ref: c8145f3bba1681a4b85e99dd0749d9c434393955
parent: 87302428703f10732d907cfefe46a28ce9a5ebbc
author: Simon Tatham <anakin@pobox.com>
date: Sun Sep 18 08:09:16 EDT 2005
Another optimisation patch from Mike, which (among other things) eliminates gratuitous duplication of the solver state every time it goes round the main loop, in favour of the usual type of `done_something' flag. [originally from svn r6322]
--- a/loopy.c
+++ b/loopy.c
@@ -118,6 +118,14 @@
#define OPP(dir) (dir == LINE_UNKNOWN ? LINE_UNKNOWN : \
dir == LINE_YES ? LINE_NO : LINE_YES)
+#define BIT_SET(field, bit) ((field) & (1<<(bit)))
+
+#define SET_BIT(field, bit) (BIT_SET(field, bit) ? FALSE : \
+ ((field) |= (1<<(bit)), TRUE))
+
+#define CLEAR_BIT(field, bit) (BIT_SET(field, bit) ? \
+ ((field) &= ~(1<<(bit)), TRUE) : FALSE)
+
static char *game_text_format(game_state *state);
enum {
@@ -210,13 +218,13 @@
typedef struct solver_state {
game_state *state;
- /* XXX dot_atleastone[i,j, dline] is equivalent to */
- /* dot_atmostone[i,j,OPP_DLINE(dline)] */
char *dot_atleastone;
char *dot_atmostone;
/* char *dline_identical; */
int recursion_remaining;
enum solver_status solver_status;
+ /* NB looplen is the number of dots that are joined together at a point, ie a
+ * looplen of 1 means there are no lines to a particular dot */
int *dotdsf, *looplen;
} solver_state;
@@ -237,7 +245,7 @@
#endif
ret->recursion_remaining = state->recursion_depth;
- ret->solver_status = SOLVER_INCOMPLETE; /* XXX This may be a lie */
+ ret->solver_status = SOLVER_INCOMPLETE;
ret->dotdsf = snewn(DOT_COUNT(state), int);
ret->looplen = snewn(DOT_COUNT(state), int);
@@ -295,8 +303,10 @@
* Merge two dots due to the existence of an edge between them.
* Updates the dsf tracking equivalence classes, and keeps track of
* the length of path each dot is currently a part of.
+ * Returns TRUE if the dots were already linked, ie if they are part of a
+ * closed loop, and false otherwise.
*/
-static void merge_dots(solver_state *sstate, int x1, int y1, int x2, int y2)
+static int merge_dots(solver_state *sstate, int x1, int y1, int x2, int y2)
{
int i, j, len;
@@ -306,11 +316,14 @@
i = dsf_canonify(sstate->dotdsf, i);
j = dsf_canonify(sstate->dotdsf, j);
- if (i != j) {
+ if (i == j) {
+ return TRUE;
+ } else {
len = sstate->looplen[i] + sstate->looplen[j];
dsf_merge(sstate->dotdsf, i, j);
i = dsf_canonify(sstate->dotdsf, i);
sstate->looplen[i] = len;
+ return FALSE;
}
}
@@ -369,19 +382,36 @@
return n;
}
-/* Set all lines bordering a dot of type old_type to type new_type */
-static void dot_setall(game_state *state, int i, int j,
+/* Set all lines bordering a dot of type old_type to type new_type
+ * Return value tells caller whether this function actually did anything */
+static int dot_setall(game_state *state, int i, int j,
char old_type, char new_type)
{
-/* printf("dot_setall([%d,%d], %d, %d)\n", i, j, old_type, new_type); */
- if (i > 0 && LEFTOF_DOT(state, i, j) == old_type)
+ int retval = FALSE;
+ if (old_type == new_type)
+ return FALSE;
+
+ if (i > 0 && LEFTOF_DOT(state, i, j) == old_type) {
LV_LEFTOF_DOT(state, i, j) = new_type;
- if (i < state->w && RIGHTOF_DOT(state, i, j) == old_type)
+ retval = TRUE;
+ }
+
+ if (i < state->w && RIGHTOF_DOT(state, i, j) == old_type) {
LV_RIGHTOF_DOT(state, i, j) = new_type;
- if (j > 0 && ABOVE_DOT(state, i, j) == old_type)
+ retval = TRUE;
+ }
+
+ if (j > 0 && ABOVE_DOT(state, i, j) == old_type) {
LV_ABOVE_DOT(state, i, j) = new_type;
- if (j < state->h && BELOW_DOT(state, i, j) == old_type)
+ retval = TRUE;
+ }
+
+ if (j < state->h && BELOW_DOT(state, i, j) == old_type) {
LV_BELOW_DOT(state, i, j) = new_type;
+ retval = TRUE;
+ }
+
+ return retval;
}
/* Set all lines bordering a square of type old_type to type new_type */
static void square_setall(game_state *state, int i, int j,
@@ -1106,139 +1136,6 @@
enum { LOOP_NONE=0, LOOP_SOLN, LOOP_NOT_SOLN };
-/* Starting at dot [i,j] moves around 'state' removing lines until it's clear
- * whether or not the starting dot was on a loop. Returns boolean specifying
- * whether a loop was found. loop_status calls this and assumes that if state
- * has any lines set, this function will always remove at least one. */
-static int destructively_find_loop(game_state *state)
-{
- int a, b, i, j, new_i, new_j, n;
- char *lp;
-
- lp = (char *)memchr(state->hl, LINE_YES, HL_COUNT(state));
- if (!lp) {
- /* We know we're going to return false but we have to fulfil our
- * contract */
- lp = (char *)memchr(state->vl, LINE_YES, VL_COUNT(state));
- if (lp)
- *lp = LINE_NO;
-
- return FALSE;
- }
-
- n = lp - state->hl;
-
- i = n % state->w;
- j = n / state->w;
-
- assert(i + j * state->w == n); /* because I'm feeling stupid */
- /* Save start position */
- a = i;
- b = j;
-
- /* Delete one line from the potential loop */
- if (LEFTOF_DOT(state, i, j) == LINE_YES) {
- LV_LEFTOF_DOT(state, i, j) = LINE_NO;
- i--;
- } else if (ABOVE_DOT(state, i, j) == LINE_YES) {
- LV_ABOVE_DOT(state, i, j) = LINE_NO;
- j--;
- } else if (RIGHTOF_DOT(state, i, j) == LINE_YES) {
- LV_RIGHTOF_DOT(state, i, j) = LINE_NO;
- i++;
- } else if (BELOW_DOT(state, i, j) == LINE_YES) {
- LV_BELOW_DOT(state, i, j) = LINE_NO;
- j++;
- } else {
- return FALSE;
- }
-
- do {
- /* From the current position of [i,j] there needs to be exactly one
- * line */
- new_i = new_j = -1;
-
-#define HANDLE_DIR(dir_dot, x, y) \
- if (dir_dot(state, i, j) == LINE_YES) { \
- if (new_i != -1 || new_j != -1) \
- return FALSE; \
- new_i = (i)+(x); \
- new_j = (j)+(y); \
- LV_##dir_dot(state, i, j) = LINE_NO; \
- }
- HANDLE_DIR(ABOVE_DOT, 0, -1);
- HANDLE_DIR(BELOW_DOT, 0, +1);
- HANDLE_DIR(LEFTOF_DOT, -1, 0);
- HANDLE_DIR(RIGHTOF_DOT, +1, 0);
-#undef HANDLE_DIR
- if (new_i == -1 || new_j == -1) {
- return FALSE;
- }
-
- i = new_i;
- j = new_j;
- } while (i != a || j != b);
-
- return TRUE;
-}
-
-static int loop_status(game_state *state)
-{
- int i, j, n;
- game_state *tmpstate;
- int loop_found = FALSE, non_loop_found = FALSE, any_lines_found = FALSE;
-
-#define BAD_LOOP_FOUND \
- do { free_game(tmpstate); return LOOP_NOT_SOLN; } while(0)
-
- /* Repeatedly look for loops until we either run out of lines to consider
- * or discover for sure that the board fails on the grounds of having no
- * loop */
- tmpstate = dup_game(state);
-
- while (TRUE) {
- if (!memchr(tmpstate->hl, LINE_YES, HL_COUNT(tmpstate)) &&
- !memchr(tmpstate->vl, LINE_YES, VL_COUNT(tmpstate))) {
- break;
- }
- any_lines_found = TRUE;
-
- if (loop_found)
- BAD_LOOP_FOUND;
- if (destructively_find_loop(tmpstate)) {
- loop_found = TRUE;
- if (non_loop_found)
- BAD_LOOP_FOUND;
- } else {
- non_loop_found = TRUE;
- }
- }
-
- free_game(tmpstate);
-
- if (!any_lines_found)
- return LOOP_NONE;
-
- if (non_loop_found) {
- assert(!loop_found); /* should have dealt with this already */
- return LOOP_NONE;
- }
-
- /* Check that every clue is satisfied */
- for (j = 0; j < state->h; ++j) {
- for (i = 0; i < state->w; ++i) {
- n = CLUE_AT(state, i, j);
- if (n != ' ') {
- if (square_order(state, i, j, LINE_YES) != n - '0') {
- return LOOP_NOT_SOLN;
- }
- }
- }
- }
-
- return LOOP_SOLN;
-}
-
/* Sums the lengths of the numbers in range [0,n) */
/* See equivalent function in solo.c for justification of this. */
static int len_0_to_n(int n)
@@ -1364,84 +1261,37 @@
}
}
-
-static int game_states_equal(const game_state *state1,
- const game_state *state2)
+static int dot_setall_dlines(solver_state *sstate, enum dline dl, int i, int j,
+ enum line_state line_old, enum line_state line_new)
{
- /* This deliberately doesn't check _all_ fields, just the ones that make a
- * game state 'interesting' from the POV of the solver */
- /* XXX review this */
- if (state1 == state2)
- return 1;
-
- if (!state1 || !state2)
- return 0;
-
- if (state1->w != state2->w || state1->h != state2->h)
- return 0;
-
- if (memcmp(state1->hl, state2->hl, HL_COUNT(state1)))
- return 0;
-
- if (memcmp(state1->vl, state2->vl, VL_COUNT(state1)))
- return 0;
-
- return 1;
-}
-
-static int solver_states_equal(const solver_state *sstate1,
- const solver_state *sstate2)
-{
- if (!sstate1) {
- if (!sstate2)
- return TRUE;
- else
- return FALSE;
- }
-
- if (!game_states_equal(sstate1->state, sstate2->state)) {
- return 0;
- }
-
- /* XXX fields missing, needs review */
- /* XXX we're deliberately not looking at solver_state as it's only a cache */
-
- if (memcmp(sstate1->dot_atleastone, sstate2->dot_atleastone,
- DOT_COUNT(sstate1->state))) {
- return 0;
- }
-
- if (memcmp(sstate1->dot_atmostone, sstate2->dot_atmostone,
- DOT_COUNT(sstate1->state))) {
- return 0;
- }
-
- /* handle dline_identical here */
-
- return 1;
-}
-
-static void dot_setall_dlines(solver_state *sstate, enum dline dl, int i, int j,
- enum line_state line_old, enum line_state line_new)
-{
game_state *state = sstate->state;
+ int retval = FALSE;
+ if (line_old == line_new)
+ return FALSE;
+
/* First line in dline */
switch (dl) {
case DLINE_UL:
case DLINE_UR:
case DLINE_VERT:
- if (j > 0 && ABOVE_DOT(state, i, j) == line_old)
+ if (j > 0 && ABOVE_DOT(state, i, j) == line_old) {
LV_ABOVE_DOT(state, i, j) = line_new;
+ retval = TRUE;
+ }
break;
case DLINE_DL:
case DLINE_DR:
- if (j <= (state)->h && BELOW_DOT(state, i, j) == line_old)
+ if (j <= (state)->h && BELOW_DOT(state, i, j) == line_old) {
LV_BELOW_DOT(state, i, j) = line_new;
+ retval = TRUE;
+ }
break;
case DLINE_HORIZ:
- if (i > 0 && LEFTOF_DOT(state, i, j) == line_old)
+ if (i > 0 && LEFTOF_DOT(state, i, j) == line_old) {
LV_LEFTOF_DOT(state, i, j) = line_new;
+ retval = TRUE;
+ }
break;
}
@@ -1449,38 +1299,28 @@
switch (dl) {
case DLINE_UL:
case DLINE_DL:
- if (i > 0 && LEFTOF_DOT(state, i, j) == line_old)
+ if (i > 0 && LEFTOF_DOT(state, i, j) == line_old) {
LV_LEFTOF_DOT(state, i, j) = line_new;
+ retval = TRUE;
+ }
break;
case DLINE_UR:
case DLINE_DR:
case DLINE_HORIZ:
- if (i <= (state)->w && RIGHTOF_DOT(state, i, j) == line_old)
+ if (i <= (state)->w && RIGHTOF_DOT(state, i, j) == line_old) {
LV_RIGHTOF_DOT(state, i, j) = line_new;
+ retval = TRUE;
+ }
break;
case DLINE_VERT:
- if (j <= (state)->h && BELOW_DOT(state, i, j) == line_old)
+ if (j <= (state)->h && BELOW_DOT(state, i, j) == line_old) {
LV_BELOW_DOT(state, i, j) = line_new;
+ retval = TRUE;
+ }
break;
}
-}
-static void update_solver_status(solver_state *sstate)
-{
- if (sstate->solver_status == SOLVER_INCOMPLETE) {
- switch (loop_status(sstate->state)) {
- case LOOP_NONE:
- sstate->solver_status = SOLVER_INCOMPLETE;
- break;
- case LOOP_SOLN:
- if (sstate->solver_status != SOLVER_AMBIGUOUS)
- sstate->solver_status = SOLVER_SOLVED;
- break;
- case LOOP_NOT_SOLN:
- sstate->solver_status = SOLVER_MISTAKE;
- break;
- }
- }
+ return retval;
}
#if 0
@@ -1515,6 +1355,7 @@
int recursive_soln_count;
char *square_solved;
char *dot_solved;
+ int solver_progress;
h = sstate_start->state->h;
w = sstate_start->state->w;
@@ -1531,32 +1372,20 @@
sstate = dup_solver_state((solver_state *)sstate_start);
-#define RETURN_IF_SOLVED \
- do { \
- update_solver_status(sstate); \
- if (sstate->solver_status != SOLVER_INCOMPLETE) { \
- sfree(dot_solved); sfree(square_solved); \
- free_solver_state(sstate_saved); \
- return sstate; \
- } \
- } while (0)
-
#define FOUND_MISTAKE \
do { \
sstate->solver_status = SOLVER_MISTAKE; \
- sfree(dot_solved); sfree(square_solved); \
+ sfree(dot_solved); sfree(square_solved); \
free_solver_state(sstate_saved); \
return sstate; \
} while (0)
-
sstate_saved = NULL;
- RETURN_IF_SOLVED;
nonrecursive_solver:
while (1) {
- sstate_saved = dup_solver_state(sstate);
+ solver_progress = FALSE;
/* First we do the 'easy' work, that might cause concrete results */
@@ -1585,6 +1414,7 @@
if (desired == current_yes) {
square_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_NO);
square_solved[i + j*w] = TRUE;
+ solver_progress = TRUE;
continue;
}
@@ -1593,12 +1423,11 @@
if (4 - desired == current_no) {
square_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_YES);
square_solved[i + j*w] = TRUE;
+ solver_progress = TRUE;
}
}
}
- RETURN_IF_SOLVED;
-
/* Per-dot deductions */
for (j = 0; j < h + 1; ++j) {
for (i = 0; i < w + 1; ++i) {
@@ -1610,6 +1439,7 @@
switch (dot_order(sstate->state, i, j, LINE_NO)) {
case 3:
dot_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_NO);
+ solver_progress = TRUE;
/* fall through */
case 4:
dot_solved[i + j*(w+1)] = TRUE;
@@ -1621,8 +1451,9 @@
#define H1(dline, dir1_dot, dir2_dot, dot_howmany) \
if (dir1_dot(sstate->state, i, j) == LINE_UNKNOWN) { \
if (dir2_dot(sstate->state, i, j) == LINE_UNKNOWN){ \
- sstate->dot_howmany \
- [i + (w + 1) * j] |= 1<<dline; \
+ solver_progress |= \
+ SET_BIT(sstate->dot_howmany[i + (w + 1) * j], \
+ dline); \
} \
}
case 1:
@@ -1650,6 +1481,7 @@
dot_setall(sstate->state, i, j,
LINE_UNKNOWN, LINE_YES);
dot_solved[i + j*(w+1)] = TRUE;
+ solver_progress = TRUE;
break;
case 3: /* 1 yes, 3 no */
FOUND_MISTAKE;
@@ -1657,7 +1489,9 @@
}
break;
case 2:
- dot_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_NO);
+ if (dot_setall(sstate->state, i, j, LINE_UNKNOWN, LINE_NO)) {
+ solver_progress = TRUE;
+ }
dot_solved[i + j*(w+1)] = TRUE;
break;
case 3:
@@ -1667,10 +1501,10 @@
}
if (diff > DIFF_EASY) {
#define HANDLE_DLINE(dline, dir1_dot, dir2_dot) \
- if (sstate->dot_atleastone \
- [i + (w + 1) * j] & 1<<dline) { \
- sstate->dot_atmostone \
- [i + (w + 1) * j] |= 1<<OPP_DLINE(dline); \
+ if (BIT_SET(sstate->dot_atleastone[i + (w + 1) * j], dline)) { \
+ solver_progress |= \
+ SET_BIT(sstate->dot_atmostone[i + (w + 1) * j], \
+ OPP_DLINE(dline)); \
}
/* If at least one of a dline in a dot is YES, at most one
* of the opposite dline to that dot must be YES. */
@@ -1677,60 +1511,68 @@
DOT_DLINES;
}
#undef HANDLE_DLINE
- }
- }
-
- /* More obscure per-square operations */
- for (j = 0; j < h; ++j) {
- for (i = 0; i < w; ++i) {
- if (square_solved[i + j*w])
- continue;
-#define H1(dline, dir1_sq, dir2_sq, a, b, dot_howmany, line_query, line_set) \
- if (sstate->dot_howmany[i+a + (w + 1) * (j+b)] & 1<<dline) { \
+#define H1(dline, dir1_sq, dir2_sq, dot_howmany, line_query, line_set) \
+ if (BIT_SET(sstate->dot_howmany[i + (w+1) * j], dline)) { \
t = dir1_sq(sstate->state, i, j); \
- if (t == line_query) \
- dir2_sq(sstate->state, i, j) = line_set; \
- else { \
+ if (t == line_query) { \
+ if (dir2_sq(sstate->state, i, j) != line_set) { \
+ LV_##dir2_sq(sstate->state, i, j) = line_set; \
+ solver_progress = TRUE; \
+ } \
+ } else { \
t = dir2_sq(sstate->state, i, j); \
- if (t == line_query) \
- dir1_sq(sstate->state, i, j) = line_set; \
+ if (t == line_query) { \
+ if (dir1_sq(sstate->state, i, j) != line_set) { \
+ LV_##dir1_sq(sstate->state, i, j) = line_set; \
+ solver_progress = TRUE; \
+ } \
+ } \
} \
}
if (diff > DIFF_EASY) {
-#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
- H1(dline, dir1_sq, dir2_sq, a, b, dot_atmostone, \
- LINE_YES, LINE_NO)
+#define HANDLE_DLINE(dline, dir1_sq, dir2_sq) \
+ H1(dline, dir1_sq, dir2_sq, dot_atmostone, LINE_YES, LINE_NO)
/* If at most one of the DLINE is on, and one is definitely
* on, set the other to definitely off */
- SQUARE_DLINES;
+ DOT_DLINES;
#undef HANDLE_DLINE
}
if (diff > DIFF_EASY) {
-#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
- H1(dline, dir1_sq, dir2_sq, a, b, dot_atleastone, \
- LINE_NO, LINE_YES)
+#define HANDLE_DLINE(dline, dir1_sq, dir2_sq) \
+ H1(dline, dir1_sq, dir2_sq, dot_atleastone, LINE_NO, LINE_YES)
/* If at least one of the DLINE is on, and one is definitely
* off, set the other to definitely on */
- SQUARE_DLINES;
+ DOT_DLINES;
#undef HANDLE_DLINE
}
#undef H1
+ }
+ }
+
+ /* More obscure per-square operations */
+ for (j = 0; j < h; ++j) {
+ for (i = 0; i < w; ++i) {
+ if (square_solved[i + j*w])
+ continue;
+
switch (CLUE_AT(sstate->state, i, j)) {
case '1':
if (diff > DIFF_EASY) {
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
/* At most one of any DLINE can be set */ \
- sstate->dot_atmostone \
- [i+a + (w + 1) * (j+b)] |= 1<<dline; \
+ SET_BIT(sstate->dot_atmostone[i+a + (w + 1) * (j+b)], \
+ dline); \
/* This DLINE provides enough YESes to solve the clue */\
- if (sstate->dot_atleastone \
- [i+a + (w + 1) * (j+b)] & 1<<dline) { \
- dot_setall_dlines(sstate, OPP_DLINE(dline), \
- i+(1-a), j+(1-b), \
- LINE_UNKNOWN, LINE_NO); \
+ if (BIT_SET(sstate->dot_atleastone \
+ [i+a + (w + 1) * (j+b)], \
+ dline)) { \
+ solver_progress |= \
+ dot_setall_dlines(sstate, OPP_DLINE(dline), \
+ i+(1-a), j+(1-b), \
+ LINE_UNKNOWN, LINE_NO); \
}
SQUARE_DLINES;
#undef HANDLE_DLINE
@@ -1739,10 +1581,12 @@
case '2':
if (diff > DIFF_EASY) {
#define H1(dline, dot_at1one, dot_at2one, a, b) \
- if (sstate->dot_at1one \
- [i+a + (w + 1) * (j+b)] & 1<<dline) { \
- sstate->dot_at2one \
- [i+(1-a) + (w + 1) * (j+(1-b))] |= 1<<OPP_DLINE(dline); \
+ if (BIT_SET(sstate->dot_at1one \
+ [i+a + (w+1) * (j+b)], dline)) { \
+ solver_progress |= \
+ SET_BIT(sstate->dot_at2one \
+ [i+(1-a) + (w+1) * (j+(1-b))], \
+ OPP_DLINE(dline)); \
}
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
H1(dline, dot_atleastone, dot_atmostone, a, b); \
@@ -1758,14 +1602,18 @@
if (diff > DIFF_EASY) {
#define HANDLE_DLINE(dline, dir1_sq, dir2_sq, a, b) \
/* At least one of any DLINE can be set */ \
- sstate->dot_atleastone \
- [i+a + (w + 1) * (j+b)] |= 1<<dline; \
+ solver_progress |= \
+ SET_BIT(sstate->dot_atleastone \
+ [i+a + (w + 1) * (j+b)], \
+ dline); \
/* This DLINE provides enough NOs to solve the clue */ \
- if (sstate->dot_atmostone \
- [i+a + (w + 1) * (j+b)] & 1<<dline) { \
- dot_setall_dlines(sstate, OPP_DLINE(dline), \
- i+(1-a), j+(1-b), \
- LINE_UNKNOWN, LINE_YES); \
+ if (BIT_SET(sstate->dot_atmostone \
+ [i+a + (w + 1) * (j+b)], \
+ dline)) { \
+ solver_progress |= \
+ dot_setall_dlines(sstate, OPP_DLINE(dline), \
+ i+(1-a), j+(1-b), \
+ LINE_UNKNOWN, LINE_YES); \
}
SQUARE_DLINES;
#undef HANDLE_DLINE
@@ -1774,10 +1622,13 @@
}
}
}
-
- if (solver_states_equal(sstate, sstate_saved)) {
+
+ if (!solver_progress) {
int edgecount = 0, clues = 0, satclues = 0, sm1clues = 0;
+ int shortest_chainlen = DOT_COUNT(sstate->state);
+ int loop_found = FALSE;
int d;
+ int dots_connected;
/*
* Go through the grid and update for all the new edges.
@@ -1788,14 +1639,14 @@
* clues, count the satisfied clues, and count the
* satisfied-minus-one clues.
*/
- for (j = 0; j <= h; ++j) {
- for (i = 0; i <= w; ++i) {
+ for (j = 0; j < h+1; ++j) {
+ for (i = 0; i < w+1; ++i) {
if (RIGHTOF_DOT(sstate->state, i, j) == LINE_YES) {
- merge_dots(sstate, i, j, i+1, j);
+ loop_found |= merge_dots(sstate, i, j, i+1, j);
edgecount++;
}
if (BELOW_DOT(sstate->state, i, j) == LINE_YES) {
- merge_dots(sstate, i, j, i, j+1);
+ loop_found |= merge_dots(sstate, i, j, i, j+1);
edgecount++;
}
@@ -1811,6 +1662,22 @@
}
}
+ for (i = 0; i < DOT_COUNT(sstate->state); ++i) {
+ dots_connected = sstate->looplen[dsf_canonify(sstate->dotdsf,i)];
+ if (dots_connected > 1)
+ shortest_chainlen = min(shortest_chainlen, dots_connected);
+ }
+
+ assert(sstate->solver_status == SOLVER_INCOMPLETE);
+
+ if (satclues == clues && shortest_chainlen == edgecount) {
+ sstate->solver_status = SOLVER_SOLVED;
+ /* This discovery clearly counts as progress, even if we haven't
+ * just added any lines or anything */
+ solver_progress = TRUE;
+ goto finished_loop_checking;
+ }
+
/*
* Now go through looking for LINE_UNKNOWN edges which
* connect two dots that are already in the same
@@ -1904,10 +1771,13 @@
* a reasonable deduction for the user to
* make.
*/
- if (d == 0)
+ if (d == 0) {
LV_RIGHTOF_DOT(sstate->state, i, j) = val;
- else
+ solver_progress = TRUE;
+ } else {
LV_BELOW_DOT(sstate->state, i, j) = val;
+ solver_progress = TRUE;
+ }
if (val == LINE_YES) {
sstate->solver_status = SOLVER_AMBIGUOUS;
goto finished_loop_checking;
@@ -1918,16 +1788,12 @@
finished_loop_checking:
- RETURN_IF_SOLVED;
+ if (!solver_progress ||
+ sstate->solver_status == SOLVER_SOLVED ||
+ sstate->solver_status == SOLVER_AMBIGUOUS) {
+ break;
+ }
}
-
- if (solver_states_equal(sstate, sstate_saved)) {
- /* Solver has stopped making progress so we terminate */
- free_solver_state(sstate_saved);
- break;
- }
-
- free_solver_state(sstate_saved);
}
sfree(dot_solved); sfree(square_solved);