ref: b25fcc3f2621b0b41f3ae7cdabe57ed07f62d2c2
parent: 08c8cf370ef7575a78988eb7d8f98c2a0bb92c63
author: Simon Tatham <anakin@pobox.com>
date: Sun Sep 11 08:40:49 EDT 2005
Solve function for Inertia, using what's essentially an approximate TSP algorithm. [originally from svn r6289]
--- a/inertia.c
+++ b/inertia.c
@@ -32,6 +32,7 @@
#define UNDRAWN '?'
#define DIRECTIONS 8
+#define DP1 (DIRECTIONS+1)
#define DX(dir) ( (dir) & 3 ? (((dir) & 7) > 4 ? -1 : +1) : 0 )
#define DY(dir) ( DX((dir)+6) )
@@ -56,6 +57,7 @@
COL_MINE,
COL_GEM,
COL_WALL,
+ COL_HINT,
NCOLOURS
};
@@ -63,6 +65,12 @@
int w, h;
};
+typedef struct soln {
+ int refcount;
+ int len;
+ unsigned char *list;
+} soln;
+
struct game_state {
game_params p;
int px, py;
@@ -70,6 +78,9 @@
char *grid;
int distance_moved;
int dead;
+ int cheated;
+ int solnpos;
+ soln *soln;
};
static game_params *default_params(void)
@@ -627,6 +638,10 @@
state->distance_moved = 0;
state->dead = FALSE;
+ state->cheated = FALSE;
+ state->solnpos = 0;
+ state->soln = NULL;
+
return state;
}
@@ -643,6 +658,11 @@
ret->distance_moved = state->distance_moved;
ret->dead = FALSE;
memcpy(ret->grid, state->grid, wh);
+ ret->cheated = state->cheated;
+ ret->soln = state->soln;
+ if (ret->soln)
+ ret->soln->refcount++;
+ ret->solnpos = state->solnpos;
return ret;
}
@@ -649,14 +669,739 @@
static void free_game(game_state *state)
{
+ if (state->soln && --state->soln->refcount == 0) {
+ sfree(state->soln->list);
+ sfree(state->soln);
+ }
sfree(state->grid);
sfree(state);
}
+/*
+ * Internal function used by solver.
+ */
+static int move_goes_to(int w, int h, char *grid, int x, int y, int d)
+{
+ int dr;
+
+ /*
+ * See where we'd get to if we made this move.
+ */
+ dr = -1; /* placate optimiser */
+ while (1) {
+ if (AT(w, h, grid, x+DX(d), y+DY(d)) == WALL) {
+ dr = DIRECTIONS; /* hit a wall, so end up stationary */
+ break;
+ }
+ x += DX(d);
+ y += DY(d);
+ if (AT(w, h, grid, x, y) == STOP) {
+ dr = DIRECTIONS; /* hit a stop, so end up stationary */
+ break;
+ }
+ if (AT(w, h, grid, x, y) == GEM) {
+ dr = d; /* hit a gem, so we're still moving */
+ break;
+ }
+ if (AT(w, h, grid, x, y) == MINE)
+ return -1; /* hit a mine, so move is invalid */
+ }
+ assert(dr >= 0);
+ return (y*w+x)*DP1+dr;
+}
+
+static int compare_integers(const void *av, const void *bv)
+{
+ const int *a = (const int *)av;
+ const int *b = (const int *)bv;
+ if (*a < *b)
+ return -1;
+ else if (*a > *b)
+ return +1;
+ else
+ return 0;
+}
+
static char *solve_game(game_state *state, game_state *currstate,
char *aux, char **error)
{
- return NULL;
+ int w = state->p.w, h = state->p.h, wh = w*h;
+ int *nodes, *nodeindex, *edges, *backedges, *edgei, *backedgei, *circuit;
+ int nedges;
+ int *dist, *dist2, *list;
+ int *unvisited;
+ int circuitlen, circuitsize;
+ int head, tail, pass, i, j, n, x, y, d, dd;
+ char *err, *soln, *p;
+
+ /*
+ * Solving Inertia is a question of first building up the graph
+ * of where you can get to from where, and secondly finding a
+ * tour of the graph which takes in every gem.
+ *
+ * This is of course a close cousin of the travelling salesman
+ * problem, which is NP-complete; so I rather doubt that any
+ * _optimal_ tour can be found in plausible time. Hence I'll
+ * restrict myself to merely finding a not-too-bad one.
+ *
+ * First construct the graph, by bfsing out move by move from
+ * the current player position. Graph vertices will be
+ * - every endpoint of a move (place the ball can be
+ * stationary)
+ * - every gem (place the ball can go through in motion).
+ * Vertices of this type have an associated direction, since
+ * if a gem can be collected by sliding through it in two
+ * different directions it doesn't follow that you can
+ * change direction at it.
+ *
+ * I'm going to refer to a non-directional vertex as
+ * (y*w+x)*DP1+DIRECTIONS, and a directional one as
+ * (y*w+x)*DP1+d.
+ */
+
+ /*
+ * nodeindex[] maps node codes as shown above to numeric
+ * indices in the nodes[] array.
+ */
+ nodeindex = snewn(DP1*wh, int);
+ for (i = 0; i < DP1*wh; i++)
+ nodeindex[i] = -1;
+
+ /*
+ * Do the bfs to find all the interesting graph nodes.
+ */
+ nodes = snewn(DP1*wh, int);
+ head = tail = 0;
+
+ nodes[tail] = (currstate->py * w + currstate->px) * DP1 + DIRECTIONS;
+ nodeindex[nodes[0]] = tail;
+ tail++;
+
+ while (head < tail) {
+ int nc = nodes[head++], nnc;
+
+ d = nc % DP1;
+
+ /*
+ * Plot all possible moves from this node. If the node is
+ * directed, there's only one.
+ */
+ for (dd = 0; dd < DIRECTIONS; dd++) {
+ x = nc / DP1;
+ y = x / w;
+ x %= w;
+
+ if (d < DIRECTIONS && d != dd)
+ continue;
+
+ nnc = move_goes_to(w, h, currstate->grid, x, y, dd);
+ if (nnc >= 0 && nnc != nc) {
+ if (nodeindex[nnc] < 0) {
+ nodes[tail] = nnc;
+ nodeindex[nnc] = tail;
+ tail++;
+ }
+ }
+ }
+ }
+ n = head;
+
+ /*
+ * Now we know how many nodes we have, allocate the edge array
+ * and go through setting up the edges.
+ */
+ edges = snewn(DIRECTIONS*n, int);
+ edgei = snewn(n+1, int);
+ nedges = 0;
+
+ for (i = 0; i < n; i++) {
+ int nc = nodes[i];
+
+ edgei[i] = nedges;
+
+ d = nc % DP1;
+ x = nc / DP1;
+ y = x / w;
+ x %= w;
+
+ for (dd = 0; dd < DIRECTIONS; dd++) {
+ int nnc;
+
+ if (d >= DIRECTIONS || d == dd) {
+ nnc = move_goes_to(w, h, currstate->grid, x, y, dd);
+
+ if (nnc >= 0 && nnc != nc)
+ edges[nedges++] = nodeindex[nnc];
+ }
+ }
+ }
+ edgei[n] = nedges;
+
+ /*
+ * Now set up the backedges array.
+ */
+ backedges = snewn(nedges, int);
+ backedgei = snewn(n+1, int);
+ for (i = j = 0; i < nedges; i++) {
+ while (j+1 < n && i >= edgei[j+1])
+ j++;
+ backedges[i] = edges[i] * n + j;
+ }
+ qsort(backedges, nedges, sizeof(int), compare_integers);
+ backedgei[0] = 0;
+ for (i = j = 0; i < nedges; i++) {
+ int k = backedges[i] / n;
+ backedges[i] %= n;
+ while (j < k)
+ backedgei[++j] = i;
+ }
+ backedgei[n] = nedges;
+
+ /*
+ * Set up the initial tour. At all times, our tour is a circuit
+ * of graph vertices (which may, and probably will often,
+ * repeat vertices). To begin with, it's got exactly one vertex
+ * in it, which is the player's current starting point.
+ */
+ circuitsize = 256;
+ circuit = snewn(circuitsize, int);
+ circuitlen = 0;
+ circuit[circuitlen++] = 0; /* node index 0 is the starting posn */
+
+ /*
+ * Track which gems are as yet unvisited.
+ */
+ unvisited = snewn(wh, int);
+ for (i = 0; i < wh; i++)
+ unvisited[i] = FALSE;
+ for (i = 0; i < wh; i++)
+ if (currstate->grid[i] == GEM)
+ unvisited[i] = TRUE;
+
+ /*
+ * Allocate space for doing bfses inside the main loop.
+ */
+ dist = snewn(n, int);
+ dist2 = snewn(n, int);
+ list = snewn(n, int);
+
+ err = NULL;
+ soln = NULL;
+
+ /*
+ * Now enter the main loop, in each iteration of which we
+ * extend the tour to take in an as yet uncollected gem.
+ */
+ while (1) {
+ int target, n1, n2, bestdist, extralen, targetpos;
+
+#ifdef TSP_DIAGNOSTICS
+ printf("circuit is");
+ for (i = 0; i < circuitlen; i++) {
+ int nc = nodes[circuit[i]];
+ printf(" (%d,%d,%d)", nc/DP1%w, nc/(DP1*w), nc%DP1);
+ }
+ printf("\n");
+ printf("moves are ");
+ x = nodes[circuit[0]] / DP1 % w;
+ y = nodes[circuit[0]] / DP1 / w;
+ for (i = 1; i < circuitlen; i++) {
+ int x2, y2, dx, dy;
+ if (nodes[circuit[i]] % DP1 != DIRECTIONS)
+ continue;
+ x2 = nodes[circuit[i]] / DP1 % w;
+ y2 = nodes[circuit[i]] / DP1 / w;
+ dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
+ dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
+ for (d = 0; d < DIRECTIONS; d++)
+ if (DX(d) == dx && DY(d) == dy)
+ printf("%c", "89632147"[d]);
+ x = x2;
+ y = y2;
+ }
+ printf("\n");
+#endif
+
+ /*
+ * First, start a pair of bfses at _every_ vertex currently
+ * in the tour, and extend them outwards to find the
+ * nearest as yet unreached gem vertex.
+ *
+ * This is largely a heuristic: we could pick _any_ doubly
+ * reachable node here and still get a valid tour as
+ * output. I hope that picking a nearby one will result in
+ * generally good tours.
+ */
+ for (pass = 0; pass < 2; pass++) {
+ int *ep = (pass == 0 ? edges : backedges);
+ int *ei = (pass == 0 ? edgei : backedgei);
+ int *dp = (pass == 0 ? dist : dist2);
+ head = tail = 0;
+ for (i = 0; i < n; i++)
+ dp[i] = -1;
+ for (i = 0; i < circuitlen; i++) {
+ int ni = circuit[i];
+ if (dp[ni] < 0) {
+ dp[ni] = 0;
+ list[tail++] = ni;
+ }
+ }
+ while (head < tail) {
+ int ni = list[head++];
+ for (i = ei[ni]; i < ei[ni+1]; i++) {
+ int ti = ep[i];
+ if (ti >= 0 && dp[ti] < 0) {
+ dp[ti] = dp[ni] + 1;
+ list[tail++] = ti;
+ }
+ }
+ }
+ }
+ /* Now find the nearest unvisited gem. */
+ bestdist = -1;
+ target = -1;
+ for (i = 0; i < n; i++) {
+ if (unvisited[nodes[i] / DP1] &&
+ dist[i] >= 0 && dist2[i] >= 0) {
+ int thisdist = dist[i] + dist2[i];
+ if (bestdist < 0 || bestdist > thisdist) {
+ bestdist = thisdist;
+ target = i;
+ }
+ }
+ }
+
+ if (target < 0) {
+ /*
+ * If we get to here, we haven't found a gem we can get
+ * at all, which means we terminate this loop.
+ */
+ break;
+ }
+
+ /*
+ * Now we have a graph vertex at list[tail-1] which is an
+ * unvisited gem. We want to add that vertex to our tour.
+ * So we run two more breadth-first searches: one starting
+ * from that vertex and following forward edges, and
+ * another starting from the same vertex and following
+ * backward edges. This allows us to determine, for each
+ * node on the current tour, how quickly we can get both to
+ * and from the target vertex from that node.
+ */
+#ifdef TSP_DIAGNOSTICS
+ printf("target node is %d (%d,%d,%d)\n", target, nodes[target]/DP1%w,
+ nodes[target]/DP1/w, nodes[target]%DP1);
+#endif
+
+ for (pass = 0; pass < 2; pass++) {
+ int *ep = (pass == 0 ? edges : backedges);
+ int *ei = (pass == 0 ? edgei : backedgei);
+ int *dp = (pass == 0 ? dist : dist2);
+
+ for (i = 0; i < n; i++)
+ dp[i] = -1;
+ head = tail = 0;
+
+ dp[target] = 0;
+ list[tail++] = target;
+
+ while (head < tail) {
+ int ni = list[head++];
+ for (i = ei[ni]; i < ei[ni+1]; i++) {
+ int ti = ep[i];
+ if (ti >= 0 && dp[ti] < 0) {
+ dp[ti] = dp[ni] + 1;
+/*printf("pass %d: set dist of vertex %d to %d (via %d)\n", pass, ti, dp[ti], ni);*/
+ list[tail++] = ti;
+ }
+ }
+ }
+ }
+
+ /*
+ * Now for every node n, dist[n] gives the length of the
+ * shortest path from the target vertex to n, and dist2[n]
+ * gives the length of the shortest path from n to the
+ * target vertex.
+ *
+ * Our next step is to search linearly along the tour to
+ * find the optimum place to insert a trip to the target
+ * vertex and back. Our two options are either
+ * (a) to find two adjacent vertices A,B in the tour and
+ * replace the edge A->B with the path A->target->B
+ * (b) to find a single vertex X in the tour and replace
+ * it with the complete round trip X->target->X.
+ * We do whichever takes the fewest moves.
+ */
+ n1 = n2 = -1;
+ bestdist = -1;
+ for (i = 0; i < circuitlen; i++) {
+ int thisdist;
+
+ /*
+ * Try a round trip from vertex i.
+ */
+ if (dist[circuit[i]] >= 0 &&
+ dist2[circuit[i]] >= 0) {
+ thisdist = dist[circuit[i]] + dist2[circuit[i]];
+ if (bestdist < 0 || thisdist < bestdist) {
+ bestdist = thisdist;
+ n1 = n2 = i;
+ }
+ }
+
+ /*
+ * Try a trip from vertex i via target to vertex i+1.
+ */
+ if (i+1 < circuitlen &&
+ dist2[circuit[i]] >= 0 &&
+ dist[circuit[i+1]] >= 0) {
+ thisdist = dist2[circuit[i]] + dist[circuit[i+1]];
+ if (bestdist < 0 || thisdist < bestdist) {
+ bestdist = thisdist;
+ n1 = i;
+ n2 = i+1;
+ }
+ }
+ }
+ if (bestdist < 0) {
+ /*
+ * We couldn't find a round trip taking in this gem _at
+ * all_. Give up.
+ */
+ err = "Unable to find a solution from this starting point";
+ break;
+ }
+#ifdef TSP_DIAGNOSTICS
+ printf("insertion point: n1=%d, n2=%d, dist=%d\n", n1, n2, bestdist);
+#endif
+
+#ifdef TSP_DIAGNOSTICS
+ printf("circuit before lengthening is");
+ for (i = 0; i < circuitlen; i++) {
+ printf(" %d", circuit[i]);
+ }
+ printf("\n");
+#endif
+
+ /*
+ * Now actually lengthen the tour to take in this round
+ * trip.
+ */
+ extralen = dist2[circuit[n1]] + dist[circuit[n2]];
+ if (n1 != n2)
+ extralen--;
+ circuitlen += extralen;
+ if (circuitlen >= circuitsize) {
+ circuitsize = circuitlen + 256;
+ circuit = sresize(circuit, circuitsize, int);
+ }
+ memmove(circuit + n2 + extralen, circuit + n2,
+ (circuitlen - n2 - extralen) * sizeof(int));
+ n2 += extralen;
+
+#ifdef TSP_DIAGNOSTICS
+ printf("circuit in middle of lengthening is");
+ for (i = 0; i < circuitlen; i++) {
+ printf(" %d", circuit[i]);
+ }
+ printf("\n");
+#endif
+
+ /*
+ * Find the shortest-path routes to and from the target,
+ * and write them into the circuit.
+ */
+ targetpos = n1 + dist2[circuit[n1]];
+ assert(targetpos - dist2[circuit[n1]] == n1);
+ assert(targetpos + dist[circuit[n2]] == n2);
+ for (pass = 0; pass < 2; pass++) {
+ int dir = (pass == 0 ? -1 : +1);
+ int *ep = (pass == 0 ? backedges : edges);
+ int *ei = (pass == 0 ? backedgei : edgei);
+ int *dp = (pass == 0 ? dist : dist2);
+ int nn = (pass == 0 ? n2 : n1);
+ int ni = circuit[nn], ti, dest = nn;
+
+ while (1) {
+ circuit[dest] = ni;
+ if (dp[ni] == 0)
+ break;
+ dest += dir;
+ ti = -1;
+/*printf("pass %d: looking at vertex %d\n", pass, ni);*/
+ for (i = ei[ni]; i < ei[ni+1]; i++) {
+ ti = ep[i];
+ if (ti >= 0 && dp[ti] == dp[ni] - 1)
+ break;
+ }
+ assert(i < ei[ni+1] && ti >= 0);
+ ni = ti;
+ }
+ }
+
+#ifdef TSP_DIAGNOSTICS
+ printf("circuit after lengthening is");
+ for (i = 0; i < circuitlen; i++) {
+ printf(" %d", circuit[i]);
+ }
+ printf("\n");
+#endif
+
+ /*
+ * Finally, mark all gems that the new piece of circuit
+ * passes through as visited.
+ */
+ for (i = n1; i <= n2; i++) {
+ int pos = nodes[circuit[i]] / DP1;
+ assert(pos >= 0 && pos < wh);
+ unvisited[pos] = FALSE;
+ }
+ }
+
+#ifdef TSP_DIAGNOSTICS
+ printf("before reduction, moves are ");
+ x = nodes[circuit[0]] / DP1 % w;
+ y = nodes[circuit[0]] / DP1 / w;
+ for (i = 1; i < circuitlen; i++) {
+ int x2, y2, dx, dy;
+ if (nodes[circuit[i]] % DP1 != DIRECTIONS)
+ continue;
+ x2 = nodes[circuit[i]] / DP1 % w;
+ y2 = nodes[circuit[i]] / DP1 / w;
+ dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
+ dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
+ for (d = 0; d < DIRECTIONS; d++)
+ if (DX(d) == dx && DY(d) == dy)
+ printf("%c", "89632147"[d]);
+ x = x2;
+ y = y2;
+ }
+ printf("\n");
+#endif
+
+ /*
+ * That's got a basic solution. Now optimise it by removing
+ * redundant sections of the circuit: it's entirely possible
+ * that a piece of circuit we carefully inserted at one stage
+ * to collect a gem has become pointless because the steps
+ * required to collect some _later_ gem necessarily passed
+ * through the same one.
+ *
+ * So first we go through and work out how many times each gem
+ * is collected. Then we look for maximal sections of circuit
+ * which are redundant in the sense that their removal would
+ * not reduce any gem's collection count to zero, and replace
+ * each one with a bfs-derived fastest path between their
+ * endpoints.
+ */
+ while (1) {
+ int oldlen = circuitlen;
+
+ for (i = 0; i < wh; i++)
+ unvisited[i] = 0;
+ for (i = 0; i < circuitlen; i++) {
+ int xy = nodes[circuit[i]] / DP1;
+ if (currstate->grid[xy] == GEM)
+ unvisited[xy]++;
+ }
+
+ /*
+ * If there's any gem we didn't end up visiting at all,
+ * give up.
+ */
+ for (i = 0; i < wh; i++) {
+ if (currstate->grid[i] == GEM && unvisited[i] == 0) {
+ err = "Unable to find a solution from this starting point";
+ break;
+ }
+ }
+ if (i < wh)
+ break;
+
+ for (i = j = 0; i < circuitlen; i++) {
+ int xy = nodes[circuit[i]] / DP1;
+ if (currstate->grid[xy] == GEM && unvisited[xy] > 1) {
+ unvisited[xy]--;
+ } else if (currstate->grid[xy] == GEM || i == circuitlen-1) {
+ /*
+ * circuit[i] collects a gem for the only time, or is
+ * the last node in the circuit. Therefore it cannot be
+ * removed; so we now want to replace the path from
+ * circuit[j] to circuit[i] with a bfs-shortest path.
+ */
+ int k, dest, ni, ti, thisdist;
+
+#ifdef TSP_DIAGNOSTICS
+ printf("optimising section from %d - %d\n", j, i);
+#endif
+
+ for (k = 0; k < n; k++)
+ dist[k] = -1;
+ head = tail = 0;
+
+ dist[circuit[j]] = 0;
+ list[tail++] = circuit[j];
+
+ while (head < tail && dist[circuit[i]] < 0) {
+ int ni = list[head++];
+ for (k = edgei[ni]; k < edgei[ni+1]; k++) {
+ int ti = edges[k];
+ if (ti >= 0 && dist[ti] < 0) {
+ dist[ti] = dist[ni] + 1;
+ list[tail++] = ti;
+ }
+ }
+ }
+
+ thisdist = dist[circuit[i]];
+ assert(thisdist >= 0 && thisdist <= i-j);
+
+ memmove(circuit+j+thisdist, circuit+i,
+ (circuitlen - i) * sizeof(int));
+ circuitlen -= i-j;
+ i = j + thisdist;
+ circuitlen += i-j;
+
+#ifdef TSP_DIAGNOSTICS
+ printf("new section runs from %d - %d\n", j, i);
+#endif
+
+ dest = i;
+ assert(dest >= 0);
+ ni = circuit[i];
+
+ while (1) {
+ /* printf("dest=%d circuitlen=%d ni=%d dist[ni]=%d\n", dest, circuitlen, ni, dist[ni]); */
+ circuit[dest] = ni;
+ if (dist[ni] == 0)
+ break;
+ dest--;
+ ti = -1;
+ for (k = backedgei[ni]; k < backedgei[ni+1]; k++) {
+ ti = backedges[k];
+ if (ti >= 0 && dist[ti] == dist[ni] - 1)
+ break;
+ }
+ assert(k < backedgei[ni+1] && ti >= 0);
+ ni = ti;
+ }
+
+ /*
+ * Now re-increment the visit counts for the new
+ * path.
+ */
+ while (++j < i) {
+ int xy = nodes[circuit[j]] / DP1;
+ if (currstate->grid[xy] == GEM)
+ unvisited[xy]++;
+ }
+
+#ifdef TSP_DIAGNOSTICS
+ printf("during reduction, circuit is");
+ for (k = 0; k < circuitlen; k++) {
+ int nc = nodes[circuit[k]];
+ printf(" (%d,%d,%d)", nc/DP1%w, nc/(DP1*w), nc%DP1);
+ }
+ printf("\n");
+ printf("moves are ");
+ x = nodes[circuit[0]] / DP1 % w;
+ y = nodes[circuit[0]] / DP1 / w;
+ for (k = 1; k < circuitlen; k++) {
+ int x2, y2, dx, dy;
+ if (nodes[circuit[k]] % DP1 != DIRECTIONS)
+ continue;
+ x2 = nodes[circuit[k]] / DP1 % w;
+ y2 = nodes[circuit[k]] / DP1 / w;
+ dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
+ dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
+ for (d = 0; d < DIRECTIONS; d++)
+ if (DX(d) == dx && DY(d) == dy)
+ printf("%c", "89632147"[d]);
+ x = x2;
+ y = y2;
+ }
+ printf("\n");
+#endif
+ }
+ }
+
+#ifdef TSP_DIAGNOSTICS
+ printf("after reduction, moves are ");
+ x = nodes[circuit[0]] / DP1 % w;
+ y = nodes[circuit[0]] / DP1 / w;
+ for (i = 1; i < circuitlen; i++) {
+ int x2, y2, dx, dy;
+ if (nodes[circuit[i]] % DP1 != DIRECTIONS)
+ continue;
+ x2 = nodes[circuit[i]] / DP1 % w;
+ y2 = nodes[circuit[i]] / DP1 / w;
+ dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
+ dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
+ for (d = 0; d < DIRECTIONS; d++)
+ if (DX(d) == dx && DY(d) == dy)
+ printf("%c", "89632147"[d]);
+ x = x2;
+ y = y2;
+ }
+ printf("\n");
+#endif
+
+ /*
+ * If we've managed an entire reduction pass and not made
+ * the solution any shorter, we're _really_ done.
+ */
+ if (circuitlen == oldlen)
+ break;
+ }
+
+ /*
+ * Encode the solution as a move string.
+ */
+ if (!err) {
+ soln = snewn(circuitlen+2, char);
+ p = soln;
+ *p++ = 'S';
+ x = nodes[circuit[0]] / DP1 % w;
+ y = nodes[circuit[0]] / DP1 / w;
+ for (i = 1; i < circuitlen; i++) {
+ int x2, y2, dx, dy;
+ if (nodes[circuit[i]] % DP1 != DIRECTIONS)
+ continue;
+ x2 = nodes[circuit[i]] / DP1 % w;
+ y2 = nodes[circuit[i]] / DP1 / w;
+ dx = (x2 > x ? +1 : x2 < x ? -1 : 0);
+ dy = (y2 > y ? +1 : y2 < y ? -1 : 0);
+ for (d = 0; d < DIRECTIONS; d++)
+ if (DX(d) == dx && DY(d) == dy) {
+ *p++ = '0' + d;
+ break;
+ }
+ assert(d < DIRECTIONS);
+ x = x2;
+ y = y2;
+ }
+ *p++ = '\0';
+ assert(p - soln < circuitlen+2);
+ }
+
+ sfree(list);
+ sfree(dist);
+ sfree(dist2);
+ sfree(unvisited);
+ sfree(circuit);
+ sfree(backedgei);
+ sfree(backedges);
+ sfree(edgei);
+ sfree(edges);
+ sfree(nodeindex);
+ sfree(nodes);
+
+ if (err)
+ *error = err;
+
+ return soln;
}
static char *game_text_format(game_state *state)
@@ -785,6 +1530,8 @@
dir = 1;
else if (button == (MOD_NUM_KEYPAD | '3'))
dir = 3;
+ else if (button == ' ' && state->soln && state->solnpos < state->soln->len)
+ dir = state->soln->list[state->solnpos];
if (dir < 0)
return NULL;
@@ -814,9 +1561,33 @@
static game_state *execute_move(game_state *state, char *move)
{
int w = state->p.w, h = state->p.h /*, wh = w*h */;
- int dir = atoi(move);
+ int dir;
game_state *ret;
+ if (*move == 'S') {
+ int len, i;
+ soln *sol;
+
+ /*
+ * This is a solve move, so we don't actually _change_ the
+ * grid but merely set up a stored solution path.
+ */
+ move++;
+ len = strlen(move);
+ sol = snew(soln);
+ sol->len = len;
+ sol->list = snewn(len, unsigned char);
+ for (i = 0; i < len; i++)
+ sol->list[i] = move[i] - '0';
+ ret = dup_game(state);
+ ret->cheated = TRUE;
+ ret->soln = sol;
+ ret->solnpos = 0;
+ sol->refcount = 1;
+ return ret;
+ }
+
+ dir = atoi(move);
if (dir < 0 || dir >= DIRECTIONS)
return NULL; /* huh? */
@@ -852,6 +1623,26 @@
break;
}
+ if (ret->soln) {
+ /*
+ * If this move is the correct next one in the stored
+ * solution path, advance solnpos.
+ */
+ if (ret->soln->list[ret->solnpos] == dir &&
+ ret->solnpos+1 < ret->soln->len) {
+ ret->solnpos++;
+ } else {
+ /*
+ * Otherwise, the user has strayed from the path, so
+ * the path is no longer valid.
+ */
+ ret->soln->refcount--;
+ assert(ret->soln->refcount > 0);/* `state' at least still exists */
+ ret->soln = NULL;
+ ret->solnpos = 0;
+ }
+ }
+
return ret;
}
@@ -913,6 +1704,10 @@
1 * ret[COL_HIGHLIGHT * 3 + i]) / 4;
}
+ ret[COL_HINT * 3 + 0] = 1.0F;
+ ret[COL_HINT * 3 + 1] = 1.0F;
+ ret[COL_HINT * 3 + 2] = 0.0F;
+
*ncolours = NCOLOURS;
return ret;
}
@@ -949,7 +1744,7 @@
}
static void draw_player(drawing *dr, game_drawstate *ds, int x, int y,
- int dead)
+ int dead, int hintdir)
{
if (dead) {
int coords[DIRECTIONS*4];
@@ -979,6 +1774,33 @@
draw_circle(dr, x + TILESIZE/2, y + TILESIZE/2,
TILESIZE/3, COL_PLAYER, COL_OUTLINE);
}
+
+ if (!dead && hintdir >= 0) {
+ float scale = (DX(hintdir) && DY(hintdir) ? 0.8F : 1.0F);
+ int ax = (TILESIZE*2/5) * scale * DX(hintdir);
+ int ay = (TILESIZE*2/5) * scale * DY(hintdir);
+ int px = -ay, py = ax;
+ int ox = x + TILESIZE/2, oy = y + TILESIZE/2;
+ int coords[14], *c;
+
+ c = coords;
+ *c++ = ox + px/9;
+ *c++ = oy + py/9;
+ *c++ = ox + px/9 + ax*2/3;
+ *c++ = oy + py/9 + ay*2/3;
+ *c++ = ox + px/3 + ax*2/3;
+ *c++ = oy + py/3 + ay*2/3;
+ *c++ = ox + ax;
+ *c++ = oy + ay;
+ *c++ = ox - px/3 + ax*2/3;
+ *c++ = oy - py/3 + ay*2/3;
+ *c++ = ox - px/9 + ax*2/3;
+ *c++ = oy - py/9 + ay*2/3;
+ *c++ = ox - px/9;
+ *c++ = oy - py/9;
+ draw_polygon(dr, coords, 7, COL_HINT, COL_OUTLINE);
+ }
+
draw_update(dr, x, y, TILESIZE, TILESIZE);
}
@@ -1204,12 +2026,19 @@
* shown between the collection of the last gem and the
* completion of the move animation that did it.)
*/
- if (state->dead && (!oldstate || oldstate->dead))
+ if (state->dead && (!oldstate || oldstate->dead)) {
sprintf(status, "DEAD!");
- else if (state->gems || (oldstate && oldstate->gems))
- sprintf(status, "Gems: %d", gems);
- else
+ } else if (state->gems || (oldstate && oldstate->gems)) {
+ if (state->cheated)
+ sprintf(status, "Auto-solver used. ");
+ else
+ *status = '\0';
+ sprintf(status + strlen(status), "Gems: %d", gems);
+ } else if (state->cheated) {
+ sprintf(status, "Auto-solved.");
+ } else {
sprintf(status, "COMPLETED!");
+ }
/* We subtract one from the visible death counter if we're still
* animating the move at the end of which the death took place. */
deaths = ui->deaths;
@@ -1241,7 +2070,10 @@
ds->pbgy = oy + ap * (ny - oy);
}
blitter_save(dr, ds->player_background, ds->pbgx, ds->pbgy);
- draw_player(dr, ds, ds->pbgx, ds->pbgy, (state->dead && !oldstate));
+ draw_player(dr, ds, ds->pbgx, ds->pbgy,
+ (state->dead && !oldstate),
+ (!oldstate && state->soln ?
+ state->soln->list[state->solnpos] : -1));
ds->player_bg_saved = TRUE;
}
@@ -1307,7 +2139,7 @@
new_game,
dup_game,
free_game,
- FALSE, solve_game,
+ TRUE, solve_game,
FALSE, game_text_format,
new_ui,
free_ui,
--- a/puzzles.but
+++ b/puzzles.but
@@ -1775,6 +1775,18 @@
the grid, the ball will begin a move in the general direction of
where you clicked.
+If you use the \q{Solve} function on this game, the program will
+compute a path through the grid which collects all the remaining
+gems and returns to the current position. A hint arrow will appear
+on the ball indicating the direction in which you should move to
+begin on this path. If you then move in that direction, the arrow
+will update to indicate the next direction on the path. You can also
+press Space to automatically move in the direction of the hint
+arrow. If you move in a different direction from the one shown by
+the arrow, the hint arrows will stop appearing because you have
+strayed from the provided path; you can then use \q{Solve} again to
+generate a new path if you want to.
+
All the actions described in \k{common-actions} are also available.
In particular, if you do run into a mine and die, you can use the
Undo function and resume playing from before the fatal move. The