shithub: puzzles

Download patch

ref: a8a903db475885c719bb242b669a2675e702ea68
parent: c5edffdd2c38080d86747e2dfc9c796665fa3c96
author: Simon Tatham <anakin@pobox.com>
date: Sat Jul 16 15:51:53 EDT 2005

New puzzle: `Untangle', cloned (with the addition of random grid
generation) from a simple but rather fun Flash game I saw this
morning.

Small infrastructure change for this puzzle: while most game
backends find the midend's assumption that Solve moves are never
animated to be a convenience absolving them of having to handle the
special case themselves, this one actually needs Solve to be
animated. Rather than break that convenience for the other puzzles,
I've introduced a flag bit (which I've shoved in mouse_priorities
for the moment, shamefully without changing its name).

[originally from svn r6097]

--- a/Recipe
+++ b/Recipe
@@ -20,9 +20,10 @@
 MINES    = mines tree234
 FLIP     = flip tree234
 PEGS     = pegs tree234
+UNTANGLE = untangle tree234
 
 ALL      = list NET NETSLIDE cube fifteen sixteen rect pattern solo twiddle
-         + MINES samegame FLIP guess PEGS dominosa
+         + MINES samegame FLIP guess PEGS dominosa UNTANGLE
 
 net      : [X] gtk COMMON NET
 netslide : [X] gtk COMMON NETSLIDE
@@ -39,6 +40,7 @@
 guess    : [X] gtk COMMON guess
 pegs     : [X] gtk COMMON PEGS
 dominosa : [X] gtk COMMON dominosa
+untangle : [X] gtk COMMON UNTANGLE
 
 # Auxiliary command-line programs.
 solosolver :    [U] solo[STANDALONE_SOLVER] malloc
@@ -66,6 +68,7 @@
 guess    : [G] WINDOWS COMMON guess
 pegs     : [G] WINDOWS COMMON PEGS
 dominosa : [G] WINDOWS COMMON dominosa
+untangle : [G] WINDOWS COMMON UNTANGLE
 
 # Mac OS X unified application containing all the puzzles.
 Puzzles  : [MX] osx osx.icns osx-info.plist COMMON ALL
@@ -157,7 +160,7 @@
 install:
 	for i in cube net netslide fifteen sixteen twiddle \
 	         pattern rect solo mines samegame flip guess \
-		 pegs dominosa; do \
+		 pegs dominosa untangle; do \
 		$(INSTALL_PROGRAM) -m 755 $$i $(DESTDIR)$(gamesdir)/$$i; \
 	done
 !end
--- a/list.c
+++ b/list.c
@@ -32,6 +32,7 @@
 extern const game sixteen;
 extern const game solo;
 extern const game twiddle;
+extern const game untangle;
 
 const game *gamelist[] = {
     &cube,
@@ -49,6 +50,7 @@
     &sixteen,
     &solo,
     &twiddle,
+    &untangle,
 };
 
 const int gamecount = lenof(gamelist);
--- a/midend.c
+++ b/midend.c
@@ -432,7 +432,7 @@
 {
     game_state *oldstate =
         me->ourgame->dup_game(me->states[me->statepos - 1].state);
-    int special = FALSE, gotspecial = FALSE, ret = 1;
+    int type = MOVE, gottype = FALSE, ret = 1;
     float anim_time;
     game_state *s;
     char *movestr;
@@ -450,8 +450,8 @@
 	} else if (button == 'u' || button == 'u' ||
 		   button == '\x1A' || button == '\x1F') {
 	    midend_stop_anim(me);
-	    special = special(me->states[me->statepos-1].movetype);
-	    gotspecial = TRUE;
+	    type = me->states[me->statepos-1].movetype;
+	    gottype = TRUE;
 	    if (!midend_undo(me))
 		goto done;
 	} else if (button == 'r' || button == 'R' ||
@@ -501,13 +501,14 @@
         }
     }
 
-    if (!gotspecial)
-        special = special(me->states[me->statepos-1].movetype);
+    if (!gottype)
+        type = me->states[me->statepos-1].movetype;
 
     /*
      * See if this move requires an animation.
      */
-    if (special) {
+    if (special(type) && !(type == SOLVE &&
+			   (me->ourgame->mouse_priorities & SOLVE_ANIMATES))) {
         anim_time = 0;
     } else {
         anim_time = me->ourgame->anim_length(oldstate,
@@ -1117,8 +1118,17 @@
         me->ourgame->changed_state(me->ui,
                                    me->states[me->statepos-2].state,
                                    me->states[me->statepos-1].state);
-    me->anim_time = 0.0;
-    midend_finish_move(me);
+    me->dir = +1;
+    if (me->ourgame->mouse_priorities & SOLVE_ANIMATES) {
+	me->oldstate = me->ourgame->dup_game(me->states[me->statepos-2].state);
+        me->anim_time =
+	    me->ourgame->anim_length(me->states[me->statepos-2].state,
+				     me->states[me->statepos-1].state,
+				     +1, me->ui);
+    } else {
+	me->anim_time = 0.0;
+	midend_finish_move(me);
+    }
     midend_redraw(me);
     midend_set_timer(me);
     return NULL;
--- a/puzzles.but
+++ b/puzzles.but
@@ -1243,6 +1243,37 @@
 can also speed up puzzle generation.
 
 
+\C{untangle} \i{Untangle}
+
+\cfg{winhelp-topic}{games.untangle}
+
+You are given a number of points, some of which have lines drawn
+between them. You can move the points about arbitrarily; your aim is
+to position the points so that no line crosses another.
+
+I originally saw this in the form of a Flash game called \i{Planarity}
+\k{Planarity}, written by John Tantalo.
+
+\B{Planarity} \W{http://home.cwru.edu/~jnt5/Planarity}\cw{http://home.cwru.edu/~jnt5/Planarity}
+
+\H{untangle-controls} \i{Untangle controls}
+
+\IM{Untangle controls} controls, for Untangle
+
+To move a point, click on it with the left mouse button and drag it
+into a new position.
+
+\H{untangle-parameters} \I{parameters, for Untangle}Untangle parameters
+
+There is only one parameter available from the \q{Custom...} option
+on the \q{Type} menu:
+
+\dt \e{Number of points}
+
+\dd Controls the size of the puzzle, by specifying the number of
+points in the generated graph.
+
+
 \A{licence} \I{MIT licence}\ii{Licence}
 
 This software is \i{copyright} 2004-2005 Simon Tatham.
--- a/puzzles.h
+++ b/puzzles.h
@@ -62,6 +62,10 @@
 /* Bit flags indicating mouse button priorities */
 #define BUTTON_BEATS(x,y) ( 1 << (((x)-LEFT_BUTTON)*3+(y)-LEFT_BUTTON) )
 
+/* Another random flag that goes in the mouse priorities section for want
+ * of a better place to put it */
+#define SOLVE_ANIMATES ( 1 << 9 )
+
 #define IGNOREARG(x) ( (x) = (x) )
 
 typedef struct frontend frontend;
--- /dev/null
+++ b/untangle.c
@@ -1,0 +1,1147 @@
+/*
+ * untangle.c: Game about planar graphs. You are given a graph
+ * represented by points and straight lines, with some lines
+ * crossing; your task is to drag the points into a configuration
+ * where none of the lines cross.
+ * 
+ * Cloned from a Flash game called `Planarity', by John Tantalo.
+ * <http://home.cwru.edu/~jnt5/Planarity> at the time of writing
+ * this. The Flash game had a fixed set of levels; my added value,
+ * as usual, is automatic generation of random games to order.
+ */
+
+/*
+ * TODO:
+ * 
+ *  - Docs and checklist etc
+ *  - Any way we can speed up redraws on GTK? Uck.
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+#include <ctype.h>
+#include <math.h>
+
+#include "puzzles.h"
+#include "tree234.h"
+
+#define CIRCLE_RADIUS 6
+#define DRAG_THRESHOLD (CIRCLE_RADIUS * 2)
+#define PREFERRED_TILESIZE 64
+
+#define FLASH_TIME 0.13F
+#define ANIM_TIME 0.13F
+#define SOLVEANIM_TIME 0.50F
+
+enum {
+    COL_BACKGROUND,
+    COL_LINE,
+    COL_OUTLINE,
+    COL_POINT,
+    COL_DRAGPOINT,
+    COL_NEIGHBOUR,
+    NCOLOURS
+};
+
+typedef struct point {
+    /*
+     * Points are stored using rational coordinates, with the same
+     * denominator for both coordinates.
+     */
+    int x, y, d;
+} point;
+
+typedef struct edge {
+    /*
+     * This structure is implicitly associated with a particular
+     * point set, so all it has to do is to store two point
+     * indices. It is required to store them in the order (lower,
+     * higher), i.e. a < b always.
+     */
+    int a, b;
+} edge;
+
+struct game_params {
+    int n;			       /* number of points */
+};
+
+struct graph {
+    int refcount;		       /* for deallocation */
+    tree234 *edges;		       /* stores `edge' structures */
+};
+
+struct game_state {
+    game_params params;
+    int w, h;			       /* extent of coordinate system only */
+    point *pts;
+    struct graph *graph;
+    int completed, cheated, just_solved;
+};
+
+static int edgecmpC(const void *av, const void *bv)
+{
+    const edge *a = (const edge *)av;
+    const edge *b = (const edge *)bv;
+
+    if (a->a < b->a)
+	return -1;
+    else if (a->a > b->a)
+	return +1;
+    else if (a->b < b->b)
+	return -1;
+    else if (a->b > b->b)
+	return +1;
+    return 0;
+}
+
+static int edgecmp(void *av, void *bv) { return edgecmpC(av, bv); }
+
+static game_params *default_params(void)
+{
+    game_params *ret = snew(game_params);
+
+    ret->n = 10;
+
+    return ret;
+}
+
+static int game_fetch_preset(int i, char **name, game_params **params)
+{
+    game_params *ret;
+    int n;
+    char buf[80];
+
+    switch (i) {
+      case 0: n = 6; break;
+      case 1: n = 10; break;
+      case 2: n = 15; break;
+      case 3: n = 20; break;
+      case 4: n = 25; break;
+      default: return FALSE;
+    }
+
+    sprintf(buf, "%d points", n);
+    *name = dupstr(buf);
+
+    *params = ret = snew(game_params);
+    ret->n = n;
+
+    return TRUE;
+}
+
+static void free_params(game_params *params)
+{
+    sfree(params);
+}
+
+static game_params *dup_params(game_params *params)
+{
+    game_params *ret = snew(game_params);
+    *ret = *params;		       /* structure copy */
+    return ret;
+}
+
+static void decode_params(game_params *params, char const *string)
+{
+    params->n = atoi(string);
+}
+
+static char *encode_params(game_params *params, int full)
+{
+    char buf[80];
+
+    sprintf(buf, "%d", params->n);
+
+    return dupstr(buf);
+}
+
+static config_item *game_configure(game_params *params)
+{
+    config_item *ret;
+    char buf[80];
+
+    ret = snewn(3, config_item);
+
+    ret[0].name = "Number of points";
+    ret[0].type = C_STRING;
+    sprintf(buf, "%d", params->n);
+    ret[0].sval = dupstr(buf);
+    ret[0].ival = 0;
+
+    ret[1].name = NULL;
+    ret[1].type = C_END;
+    ret[1].sval = NULL;
+    ret[1].ival = 0;
+
+    return ret;
+}
+
+static game_params *custom_params(config_item *cfg)
+{
+    game_params *ret = snew(game_params);
+
+    ret->n = atoi(cfg[0].sval);
+
+    return ret;
+}
+
+static char *validate_params(game_params *params, int full)
+{
+    if (params->n < 4)
+        return "Number of points must be at least four";
+    return NULL;
+}
+
+/*
+ * Determine whether the line segments between a1 and a2, and
+ * between b1 and b2, intersect. We count it as an intersection if
+ * any of the endpoints lies _on_ the other line.
+ */
+static int cross(point a1, point a2, point b1, point b2)
+{
+    int b1x, b1y, b2x, b2y, px, py, d1, d2, d3;
+
+    /*
+     * The condition for crossing is that b1 and b2 are on opposite
+     * sides of the line a1-a2, and vice versa. We determine this
+     * by taking the dot product of b1-a1 with a vector
+     * perpendicular to a2-a1, and similarly with b2-a1, and seeing
+     * if they have different signs.
+     */
+
+    /*
+     * Construct the vector b1-a1. We don't have to worry too much
+     * about the denominator, because we're only going to check the
+     * sign of this vector; we just need to get the numerator
+     * right.
+     */
+    b1x = b1.x * a1.d - a1.x * b1.d;
+    b1y = b1.y * a1.d - a1.y * b1.d;
+    /* Now construct b2-a1, and a vector perpendicular to a2-a1,
+     * in the same way. */
+    b2x = b2.x * a1.d - a1.x * b2.d;
+    b2y = b2.y * a1.d - a1.y * b2.d;
+    px = a1.y * a2.d - a2.y * a1.d;
+    py = a2.x * a1.d - a1.x * a2.d;
+    /* Take the dot products. */
+    d1 = b1x * px + b1y * py;
+    d2 = b2x * px + b2y * py;
+    /* If they have the same non-zero sign, the lines do not cross. */
+    if ((d1 > 0 && d2 > 0) || (d1 < 0 && d2 < 0))
+	return FALSE;
+
+    /*
+     * If the dot products are both exactly zero, then the two line
+     * segments are collinear. At this point the intersection
+     * condition becomes whether or not they overlap within their
+     * line.
+     */
+    if (d1 == 0 && d2 == 0) {
+	/* Construct the vector a2-a1. */
+	px = a2.x * a1.d - a1.x * a2.d;
+	py = a2.y * a1.d - a1.y * a2.d;
+	/* Determine the dot products of b1-a1 and b2-a1 with this. */
+	d1 = b1x * px + b1y * py;
+	d2 = b2x * px + b2y * py;
+	/* If they're both strictly negative, the lines do not cross. */
+	if (d1 < 0 && d2 < 0)
+	    return FALSE;
+	/* Otherwise, take the dot product of a2-a1 with itself. If
+	 * the other two dot products both exceed this, the lines do
+	 * not cross. */
+	d3 = px * px + py * py;
+	if (d1 > d3 && d2 > d3)
+	    return FALSE;
+    }
+
+    /*
+     * We've eliminated the only important special case, and we
+     * have determined that b1 and b2 are on opposite sides of the
+     * line a1-a2. Now do the same thing the other way round and
+     * we're done.
+     */
+    b1x = a1.x * b1.d - b1.x * a1.d;
+    b1y = a1.y * b1.d - b1.y * a1.d;
+    b2x = a2.x * b1.d - b1.x * a2.d;
+    b2y = a2.y * b1.d - b1.y * a2.d;
+    px = b1.y * b2.d - b2.y * b1.d;
+    py = b2.x * b1.d - b1.x * b2.d;
+    d1 = b1x * px + b1y * py;
+    d2 = b2x * px + b2y * py;
+    if ((d1 > 0 && d2 > 0) || (d1 < 0 && d2 < 0))
+	return FALSE;
+
+    /*
+     * The lines must cross.
+     */
+    return TRUE;
+}
+
+static unsigned long squarert(unsigned long n) {
+    unsigned long d, a, b, di;
+
+    d = n;
+    a = 0;
+    b = 1 << 30;		       /* largest available power of 4 */
+    do {
+        a >>= 1;
+        di = 2*a + b;
+        if (di <= d) {
+            d -= di;
+            a += b;
+        }
+        b >>= 2;
+    } while (b);
+
+    return a;
+}
+
+/*
+ * Our solutions are arranged on a square grid big enough that n
+ * points occupy about 1/POINTDENSITY of the grid.
+ */
+#define POINTDENSITY 3
+#define MAXDEGREE 4
+#define COORDLIMIT(n) squarert((n) * POINTDENSITY)
+
+static void addedge(tree234 *edges, int a, int b)
+{
+    edge *e = snew(edge);
+
+    assert(a != b);
+
+    e->a = min(a, b);
+    e->b = max(a, b);
+
+    add234(edges, e);
+}
+
+static int isedge(tree234 *edges, int a, int b)
+{
+    edge e;
+
+    assert(a != b);
+
+    e.a = min(a, b);
+    e.b = max(a, b);
+
+    return find234(edges, &e, NULL) != NULL;
+}
+
+typedef struct vertex {
+    int param;
+    int vindex;
+} vertex;
+
+static int vertcmpC(const void *av, const void *bv)
+{
+    const vertex *a = (vertex *)av;
+    const vertex *b = (vertex *)bv;
+
+    if (a->param < b->param)
+	return -1;
+    else if (a->param > b->param)
+	return +1;
+    else if (a->vindex < b->vindex)
+	return -1;
+    else if (a->vindex > b->vindex)
+	return +1;
+    return 0;
+}
+static int vertcmp(void *av, void *bv) { return vertcmpC(av, bv); }
+
+/*
+ * Construct point coordinates for n points arranged in a circle,
+ * within the bounding box (0,0) to (w,w).
+ */
+static void make_circle(point *pts, int n, int w)
+{
+    int d, r, c, i;
+
+    /*
+     * First, decide on a denominator. Although in principle it
+     * would be nice to set this really high so as to finely
+     * distinguish all the points on the circle, I'm going to set
+     * it at a fixed size to prevent integer overflow problems.
+     */
+    d = PREFERRED_TILESIZE;
+
+    /*
+     * Leave a little space outside the circle.
+     */
+    c = d * w / 2;
+    r = d * w * 3 / 7;
+
+    /*
+     * Place the points.
+     */
+    for (i = 0; i < n; i++) {
+	double angle = i * 2 * PI / n;
+	double x = r * sin(angle), y = - r * cos(angle);
+	pts[i].x = (int)(c + x + 0.5);
+	pts[i].y = (int)(c + y + 0.5);
+	pts[i].d = d;
+    }
+}
+
+static char *new_game_desc(game_params *params, random_state *rs,
+			   char **aux, int interactive)
+{
+    int n = params->n;
+    int w, h, i, j, k, m;
+    point *pts, *pts2;
+    int *tmp;
+    tree234 *edges, *vertices;
+    edge *e, *e2;
+    vertex *v, *vs, *vlist;
+    char *ret;
+
+    w = h = COORDLIMIT(n);
+
+    /*
+     * Choose n points from this grid.
+     */
+    pts = snewn(n, point);
+    tmp = snewn(w*h, int);
+    for (i = 0; i < w*h; i++)
+	tmp[i] = i;
+    shuffle(tmp, w*h, sizeof(*tmp), rs);
+    for (i = 0; i < n; i++) {
+	pts[i].x = tmp[i] % w;
+	pts[i].y = tmp[i] / w;
+	pts[i].d = 1;
+    }
+    sfree(tmp);
+
+    /*
+     * Now start adding edges between the points.
+     * 
+     * At all times, we attempt to add an edge to the lowest-degree
+     * vertex we currently have, and we try the other vertices as
+     * candidate second endpoints in order of distance from this
+     * one. We stop as soon as we find an edge which
+     * 
+     *  (a) does not increase any vertex's degree beyond MAXDEGREE
+     *  (b) does not cross any existing edges
+     *  (c) does not intersect any actual point.
+     */
+    vs = snewn(n, vertex);
+    vertices = newtree234(vertcmp);
+    for (i = 0; i < n; i++) {
+	v = vs + i;
+	v->param = 0;		       /* in this tree, param is the degree */
+	v->vindex = i;
+	add234(vertices, v);
+    }
+    edges = newtree234(edgecmp);
+    vlist = snewn(n, vertex);
+    while (1) {
+	int added = FALSE;
+
+	for (i = 0; i < n; i++) {
+	    v = index234(vertices, i);
+	    j = v->vindex;
+
+	    if (v->param >= MAXDEGREE)
+		break;		       /* nothing left to add! */
+
+	    /*
+	     * Sort the other vertices into order of their distance
+	     * from this one. Don't bother looking below i, because
+	     * we've already tried those edges the other way round.
+	     * Also here we rule out target vertices with too high
+	     * a degree, and (of course) ones to which we already
+	     * have an edge.
+	     */
+	    m = 0;
+	    for (k = i+1; k < n; k++) {
+		vertex *kv = index234(vertices, k);
+		int ki = kv->vindex;
+		int dx, dy;
+
+		if (kv->param >= MAXDEGREE || isedge(edges, ki, j))
+		    continue;
+
+		vlist[m].vindex = ki;
+		dx = pts[ki].x - pts[j].x;
+		dy = pts[ki].y - pts[j].y;
+		vlist[m].param = dx*dx + dy*dy;
+		m++;
+	    }
+
+	    qsort(vlist, m, sizeof(*vlist), vertcmpC);
+
+	    for (k = 0; k < m; k++) {
+		int p;
+		int ki = vlist[k].vindex;
+
+		/*
+		 * Check to see whether this edge intersects any
+		 * existing edge or point.
+		 */
+		for (p = 0; p < n; p++)
+		    if (p != ki && p != j && cross(pts[ki], pts[j],
+						   pts[p], pts[p]))
+			break;
+		if (p < n)
+		    continue;
+		for (p = 0; (e = index234(edges, p)) != NULL; p++)
+		    if (e->a != ki && e->a != j &&
+			e->b != ki && e->b != j &&
+			cross(pts[ki], pts[j], pts[e->a], pts[e->b]))
+			break;
+		if (e)
+		    continue;
+
+		/*
+		 * We're done! Add this edge, modify the degrees of
+		 * the two vertices involved, and break.
+		 */
+		addedge(edges, j, ki);
+		added = TRUE;
+		del234(vertices, vs+j);
+		vs[j].param++;
+		add234(vertices, vs+j);
+		del234(vertices, vs+ki);
+		vs[ki].param++;
+		add234(vertices, vs+ki);
+		break;
+	    }
+
+	    if (k < m)
+		break;
+	}
+
+	if (!added)
+	    break;		       /* we're done. */
+    }
+
+    /*
+     * That's our graph. Now shuffle the points, making sure that
+     * they come out with at least one crossed line when arranged
+     * in a circle (so that the puzzle isn't immediately solved!).
+     */
+    tmp = snewn(n, int);
+    for (i = 0; i < n; i++)
+	tmp[i] = i;
+    pts2 = snewn(n, point);
+    make_circle(pts2, n, w);
+    while (1) {
+	shuffle(tmp, n, sizeof(*tmp), rs);
+	for (i = 0; (e = index234(edges, i)) != NULL; i++) {
+	    for (j = i+1; (e2 = index234(edges, j)) != NULL; j++) {
+		if (e2->a == e->a || e2->a == e->b ||
+		    e2->b == e->a || e2->b == e->b)
+		    continue;
+		if (cross(pts2[tmp[e2->a]], pts2[tmp[e2->b]],
+			  pts2[tmp[e->a]], pts2[tmp[e->b]]))
+		    break;
+	    }
+	    if (e2)
+		break;
+	}
+	if (e)
+	    break;		       /* we've found a crossing */
+    }
+
+    /*
+     * We're done. Now encode the graph in a string format. Let's
+     * use a comma-separated list of dash-separated vertex number
+     * pairs, numbered from zero. We'll sort the list to prevent
+     * side channels.
+     */
+    ret = NULL;
+    {
+	char *sep;
+	char buf[80];
+	int retlen;
+	edge *ea;
+
+	retlen = 0;
+	m = count234(edges);
+	ea = snewn(m, edge);
+	for (i = 0; (e = index234(edges, i)) != NULL; i++) {
+	    assert(i < m);
+	    ea[i].a = min(tmp[e->a], tmp[e->b]);
+	    ea[i].b = max(tmp[e->a], tmp[e->b]);
+	    retlen += 1 + sprintf(buf, "%d-%d", ea[i].a, ea[i].b);
+	}
+	assert(i == m);
+	qsort(ea, m, sizeof(*ea), edgecmpC);
+
+	ret = snewn(retlen, char);
+	sep = "";
+	k = 0;
+
+	for (i = 0; i < m; i++) {
+	    k += sprintf(ret + k, "%s%d-%d", sep, ea[i].a, ea[i].b);
+	    sep = ",";
+	}
+	assert(k < retlen);
+
+	sfree(ea);
+    }
+
+    /*
+     * Encode the solution we started with as an aux_info string.
+     */
+    {
+	char buf[80];
+	char *auxstr;
+	int auxlen;
+
+	auxlen = 2;		       /* leading 'S' and trailing '\0' */
+	for (i = 0; i < n; i++) {
+	    j = tmp[i];
+	    pts2[j] = pts[i];
+	    if (pts2[j].d & 1) {
+		pts2[j].x *= 2;
+		pts2[j].y *= 2;
+		pts2[j].d *= 2;
+	    }
+	    pts2[j].x += pts2[j].d / 2;
+	    pts2[j].y += pts2[j].d / 2;
+	    auxlen += sprintf(buf, ";P%d:%d,%d/%d", i,
+			      pts2[j].x, pts2[j].y, pts2[j].d);
+	}
+	k = 0;
+	auxstr = snewn(auxlen, char);
+	auxstr[k++] = 'S';
+	for (i = 0; i < n; i++)
+	    k += sprintf(auxstr+k, ";P%d:%d,%d/%d", i,
+			 pts2[i].x, pts2[i].y, pts2[i].d);
+	assert(k < auxlen);
+	*aux = auxstr;
+    }
+    sfree(pts2);
+
+    sfree(tmp);
+    sfree(vlist);
+    freetree234(vertices);
+    sfree(vs);
+    while ((e = delpos234(edges, 0)) != NULL)
+	sfree(e);
+    freetree234(edges);
+    sfree(pts);
+
+    return ret;
+}
+
+static char *validate_desc(game_params *params, char *desc)
+{
+    int a, b;
+
+    while (*desc) {
+	a = atoi(desc);
+	if (a < 0 || a >= params->n)
+	    return "Number out of range in game description";
+	while (*desc && isdigit((unsigned char)*desc)) desc++;
+	if (*desc != '-')
+	    return "Expected '-' after number in game description";
+	desc++;			       /* eat dash */
+	b = atoi(desc);
+	if (b < 0 || b >= params->n)
+	    return "Number out of range in game description";
+	while (*desc && isdigit((unsigned char)*desc)) desc++;
+	if (*desc) {
+	    if (*desc != ',')
+		return "Expected ',' after number in game description";
+	    desc++;		       /* eat comma */
+	}
+    }
+
+    return NULL;
+}
+
+static game_state *new_game(midend_data *me, game_params *params, char *desc)
+{
+    int n = params->n;
+    game_state *state = snew(game_state);
+    int a, b;
+
+    state->params = *params;
+    state->w = state->h = COORDLIMIT(n);
+    state->pts = snewn(n, point);
+    make_circle(state->pts, n, state->w);
+    state->graph = snew(struct graph);
+    state->graph->refcount = 1;
+    state->graph->edges = newtree234(edgecmp);
+    state->completed = state->cheated = state->just_solved = FALSE;
+
+    while (*desc) {
+	a = atoi(desc);
+	assert(a >= 0 && a < params->n);
+	while (*desc && isdigit((unsigned char)*desc)) desc++;
+	assert(*desc == '-');
+	desc++;			       /* eat dash */
+	b = atoi(desc);
+	assert(b >= 0 && b < params->n);
+	while (*desc && isdigit((unsigned char)*desc)) desc++;
+	if (*desc) {
+	    assert(*desc == ',');
+	    desc++;		       /* eat comma */
+	}
+	addedge(state->graph->edges, a, b);
+    }
+
+    return state;
+}
+
+static game_state *dup_game(game_state *state)
+{
+    int n = state->params.n;
+    game_state *ret = snew(game_state);
+
+    ret->params = state->params;
+    ret->w = state->w;
+    ret->h = state->h;
+    ret->pts = snewn(n, point);
+    memcpy(ret->pts, state->pts, n * sizeof(point));
+    ret->graph = state->graph;
+    ret->graph->refcount++;
+    ret->completed = state->completed;
+    ret->cheated = state->cheated;
+    ret->just_solved = state->just_solved;
+
+    return ret;
+}
+
+static void free_game(game_state *state)
+{
+    if (--state->graph->refcount <= 0) {
+	edge *e;
+	while ((e = delpos234(state->graph->edges, 0)) != NULL)
+	    sfree(e);
+	freetree234(state->graph->edges);
+	sfree(state->graph);
+    }
+    sfree(state->pts);
+    sfree(state);
+}
+
+static char *solve_game(game_state *state, game_state *currstate,
+			char *aux, char **error)
+{
+    if (!aux) {
+	*error = "Solution not known for this puzzle";
+	return NULL;
+    }
+
+    return dupstr(aux);
+}
+
+static char *game_text_format(game_state *state)
+{
+    return NULL;
+}
+
+struct game_ui {
+    int dragpoint;		       /* point being dragged; -1 if none */
+    point newpoint;		       /* where it's been dragged to so far */
+    int just_dragged;		       /* reset in game_changed_state */
+    int just_moved;		       /* _set_ in game_changed_state */
+    float anim_length;
+};
+
+static game_ui *new_ui(game_state *state)
+{
+    game_ui *ui = snew(game_ui);
+    ui->dragpoint = -1;
+    ui->just_moved = ui->just_dragged = FALSE;
+    return ui;
+}
+
+static void free_ui(game_ui *ui)
+{
+    sfree(ui);
+}
+
+static char *encode_ui(game_ui *ui)
+{
+    return NULL;
+}
+
+static void decode_ui(game_ui *ui, char *encoding)
+{
+}
+
+static void game_changed_state(game_ui *ui, game_state *oldstate,
+                               game_state *newstate)
+{
+    ui->dragpoint = -1;
+    ui->just_moved = ui->just_dragged;
+    ui->just_dragged = FALSE;
+}
+
+struct game_drawstate {
+    int tilesize;
+};
+
+static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
+			    int x, int y, int button)
+{
+    int n = state->params.n;
+
+    if (button == LEFT_BUTTON) {
+	int i, best, bestd;
+
+	/*
+	 * Begin drag. We drag the vertex _nearest_ to the pointer,
+	 * just in case one is nearly on top of another and we want
+	 * to drag the latter. However, we drag nothing at all if
+	 * the nearest vertex is outside DRAG_THRESHOLD.
+	 */
+	best = -1;
+	bestd = 0;
+
+	for (i = 0; i < n; i++) {
+	    int px = state->pts[i].x * ds->tilesize / state->pts[i].d;
+	    int py = state->pts[i].y * ds->tilesize / state->pts[i].d;
+	    int dx = px - x;
+	    int dy = py - y;
+	    int d = dx*dx + dy*dy;
+
+	    if (best == -1 || bestd > d) {
+		best = i;
+		bestd = d;
+	    }
+	}
+
+	if (bestd <= DRAG_THRESHOLD * DRAG_THRESHOLD) {
+	    ui->dragpoint = best;
+	    ui->newpoint.x = x;
+	    ui->newpoint.y = y;
+	    ui->newpoint.d = ds->tilesize;
+	    return "";
+	}
+
+    } else if (button == LEFT_DRAG && ui->dragpoint >= 0) {
+	ui->newpoint.x = x;
+	ui->newpoint.y = y;
+	ui->newpoint.d = ds->tilesize;
+	return "";
+    } else if (button == LEFT_RELEASE && ui->dragpoint >= 0) {
+	int p = ui->dragpoint;
+	char buf[80];
+
+	ui->dragpoint = -1;	       /* terminate drag, no matter what */
+
+	/*
+	 * First, see if we're within range. The user can cancel a
+	 * drag by dragging the point right off the window.
+	 */
+	if (ui->newpoint.x < 0 || ui->newpoint.x >= state->w*ui->newpoint.d ||
+	    ui->newpoint.y < 0 || ui->newpoint.y >= state->h*ui->newpoint.d)
+	    return "";
+
+	/*
+	 * We aren't cancelling the drag. Construct a move string
+	 * indicating where this point is going to.
+	 */
+	sprintf(buf, "P%d:%d,%d/%d", p,
+		ui->newpoint.x, ui->newpoint.y, ui->newpoint.d);
+	ui->just_dragged = TRUE;
+	return dupstr(buf);
+    }
+
+    return NULL;
+}
+
+static game_state *execute_move(game_state *state, char *move)
+{
+    int n = state->params.n;
+    int p, x, y, d, k;
+    game_state *ret = dup_game(state);
+
+    ret->just_solved = FALSE;
+
+    while (*move) {
+	if (*move == 'S') {
+	    move++;
+	    if (*move == ';') move++;
+	    ret->cheated = ret->just_solved = TRUE;
+	}
+	if (*move == 'P' &&
+	    sscanf(move+1, "%d:%d,%d/%d%n", &p, &x, &y, &d, &k) == 4 &&
+	    p >= 0 && p < n && d > 0) {
+	    ret->pts[p].x = x;
+	    ret->pts[p].y = y;
+	    ret->pts[p].d = d;
+
+	    move += k+1;
+	    if (*move == ';') move++;
+	} else {
+	    free_game(ret);
+	    return NULL;
+	}
+    }
+
+    /*
+     * Check correctness: for every pair of edges, see whether they
+     * cross.
+     */
+    if (!ret->completed) {
+	int i, j;
+	edge *e, *e2;
+
+	for (i = 0; (e = index234(ret->graph->edges, i)) != NULL; i++) {
+	    for (j = i+1; (e2 = index234(ret->graph->edges, j)) != NULL; j++) {
+		if (e2->a == e->a || e2->a == e->b ||
+		    e2->b == e->a || e2->b == e->b)
+		    continue;
+		if (cross(ret->pts[e2->a], ret->pts[e2->b],
+			  ret->pts[e->a], ret->pts[e->b]))
+		    break;
+	    }
+	    if (e2)
+		break;
+	}
+
+	/*
+	 * e == NULL if we've gone through all the edge pairs
+	 * without finding a crossing.
+	 */
+	ret->completed = (e == NULL);
+    }
+
+    return ret;
+}
+
+/* ----------------------------------------------------------------------
+ * Drawing routines.
+ */
+
+static void game_compute_size(game_params *params, int tilesize,
+			      int *x, int *y)
+{
+    *x = *y = COORDLIMIT(params->n) * tilesize;
+}
+
+static void game_set_size(game_drawstate *ds, game_params *params,
+			  int tilesize)
+{
+    ds->tilesize = tilesize;
+}
+
+static float *game_colours(frontend *fe, game_state *state, int *ncolours)
+{
+    float *ret = snewn(3 * NCOLOURS, float);
+
+    frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
+
+    ret[COL_LINE * 3 + 0] = 0.0F;
+    ret[COL_LINE * 3 + 1] = 0.0F;
+    ret[COL_LINE * 3 + 2] = 0.0F;
+
+    ret[COL_OUTLINE * 3 + 0] = 0.0F;
+    ret[COL_OUTLINE * 3 + 1] = 0.0F;
+    ret[COL_OUTLINE * 3 + 2] = 0.0F;
+
+    ret[COL_POINT * 3 + 0] = 0.0F;
+    ret[COL_POINT * 3 + 1] = 0.0F;
+    ret[COL_POINT * 3 + 2] = 1.0F;
+
+    ret[COL_DRAGPOINT * 3 + 0] = 1.0F;
+    ret[COL_DRAGPOINT * 3 + 1] = 1.0F;
+    ret[COL_DRAGPOINT * 3 + 2] = 1.0F;
+
+    ret[COL_NEIGHBOUR * 3 + 0] = 1.0F;
+    ret[COL_NEIGHBOUR * 3 + 1] = 0.0F;
+    ret[COL_NEIGHBOUR * 3 + 2] = 0.0F;
+
+    *ncolours = NCOLOURS;
+    return ret;
+}
+
+static game_drawstate *game_new_drawstate(game_state *state)
+{
+    struct game_drawstate *ds = snew(struct game_drawstate);
+
+    ds->tilesize = 0;
+
+    return ds;
+}
+
+static void game_free_drawstate(game_drawstate *ds)
+{
+    sfree(ds);
+}
+
+static point mix(point a, point b, float distance)
+{
+    point ret;
+
+    ret.d = a.d * b.d;
+    ret.x = a.x * b.d + distance * (b.x * a.d - a.x * b.d);
+    ret.y = a.y * b.d + distance * (b.y * a.d - a.y * b.d);
+
+    return ret;
+}
+
+static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
+			game_state *state, int dir, game_ui *ui,
+			float animtime, float flashtime)
+{
+    int w, h;
+    edge *e;
+    int i, j;
+    int bg;
+
+    /*
+     * There's no terribly sensible way to do partial redraws of
+     * this game, so I'm going to have to resort to redrawing the
+     * whole thing every time.
+     */
+
+    bg = (flashtime != 0 ? COL_DRAGPOINT : COL_BACKGROUND);
+    game_compute_size(&state->params, ds->tilesize, &w, &h);
+    draw_rect(fe, 0, 0, w, h, bg);
+
+    /*
+     * Draw the edges.
+     */
+
+    for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++) {
+	point p1, p2;
+	int x1, y1, x2, y2;
+
+	p1 = state->pts[e->a];
+	p2 = state->pts[e->b];
+	if (ui->dragpoint == e->a)
+	    p1 = ui->newpoint;
+	else if (ui->dragpoint == e->b)
+	    p2 = ui->newpoint;
+
+	if (oldstate) {
+	    p1 = mix(oldstate->pts[e->a], p1, animtime / ui->anim_length);
+	    p2 = mix(oldstate->pts[e->b], p2, animtime / ui->anim_length);
+	}
+
+	x1 = p1.x * ds->tilesize / p1.d;
+	y1 = p1.y * ds->tilesize / p1.d;
+	x2 = p2.x * ds->tilesize / p2.d;
+	y2 = p2.y * ds->tilesize / p2.d;
+
+	draw_line(fe, x1, y1, x2, y2, COL_LINE);
+    }
+
+    /*
+     * Draw the points.
+     * 
+     * When dragging, we should not only vary the colours, but
+     * leave the point being dragged until last.
+     */
+    for (j = 0; j < 3; j++) {
+	int thisc = (j == 0 ? COL_POINT :
+		     j == 1 ? COL_NEIGHBOUR : COL_DRAGPOINT);
+	for (i = 0; i < state->params.n; i++) {
+	    int x, y, c;
+	    point p = state->pts[i];
+
+	    if (ui->dragpoint == i) {
+		p = ui->newpoint;
+		c = COL_DRAGPOINT;
+	    } else if (ui->dragpoint >= 0 &&
+		       isedge(state->graph->edges, ui->dragpoint, i)) {
+		c = COL_NEIGHBOUR;
+	    } else {
+		c = COL_POINT;
+	    }
+
+	    if (oldstate)
+		p = mix(oldstate->pts[i], p, animtime / ui->anim_length);
+
+	    if (c == thisc) {
+		x = p.x * ds->tilesize / p.d;
+		y = p.y * ds->tilesize / p.d;
+
+#ifdef VERTEX_NUMBERS
+		draw_circle(fe, x, y, DRAG_THRESHOLD, bg, bg);
+		{
+		    char buf[80];
+		    sprintf(buf, "%d", i);
+		    draw_text(fe, x, y, FONT_VARIABLE, DRAG_THRESHOLD*3/2,
+			      ALIGN_VCENTRE|ALIGN_HCENTRE, c, buf);
+		}
+#else
+		draw_circle(fe, x, y, CIRCLE_RADIUS, c, COL_OUTLINE);
+#endif
+	    }
+	}
+    }
+
+    draw_update(fe, 0, 0, w, h);
+}
+
+static float game_anim_length(game_state *oldstate, game_state *newstate,
+			      int dir, game_ui *ui)
+{
+    if (ui->just_moved)
+	return 0.0F;
+    if ((dir < 0 ? oldstate : newstate)->just_solved)
+	ui->anim_length = SOLVEANIM_TIME;
+    else
+	ui->anim_length = ANIM_TIME;
+    return ui->anim_length;
+}
+
+static float game_flash_length(game_state *oldstate, game_state *newstate,
+			       int dir, game_ui *ui)
+{
+    if (!oldstate->completed && newstate->completed &&
+	!oldstate->cheated && !newstate->cheated)
+        return FLASH_TIME;
+    return 0.0F;
+}
+
+static int game_wants_statusbar(void)
+{
+    return FALSE;
+}
+
+static int game_timing_state(game_state *state, game_ui *ui)
+{
+    return TRUE;
+}
+
+#ifdef COMBINED
+#define thegame untangle
+#endif
+
+const struct game thegame = {
+    "Untangle", "games.untangle",
+    default_params,
+    game_fetch_preset,
+    decode_params,
+    encode_params,
+    free_params,
+    dup_params,
+    TRUE, game_configure, custom_params,
+    validate_params,
+    new_game_desc,
+    validate_desc,
+    new_game,
+    dup_game,
+    free_game,
+    TRUE, solve_game,
+    FALSE, game_text_format,
+    new_ui,
+    free_ui,
+    encode_ui,
+    decode_ui,
+    game_changed_state,
+    interpret_move,
+    execute_move,
+    PREFERRED_TILESIZE, game_compute_size, game_set_size,
+    game_colours,
+    game_new_drawstate,
+    game_free_drawstate,
+    game_redraw,
+    game_anim_length,
+    game_flash_length,
+    game_wants_statusbar,
+    FALSE, game_timing_state,
+    SOLVE_ANIMATES,		       /* mouse_priorities */
+};