            solid->normals[i*3+1] *= -1;
+        }
+    }
+}
+
+static struct solid *transform_poly(const struct solid *solid, int flip,
+                                    int key0, int key1, float angle)
+{
+    struct solid *ret = snew(struct solid);
+    float vx, vy, ax, ay;
+    float vmatrix[9], amatrix[9], vmatrix2[9];
+    int i;
+
+    *ret = *solid;                     /* structure copy */
+
+    flip_poly(ret, flip);
+
+    /*
+     * Now rotate the polyhedron through the given angle. We must
+     * rotate about the Z-axis to bring the two vertices key0 and
+     * key1 into horizontal alignment, then rotate about the
+     * X-axis, then rotate back again.
+     */
+    vx = ret->vertices[key1*3+0] - ret->vertices[key0*3+0];
+    vy = ret->vertices[key1*3+1] - ret->vertices[key0*3+1];
+    assert(APPROXEQ(vx*vx + vy*vy, 1.0));
+
+    vmatrix[0] =  vx; vmatrix[3] = vy; vmatrix[6] = 0;
+    vmatrix[1] = -vy; vmatrix[4] = vx; vmatrix[7] = 0;
+    vmatrix[2] =   0; vmatrix[5] =  0; vmatrix[8] = 1;
+
+    ax = cos(angle);
+    ay = sin(angle);
+
+    amatrix[0] = 1; amatrix[3] =   0; amatrix[6] =  0;
+    amatrix[1] = 0; amatrix[4] =  ax; amatrix[7] = ay;
+    amatrix[2] = 0; amatrix[5] = -ay; amatrix[8] = ax;
+
+    memcpy(vmatrix2, vmatrix, sizeof(vmatrix));
+    vmatrix2[1] = vy;
+    vmatrix2[3] = -vy;
+
+    for (i = 0; i < ret->nvertices; i++) {
+        MATMUL(ret->vertices + 3*i, vmatrix, ret->vertices + 3*i);
+        MATMUL(ret->vertices + 3*i, amatrix, ret->vertices + 3*i);
+        MATMUL(ret->vertices + 3*i, vmatrix2, ret->vertices + 3*i);
+    }
+    for (i = 0; i < ret->nfaces; i++) {
+        MATMUL(ret->normals + 3*i, vmatrix, ret->normals + 3*i);
+        MATMUL(ret->normals + 3*i, amatrix, ret->normals + 3*i);
+        MATMUL(ret->normals + 3*i, vmatrix2, ret->normals + 3*i);
+    }
+
+    return ret;
+}
+
+game_state *new_game(game_params *params, char *seed)
+{
+    game_state *state = snew(game_state);
+    int area;
+
+    state->params = *params;           /* structure copy */
+    state->solid = solids[params->solid];
+
+    area = grid_area(params->d1, params->d2, state->solid->order);
+    state->squares = snewn(area, struct grid_square);
+    state->nsquares = 0;
+    enum_grid_squares(params, add_grid_square_callback, state);
+    assert(state->nsquares == area);
+
+    state->facecolours = snewn(state->solid->nfaces, int);
+    memset(state->facecolours, 0, state->solid->nfaces * sizeof(int));
+
+    /*
+     * Set up the blue squares and polyhedron position according to
+     * the game seed.
+     */
+    {
+	char *p = seed;
+	int i, j, v;
+
+	j = 8;
+	v = 0;
+	for (i = 0; i < state->nsquares; i++) {
+	    if (j == 8) {
+		v = *p++;
+		if (v >= '0' && v <= '9')
+		    v -= '0';
+		else if (v >= 'A' && v <= 'F')
+		    v -= 'A' - 10;
+		else if (v >= 'a' && v <= 'f')
+		    v -= 'a' - 10;
+		else
+		    break;
+	    }
+	    if (v & j)
+		state->squares[i].blue = TRUE;
+	    j >>= 1;
+	    if (j == 0)
+		j = 8;
+	}
+
+	if (*p == ':')
+	    p++;
+
+	state->current = atoi(p);
+	if (state->current < 0 || state->current >= state->nsquares)
+	    state->current = 0;	       /* got to do _something_ */
+    }
+
+    /*
+     * Align the polyhedron with its grid square and determine
+     * initial key points.
+     */
+    {
+        int pkey[4];
+        int ret;
+
+        ret = align_poly(state->solid, &state->squares[state->current], pkey);
+        assert(ret);
+
+        state->dpkey[0] = state->spkey[0] = pkey[0];
+        state->dpkey[1] = state->spkey[0] = pkey[1];
+        state->dgkey[0] = state->sgkey[0] = 0;
+        state->dgkey[1] = state->sgkey[0] = 1;
+    }
+
+    state->previous = state->current;
+    state->angle = 0.0;
+    state->completed = FALSE;
+    state->movecount = 0;
+
+    return state;
+}
+
+game_state *dup_game(game_state *state)
+{
+    game_state *ret = snew(game_state);
+
+    ret->params = state->params;           /* structure copy */
+    ret->solid = state->solid;
+    ret->facecolours = snewn(ret->solid->nfaces, int);
+    memcpy(ret->facecolours, state->facecolours,
+           ret->solid->nfaces * sizeof(int));
+    ret->nsquares = state->nsquares;
+    ret->squares = snewn(ret->nsquares, struct grid_square);
+    memcpy(ret->squares, state->squares,
+           ret->nsquares * sizeof(struct grid_square));
+    ret->dpkey[0] = state->dpkey[0];
+    ret->dpkey[1] = state->dpkey[1];
+    ret->dgkey[0] = state->dgkey[0];
+    ret->dgkey[1] = state->dgkey[1];
+    ret->spkey[0] = state->spkey[0];
+    ret->spkey[1] = state->spkey[1];
+    ret->sgkey[0] = state->sgkey[0];
+    ret->sgkey[1] = state->sgkey[1];
+    ret->previous = state->previous;
+    ret->angle = state->angle;
+    ret->completed = state->completed;
+    ret->movecount = state->movecount;
+
+    return ret;
+}
+
+void free_game(game_state *state)
+{
+    sfree(state);
+}
+
+game_state *make_move(game_state *from, int x, int y, int button)
+{
+    int direction;
+    int pkey[2], skey[2], dkey[2];
+    float points[4];
+    game_state *ret;
+    float angle;
+    int i, j, dest, mask;
+    struct solid *poly;
+
+    /*
+     * All moves are made with the cursor keys.
+     */
+    if (button == CURSOR_UP)
+        direction = UP;
+    else if (button == CURSOR_DOWN)
+        direction = DOWN;
+    else if (button == CURSOR_LEFT)
+        direction = LEFT;
+    else if (button == CURSOR_RIGHT)
+        direction = RIGHT;
+    else
+        return NULL;
+
+    /*
+     * Find the two points in the current grid square which
+     * correspond to this move.
+     */
+    mask = from->squares[from->current].directions[direction];
+    if (mask == 0)
+        return NULL;
+    for (i = j = 0; i < from->squares[from->current].npoints; i++)
+        if (mask & (1 << i)) {
+            points[j*2] = from->squares[from->current].points[i*2];
+            points[j*2+1] = from->squares[from->current].points[i*2+1];
+            skey[j] = i;
+            j++;
+        }
+    assert(j == 2);
+
+    /*
+     * Now find the other grid square which shares those points.
+     * This is our move destination.
+     */
+    dest = -1;
+    for (i = 0; i < from->nsquares; i++)
+        if (i != from->current) {
+            int match = 0;
+            float dist;
+
+            for (j = 0; j < from->squares[i].npoints; j++) {
+                dist = (SQ(from->squares[i].points[j*2] - points[0]) +
+                        SQ(from->squares[i].points[j*2+1] - points[1]));
+                if (dist < 0.1)
+                    dkey[match++] = j;
+                dist = (SQ(from->squares[i].points[j*2] - points[2]) +
+                        SQ(from->squares[i].points[j*2+1] - points[3]));
+                if (dist < 0.1)
+                    dkey[match++] = j;
+            }
+
+            if (match == 2) {
+                dest = i;
+                break;
+            }
+        }
+
+    if (dest < 0)
+        return NULL;
+
+    ret = dup_game(from);
+    ret->current = i;
+
+    /*
+     * So we know what grid square we're aiming for, and we also
+     * know the two key points (as indices in both the source and
+     * destination grid squares) which are invariant between source
+     * and destination.
+     * 
+     * Next we must roll the polyhedron on to that square. So we
+     * find the indices of the key points within the polyhedron's
+     * vertex array, then use those in a call to transform_poly,
+     * and align the result on the new grid square.
+     */
+    {
+        int all_pkey[4];
+        align_poly(from->solid, &from->squares[from->current], all_pkey);
+        pkey[0] = all_pkey[skey[0]];
+        pkey[1] = all_pkey[skey[1]];
+        /*
+         * Now pkey[0] corresponds to skey[0] and dkey[0], and
+         * likewise [1].
+         */
+    }
+
+    /*
+     * Now find the angle through which to rotate the polyhedron.
+     * Do this by finding the two faces that share the two vertices
+     * we've found, and taking the dot product of their normals.
+     */
+    {
+        int f[2], nf = 0;
+        float dp;
+
+        for (i = 0; i < from->solid->nfaces; i++) {
+            int match = 0;
+            for (j = 0; j < from->solid->order; j++)
+                if (from->solid->faces[i*from->solid->order + j] == pkey[0] ||
+                    from->solid->faces[i*from->solid->order + j] == pkey[1])
+                    match++;
+            if (match == 2) {
+                assert(nf < 2);
+                f[nf++] = i;
+            }
+        }
+
+        assert(nf == 2);
+
+        dp = 0;
+        for (i = 0; i < 3; i++)
+            dp += (from->solid->normals[f[0]*3+i] *
+                   from->solid->normals[f[1]*3+i]);
+        angle = acos(dp);
+    }
+
+    /*
+     * Now transform the polyhedron. We aren't entirely sure
+     * whether we need to rotate through angle or -angle, and the
+     * simplest way round this is to try both and see which one
+     * aligns successfully!
+     * 
+     * Unfortunately, _both_ will align successfully if this is a
+     * cube, which won't tell us anything much. So for that
+     * particular case, I resort to gross hackery: I simply negate
+     * the angle before trying the alignment, depending on the
+     * direction. Which directions work which way is determined by
+     * pure trial and error. I said it was gross :-/
+     */
+    {
+        int all_pkey[4];
+        int success;
+
+        if (from->solid->order == 4 && direction == UP)
+            angle = -angle;            /* HACK */
+
+        poly = transform_poly(from->solid,
+                              from->squares[from->current].flip,
+                              pkey[0], pkey[1], angle);
+        flip_poly(poly, from->squares[ret->current].flip);
+        success = align_poly(poly, &from->squares[ret->current], all_pkey);
+
+        if (!success) {
+            angle = -angle;
+            poly = transform_poly(from->solid,
+                                  from->squares[from->current].flip,
+                                  pkey[0], pkey[1], angle);
+            flip_poly(poly, from->squares[ret->current].flip);
+            success = align_poly(poly, &from->squares[ret->current], all_pkey);
+        }
+
+        assert(success);
+    }
+
+    /*
+     * Now we have our rotated polyhedron, which we expect to be
+     * exactly congruent to the one we started with - but with the
+     * faces permuted. So we map that congruence and thereby figure
+     * out how to permute the faces as a result of the polyhedron
+     * having rolled.
+     */
+    {
+        int *newcolours = snewn(from->solid->nfaces, int);
+
+        for (i = 0; i < from->solid->nfaces; i++)
+            newcolours[i] = -1;
+
+        for (i = 0; i < from->solid->nfaces; i++) {
+            int nmatch = 0;
+
+            /*
+             * Now go through the transformed polyhedron's faces
+             * and figure out which one's normal is approximately
+             * equal to this one.
+             */
+            for (j = 0; j < poly->nfaces; j++) {
+                float dist;
+                int k;
+
+                dist = 0;
+
+                for (k = 0; k < 3; k++)
+                    dist += SQ(poly->normals[j*3+k] -
+                               from->solid->normals[i*3+k]);
+
+                if (APPROXEQ(dist, 0)) {
+                    nmatch++;
+                    newcolours[i] = ret->facecolours[j];
+                }
+            }
+
+            assert(nmatch == 1);
+        }
+
+        for (i = 0; i < from->solid->nfaces; i++)
+            assert(newcolours[i] != -1);
+
+        sfree(ret->facecolours);
+        ret->facecolours = newcolours;
+    }
+
+    /*
+     * And finally, swap the colour between the bottom face of the
+     * polyhedron and the face we've just landed on.
+     * 
+     * We don't do this if the game is already complete, since we
+     * allow the user to roll the fully blue polyhedron around the
+     * grid as a feeble reward.
+     */
+    if (!ret->completed) {
+        i = lowest_face(from->solid);
+        j = ret->facecolours[i];
+        ret->facecolours[i] = ret->squares[ret->current].blue;
+        ret->squares[ret->current].blue = j;
+
+        /*
+         * Detect game completion.
+         */
+        j = 0;
+        for (i = 0; i < ret->solid->nfaces; i++)
+            if (ret->facecolours[i])
+                j++;
+        if (j == ret->solid->nfaces)
+            ret->completed = TRUE;
+    }
+
+    sfree(poly);
+
+    /*
+     * Align the normal polyhedron with its grid square, to get key
+     * points for non-animated display.
+     */
+    {
+        int pkey[4];
+        int success;
+
+        success = align_poly(ret->solid, &ret->squares[ret->current], pkey);
+        assert(success);
+
+        ret->dpkey[0] = pkey[0];
+        ret->dpkey[1] = pkey[1];
+        ret->dgkey[0] = 0;
+        ret->dgkey[1] = 1;
+    }
+
+
+    ret->spkey[0] = pkey[0];
+    ret->spkey[1] = pkey[1];
+    ret->sgkey[0] = skey[0];
+    ret->sgkey[1] = skey[1];
+    ret->previous = from->current;
+    ret->angle = angle;
+    ret->movecount++;
+
+    return ret;
+}
+
+/* ----------------------------------------------------------------------
+ * Drawing routines.
+ */
+
+struct bbox {
+    float l, r, u, d;
+};
+
+struct game_drawstate {
+    int ox, oy;                        /* pixel position of float origin */
+};
+
+static void find_bbox_callback(void *ctx, struct grid_square *sq)
+{
+    struct bbox *bb = (struct bbox *)ctx;
+    int i;
+
+    for (i = 0; i < sq->npoints; i++) {
+        if (bb->l > sq->points[i*2]) bb->l = sq->points[i*2];
+        if (bb->r < sq->points[i*2]) bb->r = sq->points[i*2];
+        if (bb->u > sq->points[i*2+1]) bb->u = sq->points[i*2+1];
+        if (bb->d < sq->points[i*2+1]) bb->d = sq->points[i*2+1];
+    }
+}
+
+static struct bbox find_bbox(game_params *params)
+{
+    struct bbox bb;
+
+    /*
+     * These should be hugely more than the real bounding box will
+     * be.
+     */
+    bb.l = 2 * (params->d1 + params->d2);
+    bb.r = -2 * (params->d1 + params->d2);
+    bb.u = 2 * (params->d1 + params->d2);
+    bb.d = -2 * (params->d1 + params->d2);
+    enum_grid_squares(params, find_bbox_callback, &bb);
+
+    return bb;
+}
+
+void game_size(game_params *params, int *x, int *y)
+{
+    struct bbox bb = find_bbox(params);
+    *x = (bb.r - bb.l + 2) * GRID_SCALE;
+    *y = (bb.d - bb.u + 2) * GRID_SCALE;
+}
+
+float *game_colours(frontend *fe, game_state *state, int *ncolours)
+{
+    float *ret = snewn(3 * NCOLOURS, float);
+
+    frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
+
+    ret[COL_BORDER * 3 + 0] = 0.0;
+    ret[COL_BORDER * 3 + 1] = 0.0;
+    ret[COL_BORDER * 3 + 2] = 0.0;
+
+    ret[COL_BLUE * 3 + 0] = 0.0;
+    ret[COL_BLUE * 3 + 1] = 0.0;
+    ret[COL_BLUE * 3 + 2] = 1.0;
+
+    *ncolours = NCOLOURS;
+    return ret;
+}
+
+game_drawstate *game_new_drawstate(game_state *state)
+{
+    struct game_drawstate *ds = snew(struct game_drawstate);
+    struct bbox bb = find_bbox(&state->params);
+
+    ds->ox = -(bb.l - 1) * GRID_SCALE;
+    ds->oy = -(bb.u - 1) * GRID_SCALE;
+
+    return ds;
+}
+
+void game_free_drawstate(game_drawstate *ds)
+{
+    sfree(ds);
+}
+
+void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
+                 game_state *state, float animtime)
+{
+    int i, j;
+    struct bbox bb = find_bbox(&state->params);
+    struct solid *poly;
+    int *pkey, *gkey;
+    float t[3];
+    float angle;
+    game_state *newstate;
+    int square;
+
+    draw_rect(fe, 0, 0, (bb.r-bb.l+2) * GRID_SCALE,
+              (bb.d-bb.u+2) * GRID_SCALE, COL_BACKGROUND);
+
+    if (oldstate && oldstate->movecount > state->movecount) {
+        game_state *t;
+
+        /*
+         * This is an Undo. So reverse the order of the states, and
+         * run the roll timer backwards.
+         */
+        t = oldstate;
+        oldstate = state;
+        state = t;
+
+        animtime = ROLLTIME - animtime;
+    }
+
+    if (!oldstate) {
+        oldstate = state;
+        angle = 0.0;
+        square = state->current;
+        pkey = state->dpkey;
+        gkey = state->dgkey;
+    } else {
+        angle = state->angle * animtime / ROLLTIME;
+        square = state->previous;
+        pkey = state->spkey;
+        gkey = state->sgkey;
+    }
+    newstate = state;
+    state = oldstate;
+
+    for (i = 0; i < state->nsquares; i++) {
+        int coords[8];
+
+        for (j = 0; j < state->squares[i].npoints; j++) {
+            coords[2*j] = state->squares[i].points[2*j]
+                * GRID_SCALE + ds->ox;
+            coords[2*j+1] = state->squares[i].points[2*j+1]
+                * GRID_SCALE + ds->oy;
+        }
+
+        draw_polygon(fe, coords, state->squares[i].npoints, TRUE,
+                     state->squares[i].blue ? COL_BLUE : COL_BACKGROUND);
+        draw_polygon(fe, coords, state->squares[i].npoints, FALSE, COL_BORDER);
+    }
+
+    /*
+     * Now compute and draw the polyhedron.
+     */
+    poly = transform_poly(state->solid, state->squares[square].flip,
+                          pkey[0], pkey[1], angle);
+
+    /*
+     * Compute the translation required to align the two key points
+     * on the polyhedron with the same key points on the current
+     * face.
+     */
+    for (i = 0; i < 3; i++) {
+        float tc = 0.0;
+
+        for (j = 0; j < 2; j++) {
+            float grid_coord;
+
+            if (i < 2) {
+                grid_coord =
+                    state->squares[square].points[gkey[j]*2+i];
+            } else {
+                grid_coord = 0.0;
+            }
+
+            tc += (grid_coord - poly->vertices[pkey[j]*3+i]);
+        }
+
+        t[i] = tc / 2;
+    }
+    for (i = 0; i < poly->nvertices; i++)
+        for (j = 0; j < 3; j++)
+            poly->vertices[i*3+j] += t[j];
+
+    /*
+     * Now actually draw each face.
+     */
+    for (i = 0; i < poly->nfaces; i++) {
+        float points[8];
+        int coords[8];
+
+        for (j = 0; j < poly->order; j++) {
+            int f = poly->faces[i*poly->order + j];
+            points[j*2] = (poly->vertices[f*3+0] -
+                           poly->vertices[f*3+2] * poly->shear);
+            points[j*2+1] = (poly->vertices[f*3+1] -
+                             poly->vertices[f*3+2] * poly->shear);
+        }
+
+        for (j = 0; j < poly->order; j++) {
+            coords[j*2] = points[j*2] * GRID_SCALE + ds->ox;
+            coords[j*2+1] = points[j*2+1] * GRID_SCALE + ds->oy;
+        }
+
+        /*
+         * Find out whether these points are in a clockwise or
+         * anticlockwise arrangement. If the latter, discard the
+         * face because it's facing away from the viewer.
+         *
+         * This would involve fiddly winding-number stuff for a
+         * general polygon, but for the simple parallelograms we'll
+         * be seeing here, all we have to do is check whether the
+         * corners turn right or left. So we'll take the vector
+         * from point 0 to point 1, turn it right 90 degrees,
+         * and check the sign of the dot product with that and the
+         * next vector (point 1 to point 2).
+         */
+        {
+            float v1x = points[2]-points[0];
+            float v1y = points[3]-points[1];
+            float v2x = points[4]-points[2];
+            float v2y = points[5]-points[3];
+            float dp = v1x * v2y - v1y * v2x;
+
+            if (dp <= 0)
+                continue;
+        }
+
+        draw_polygon(fe, coords, poly->order, TRUE,
+                     state->facecolours[i] ? COL_BLUE : COL_BACKGROUND);
+        draw_polygon(fe, coords, poly->order, FALSE, COL_BORDER);
+    }
+    sfree(poly);
+
+    draw_update(fe, 0, 0, (bb.r-bb.l+2) * GRID_SCALE,
+                (bb.d-bb.u+2) * GRID_SCALE);
+}
+
+float game_anim_length(game_state *oldstate, game_state *newstate)
+{
+    return ROLLTIME;
+}
--- a/gtk.c
+++ b/gtk.c
@@ -12,6 +12,7 @@
 #include <stdarg.h>
 
 #include <gtk/gtk.h>
+#include <gdk/gdkkeysyms.h>
 
 #include "puzzles.h"
 
@@ -135,12 +136,26 @@
 static gint key_event(GtkWidget *widget, GdkEventKey *event, gpointer data)
 {
     frontend *fe = (frontend *)data;
+    int keyval;
 
     if (!fe->pixmap)
         return TRUE;
 
-    if (event->string[0] && !event->string[1] &&
-        !midend_process_key(fe->me, 0, 0, event->string[0]))
+    if (event->string[0] && !event->string[1])
+        keyval = (unsigned char)event->string[0];
+    else if (event->keyval == GDK_Up || event->keyval == GDK_KP_Up)
+        keyval = CURSOR_UP;
+    else if (event->keyval == GDK_Down || event->keyval == GDK_KP_Down)
+        keyval = CURSOR_DOWN;
+    else if (event->keyval == GDK_Left || event->keyval == GDK_KP_Left)
+        keyval = CURSOR_LEFT;
+    else if (event->keyval == GDK_Right || event->keyval == GDK_KP_Right)
+        keyval = CURSOR_RIGHT;
+    else
+        keyval = -1;
+
+    if (keyval >= 0 &&
+        !midend_process_key(fe->me, 0, 0, keyval))
 	gtk_widget_destroy(fe->window);
 
     return TRUE;
--- a/midend.c
+++ b/midend.c
@@ -91,16 +91,22 @@
     me->statepos = me->nstates;
 }
 
-void midend_undo(midend_data *me)
+static int midend_undo(midend_data *me)
 {
-    if (me->statepos > 1)
+    if (me->statepos > 1) {
 	me->statepos--;
+        return 1;
+    } else
+        return 0;
 }
 
-void midend_redo(midend_data *me)
+static int midend_redo(midend_data *me)
 {
-    if (me->statepos < me->nstates)
+    if (me->statepos < me->nstates) {
 	me->statepos++;
+        return 1;
+    } else
+        return 0;
 }
 
 int midend_process_key(midend_data *me, int x, int y, int button)
@@ -126,10 +132,12 @@
         midend_redraw(me);
         return 1;                      /* never animate */
     } else if (button == 'u' || button == 'u' ||
-	       button == '\x1A' || button == '\x1F') {
-	midend_undo(me);
+               button == '\x1A' || button == '\x1F') {
+	if (!midend_undo(me))
+            return 1;
     } else if (button == '\x12') {
-	midend_redo(me);
+	if (!midend_redo(me))
+            return 1;
     } else if (button == 'q' || button == 'Q' || button == '\x11') {
 	free_game(oldstate);
         return 0;
--- a/puzzles.h
+++ b/puzzles.h
@@ -17,7 +17,11 @@
 enum {
     LEFT_BUTTON = 0x1000,
     MIDDLE_BUTTON,
-    RIGHT_BUTTON
+    RIGHT_BUTTON,
+    CURSOR_UP,
+    CURSOR_DOWN,
+    CURSOR_LEFT,
+    CURSOR_RIGHT
 };
 
 #define IGNORE(x) ( (x) = (x) )
@@ -53,8 +57,6 @@
 void midend_size(midend_data *me, int *x, int *y);
 void midend_new_game(midend_data *me, char *seed);
 void midend_restart_game(midend_data *me);
-void midend_undo(midend_data *me);
-void midend_redo(midend_data *me);
 int midend_process_key(midend_data *me, int x, int y, int button);
 void midend_redraw(midend_data *me);
 float *midend_colours(midend_data *me, int *ncolours);