ref: 94b36c11e00bb740813506b0d3911f90f1829941
parent: 6992530a8514f88238fd6f8c508f54b058ee3f19
author: Simon Tatham <anakin@pobox.com>
date: Thu Sep 1 07:57:56 EDT 2005
James H has implemented a new `Tricky' difficulty level in Light Up: a non-recursive level above Easy, which therefore moves the recursive Hard mode further up still. Play-testing suggests that in fact Tricky is often _harder_ than the old Hard mode, since the latter had limited depth of recursion and would therefore spot complex deductions only if it happened to start a recursion on the right square; Tricky may be limited in the sophistication of its complex deductions, but it never misses one, so its puzzles tend to be hard all over. Also in this checkin, a new source file `nullfe.c', containing all the annoying stub functions required to make command-line solvers link successfully. James wrote this for (the new) lightupsolver, and I've used it to simplify the other stand-alone solvers. [originally from svn r6254]
--- a/Recipe
+++ b/Recipe
@@ -25,10 +25,11 @@
SLANT = slant dsf
MAP = map dsf
LOOPY = loopy tree234 dsf
+LIGHTUP = lightup combi
ALL = list NET NETSLIDE cube fifteen sixteen rect pattern solo twiddle
+ MINES samegame FLIP guess PEGS dominosa UNTANGLE blackbox SLANT
- + lightup MAP LOOPY inertia
+ + LIGHTUP MAP LOOPY inertia
GTK = gtk printing ps
@@ -50,24 +51,28 @@
untangle : [X] GTK COMMON UNTANGLE
blackbox : [X] GTK COMMON blackbox
slant : [X] GTK COMMON SLANT
-lightup : [X] GTK COMMON lightup
+lightup : [X] GTK COMMON LIGHTUP
map : [X] GTK COMMON MAP
loopy : [X] GTK COMMON LOOPY
inertia : [X] GTK COMMON inertia
# Auxiliary command-line programs.
-solosolver : [U] solo[STANDALONE_SOLVER] malloc
-patternsolver : [U] pattern[STANDALONE_SOLVER] malloc
-mineobfusc : [U] mines[STANDALONE_OBFUSCATOR] malloc random tree234 misc
-slantsolver : [U] slant[STANDALONE_SOLVER] dsf malloc
-mapsolver : [U] map[STANDALONE_SOLVER] dsf random misc malloc m.lib
+STANDALONE = nullfe random misc malloc
-solosolver : [C] solo[STANDALONE_SOLVER] malloc
-patternsolver : [C] pattern[STANDALONE_SOLVER] malloc
-mineobfusc : [C] mines[STANDALONE_OBFUSCATOR] malloc random tree234 misc
-slantsolver : [C] slant[STANDALONE_SOLVER] dsf malloc
-mapsolver : [C] map[STANDALONE_SOLVER] dsf random misc malloc
+solosolver : [U] solo[STANDALONE_SOLVER] STANDALONE
+patternsolver : [U] pattern[STANDALONE_SOLVER] STANDALONE
+mineobfusc : [U] mines[STANDALONE_OBFUSCATOR] tree234 STANDALONE
+slantsolver : [U] slant[STANDALONE_SOLVER] dsf STANDALONE
+mapsolver : [U] map[STANDALONE_SOLVER] dsf STANDALONE m.lib
+lightupsolver : [U] lightup[STANDALONE_SOLVER] combi STANDALONE
+solosolver : [C] solo[STANDALONE_SOLVER] STANDALONE
+patternsolver : [C] pattern[STANDALONE_SOLVER] STANDALONE
+mineobfusc : [C] mines[STANDALONE_OBFUSCATOR] tree234 STANDALONE
+slantsolver : [C] slant[STANDALONE_SOLVER] dsf STANDALONE
+mapsolver : [C] map[STANDALONE_SOLVER] dsf STANDALONE
+lightupsolver : [C] lightup[STANDALONE_SOLVER] combi STANDALONE
+
# The Windows Net shouldn't be called `net.exe' since Windows
# already has a reasonably important utility program by that name!
netgame : [G] WINDOWS COMMON NET
@@ -88,7 +93,7 @@
untangle : [G] WINDOWS COMMON UNTANGLE
blackbox : [G] WINDOWS COMMON blackbox
slant : [G] WINDOWS COMMON SLANT
-lightup : [G] WINDOWS COMMON lightup
+lightup : [G] WINDOWS COMMON LIGHTUP
map : [G] WINDOWS COMMON MAP
loopy : [G] WINDOWS COMMON LOOPY
inertia : [G] WINDOWS COMMON inertia
--- /dev/null
+++ b/combi.c
@@ -1,0 +1,110 @@
+#include <assert.h>
+#include <string.h>
+
+#include "puzzles.h"
+
+/* horrific and doesn't check overflow. */
+static long factx(long x, long y)
+{
+ long acc = 1, i;
+
+ for (i = y; i <= x; i++)
+ acc *= i;
+ return acc;
+}
+
+void reset_combi(combi_ctx *combi)
+{
+ int i;
+ combi->nleft = combi->total;
+ for (i = 0; i < combi->r; i++)
+ combi->a[i] = i;
+}
+
+combi_ctx *new_combi(int r, int n)
+{
+ long nfr, nrf;
+ combi_ctx *combi;
+
+ assert(r <= n);
+ assert(n >= 1);
+
+ combi = snew(combi_ctx);
+ memset(combi, 0, sizeof(combi_ctx));
+ combi->r = r;
+ combi->n = n;
+
+ combi->a = snewn(r, int);
+ memset(combi->a, 0, r * sizeof(int));
+
+ nfr = factx(n, r+1);
+ nrf = factx(n-r, 1);
+ combi->total = (int)(nfr / nrf);
+
+ reset_combi(combi);
+ return combi;
+}
+
+/* returns NULL when we're done otherwise returns input. */
+combi_ctx *next_combi(combi_ctx *combi)
+{
+ int i = combi->r - 1, j;
+
+ if (combi->nleft == combi->total)
+ goto done;
+ else if (combi->nleft <= 0)
+ return NULL;
+
+ while (combi->a[i] == combi->n - combi->r + i)
+ i--;
+ combi->a[i] += 1;
+ for (j = i+1; j < combi->r; j++)
+ combi->a[j] = combi->a[i] + j - i;
+
+ done:
+ combi->nleft--;
+ return combi;
+}
+
+void free_combi(combi_ctx *combi)
+{
+ sfree(combi->a);
+ sfree(combi);
+}
+
+/* compile this with:
+ * gcc -o combi.exe -DSTANDALONE_COMBI_TEST combi.c malloc.c
+ */
+#ifdef STANDALONE_COMBI_TEST
+
+#include <stdio.h>
+
+void fatal(char *fmt, ...)
+{
+ abort();
+}
+
+int main(int argc, char *argv[])
+{
+ combi_ctx *c;
+ int i, r, n;
+
+ if (argc < 3) {
+ fprintf(stderr, "Usage: combi R N\n");
+ exit(1);
+ }
+
+ r = atoi(argv[1]); n = atoi(argv[2]);
+ c = new_combi(r, n);
+ printf("combi %d of %d, %d elements.\n", c->r, c->n, c->total);
+
+ while (next_combi(c)) {
+ for (i = 0; i < c->r; i++) {
+ printf("%d ", c->a[i]);
+ }
+ printf("\n");
+ }
+ free_combi(c);
+}
+
+#endif
--- a/lightup.c
+++ b/lightup.c
@@ -11,6 +11,20 @@
#include "puzzles.h"
+/*
+ * In standalone solver mode, `verbose' is a variable which can be
+ * set by command-line option; in debugging mode it's simply always
+ * true.
+ */
+#if defined STANDALONE_SOLVER
+#define SOLVER_DIAGNOSTICS
+int verbose = 0;
+#undef debug
+#define debug(x) printf x
+#elif defined SOLVER_DIAGNOSTICS
+#define verbose 2
+#endif
+
/* --- Constants, structure definitions, etc. --- */
#define PREFERRED_TILE_SIZE 32
@@ -36,11 +50,13 @@
enum { SYMM_NONE, SYMM_REF2, SYMM_ROT2, SYMM_REF4, SYMM_ROT4, SYMM_MAX };
+#define DIFFCOUNT 2
+
struct game_params {
int w, h;
int blackpc; /* %age of black squares */
int symm;
- int recurse;
+ int difficulty; /* 0 to DIFFCOUNT */
};
#define F_BLACK 1
@@ -125,14 +141,17 @@
const struct game_params lightup_presets[] = {
{ 7, 7, 20, SYMM_ROT4, 0 },
{ 7, 7, 20, SYMM_ROT4, 1 },
+ { 7, 7, 20, SYMM_ROT4, 2 },
{ 10, 10, 20, SYMM_ROT2, 0 },
{ 10, 10, 20, SYMM_ROT2, 1 },
#ifdef SLOW_SYSTEM
{ 12, 12, 20, SYMM_ROT2, 0 },
- { 12, 12, 20, SYMM_ROT2, 1 }
+ { 12, 12, 20, SYMM_ROT2, 1 },
#else
+ { 10, 10, 20, SYMM_ROT2, 2 },
{ 14, 14, 20, SYMM_ROT2, 0 },
- { 14, 14, 20, SYMM_ROT2, 1 }
+ { 14, 14, 20, SYMM_ROT2, 1 },
+ { 14, 14, 20, SYMM_ROT2, 2 }
#endif
};
@@ -157,7 +176,9 @@
*params = ret;
sprintf(buf, "%dx%d %s",
- ret->w, ret->h, ret->recurse ? "hard" : "easy");
+ ret->w, ret->h,
+ ret->difficulty == 2 ? "hard" :
+ ret->difficulty == 1 ? "tricky" : "easy");
*name = dupstr(buf);
return TRUE;
@@ -195,11 +216,16 @@
string++;
EATNUM(params->symm);
}
- params->recurse = 0;
+ params->difficulty = 0;
+ /* cope with old params */
if (*string == 'r') {
- params->recurse = 1;
+ params->difficulty = 2;
string++;
}
+ if (*string == 'd') {
+ string++;
+ EATNUM(params->difficulty);
+ }
}
static char *encode_params(game_params *params, int full)
@@ -207,10 +233,10 @@
char buf[80];
if (full) {
- sprintf(buf, "%dx%db%ds%d%s",
+ sprintf(buf, "%dx%db%ds%dd%d",
params->w, params->h, params->blackpc,
params->symm,
- params->recurse ? "r" : "");
+ params->difficulty);
} else {
sprintf(buf, "%dx%d", params->w, params->h);
}
@@ -251,8 +277,8 @@
ret[4].name = "Difficulty";
ret[4].type = C_CHOICES;
- ret[4].sval = ":Easy:Hard";
- ret[4].ival = params->recurse;
+ ret[4].sval = ":Easy:Tricky:Hard";
+ ret[4].ival = params->difficulty;
ret[5].name = NULL;
ret[5].type = C_END;
@@ -270,7 +296,7 @@
ret->h = atoi(cfg[1].sval);
ret->blackpc = atoi(cfg[2].sval);
ret->symm = cfg[3].ival;
- ret->recurse = cfg[4].ival;
+ ret->difficulty = cfg[4].ival;
return ret;
}
@@ -287,7 +313,9 @@
return "4-fold symmetry is only available with square grids";
}
if (params->symm < 0 || params->symm >= SYMM_MAX)
- return "Unknown symmetry type";
+ return "Unknown symmetry type";
+ if (params->difficulty < 0 || params->difficulty > DIFFCOUNT)
+ return "Unknown difficulty level";
}
return NULL;
}
@@ -336,7 +364,6 @@
sfree(state);
}
-#ifdef DIAGNOSTICS
static void debug_state(game_state *state)
{
int x, y;
@@ -356,9 +383,9 @@
else if (GRID(state, flags, x, y) & F_IMPOSSIBLE)
c = 'X';
}
- printf("%c", (int)c);
+ debug(("%c", (int)c));
}
- printf(" ");
+ debug((" "));
for (x = 0; x < state->w; x++) {
if (GRID(state, flags, x, y) & F_BLACK)
c = '#';
@@ -366,13 +393,11 @@
c = (GRID(state, flags, x, y) & F_LIGHT) ? 'A' : 'a';
c += GRID(state, lights, x, y);
}
- printf("%c", (int)c);
+ debug(("%c", (int)c));
}
- printf("\n");
+ debug(("\n"));
}
- printf("\n");
}
-#endif
/* --- Game completion test routines. --- */
@@ -574,8 +599,8 @@
GRID(state,flags,
state->w/2 + wodd - 1, state->h/2 + hodd - 1) |= F_BLACK;
-#ifdef DIAGNOSTICS
- debug_state(state);
+#ifdef SOLVER_DIAGNOSTICS
+ if (verbose) debug_state(state);
#endif
}
@@ -679,7 +704,7 @@
/* If we're not lighting any lights ourself, don't remove anything. */
n = 0;
FOREACHLIT(&lld, if (GRID(state,flags,lx,ly) & F_LIGHT) { n += 1; } );
- if (n == 0) continue;
+ if (n == 0) continue; /* [1] */
/* Check whether removing lights we're lighting would cause anything
* to go dark. */
@@ -697,8 +722,11 @@
}
assert(grid_lit(state));
}
- /* if we got here, we've somehow removed all our lights and still have overlaps. */
- assert(!"Shouldn't get here!");
+ /* could get here if the line at [1] continue'd out of the loop. */
+ if (grid_overlap(state)) {
+ debug_state(state);
+ assert(!"place_lights failed to resolve overlapping lights!");
+ }
}
/* Fills in all black squares with numbers of adjacent lights. */
@@ -749,9 +777,10 @@
FOREACHLIT(&lld, { tsl_callback(state, lx, ly, &sx, &sy, &n); });
if (n == 1) {
set_light(state, sx, sy, 1);
-#ifdef SOLVE_DIAGNOSTICS
- printf("(%d,%d) can only be lit from (%d,%d); setting to LIGHT\n",
- ox,oy,sx,sy);
+#ifdef SOLVER_DIAGNOSTICS
+ debug(("(%d,%d) can only be lit from (%d,%d); setting to LIGHT\n",
+ ox,oy,sx,sy));
+ if (verbose) debug_state(state);
#endif
return 1;
}
@@ -765,6 +794,13 @@
return (lights > 0) ? 0 : 1;
}
+static int could_place_light_xy(game_state *state, int x, int y)
+{
+ int lights = GRID(state,lights,x,y);
+ unsigned int flags = GRID(state,flags,x,y);
+ return (could_place_light(flags, lights)) ? 1 : 0;
+}
+
/* For a given number square, determine whether we have enough info
* to unambiguously place its lights. */
static int try_solve_number(game_state *state, int nx, int ny,
@@ -799,10 +835,6 @@
if (nl == 0) {
/* we have placed all lights we need to around here; all remaining
* surrounds are therefore IMPOSSIBLE. */
-#ifdef SOLVE_DIAGNOSTICS
- printf("Setting remaining surrounds to (%d,%d) IMPOSSIBLE.\n",
- nx,ny);
-#endif
GRID(state,flags,nx,ny) |= F_NUMBERUSED;
for (i = 0; i < s.npoints; i++) {
if (!(s.points[i].f & F_MARK)) {
@@ -810,12 +842,13 @@
ret = 1;
}
}
- } else if (nl == ns) {
- /* we have as many lights to place as spaces; fill them all. */
-#ifdef SOLVE_DIAGNOSTICS
- printf("Setting all remaining surrounds to (%d,%d) LIGHT.\n",
+#ifdef SOLVER_DIAGNOSTICS
+ printf("Clue at (%d,%d) full; setting unlit to IMPOSSIBLE.\n",
nx,ny);
+ if (verbose) debug_state(state);
#endif
+ } else if (nl == ns) {
+ /* we have as many lights to place as spaces; fill them all. */
GRID(state,flags,nx,ny) |= F_NUMBERUSED;
for (i = 0; i < s.npoints; i++) {
if (!(s.points[i].f & F_MARK)) {
@@ -823,24 +856,373 @@
ret = 1;
}
}
+#ifdef SOLVER_DIAGNOSTICS
+ printf("Clue at (%d,%d) trivial; setting unlit to LIGHT.\n",
+ nx,ny);
+ if (verbose) debug_state(state);
+#endif
}
return ret;
}
+struct setscratch {
+ int x, y;
+ int n;
+};
+
+#define SCRATCHSZ (state->w+state->h)
+
+/* New solver algorithm: overlapping sets can add IMPOSSIBLE flags.
+ * Algorithm thanks to Simon:
+ *
+ * (a) Any square where you can place a light has a set of squares
+ * which would become non-lights as a result. (This includes
+ * squares lit by the first square, and can also include squares
+ * adjacent to the same clue square if the new light is the last
+ * one around that clue.) Call this MAKESDARK(x,y) with (x,y) being
+ * the square you place a light.
+
+ * (b) Any unlit square has a set of squares on which you could place
+ * a light to illuminate it. (Possibly including itself, of
+ * course.) This set of squares has the property that _at least
+ * one_ of them must contain a light. Sets of this type also arise
+ * from clue squares. Call this MAKESLIGHT(x,y), again with (x,y)
+ * the square you would place a light.
+
+ * (c) If there exists (dx,dy) and (lx,ly) such that MAKESDARK(dx,dy) is
+ * a superset of MAKESLIGHT(lx,ly), this implies that placing a light at
+ * (dx,dy) would either leave no remaining way to illuminate a certain
+ * square, or would leave no remaining way to fulfill a certain clue
+ * (at lx,ly). In either case, a light can be ruled out at that position.
+ *
+ * So, we construct all possible MAKESLIGHT sets, both from unlit squares
+ * and clue squares, and then we look for plausible MAKESDARK sets that include
+ * our (lx,ly) to see if we can find a (dx,dy) to rule out. By the time we have
+ * constructed the MAKESLIGHT set we don't care about (lx,ly), just the set
+ * members.
+ *
+ * Once we have such a set, Simon came up with a Cunning Plan to find
+ * the most sensible MAKESDARK candidate:
+ *
+ * (a) for each square S in your set X, find all the squares which _would_
+ * rule it out. That means any square which would light S, plus
+ * any square adjacent to the same clue square as S (provided
+ * that clue square has only one remaining light to be placed).
+ * It's not hard to make this list. Don't do anything with this
+ * data at the moment except _count_ the squares.
+
+ * (b) Find the square S_min in the original set which has the
+ * _smallest_ number of other squares which would rule it out.
+
+ * (c) Find all the squares that rule out S_min (it's probably
+ * better to recompute this than to have stored it during step
+ * (a), since the CPU requirement is modest but the storage
+ * cost would get ugly.) For each of these squares, see if it
+ * rules out everything else in the set X. Any which does can
+ * be marked as not-a-light.
+ *
+ */
+
+typedef void (*trl_cb)(game_state *state, int dx, int dy,
+ struct setscratch *scratch, int n, void *ctx);
+
+static void try_rule_out(game_state *state, int x, int y,
+ struct setscratch *scratch, int n,
+ trl_cb cb, void *ctx);
+
+static void trl_callback_search(game_state *state, int dx, int dy,
+ struct setscratch *scratch, int n, void *ignored)
+{
+ int i;
+
+#ifdef SOLVER_DIAGNOSTICS
+ if (verbose) debug(("discount cb: light at (%d,%d)\n", dx, dy));
+#endif
+
+ for (i = 0; i < n; i++) {
+ if (dx == scratch[i].x && dy == scratch[i].y) {
+ scratch[i].n = 1;
+ return;
+ }
+ }
+}
+
+static void trl_callback_discount(game_state *state, int dx, int dy,
+ struct setscratch *scratch, int n, void *ctx)
+{
+ int *didsth = (int *)ctx;
+ int i;
+
+ if (GRID(state,flags,dx,dy) & F_IMPOSSIBLE) {
+#ifdef SOLVER_DIAGNOSTICS
+ debug(("Square at (%d,%d) already impossible.\n", dx,dy));
+#endif
+ return;
+ }
+
+ /* Check whether a light at (dx,dy) rules out everything
+ * in scratch, and mark (dx,dy) as IMPOSSIBLE if it does.
+ * We can use try_rule_out for this as well, as the set of
+ * squares which would rule out (x,y) is the same as the
+ * set of squares which (x,y) would rule out. */
+
+#ifdef SOLVER_DIAGNOSTICS
+ if (verbose) debug(("Checking whether light at (%d,%d) rules out everything in scratch.\n", dx, dy));
+#endif
+
+ for (i = 0; i < n; i++)
+ scratch[i].n = 0;
+ try_rule_out(state, dx, dy, scratch, n, trl_callback_search, NULL);
+ for (i = 0; i < n; i++) {
+ if (scratch[i].n == 0) return;
+ }
+ /* The light ruled out everything in scratch. Yay. */
+ GRID(state,flags,dx,dy) |= F_IMPOSSIBLE;
+#ifdef SOLVER_DIAGNOSTICS
+ debug(("Set reduction discounted square at (%d,%d):\n", dx,dy));
+ if (verbose) debug_state(state);
+#endif
+
+ *didsth = 1;
+}
+
+static void trl_callback_incn(game_state *state, int dx, int dy,
+ struct setscratch *scratch, int n, void *ctx)
+{
+ struct setscratch *s = (struct setscratch *)ctx;
+ s->n++;
+}
+
+static void try_rule_out(game_state *state, int x, int y,
+ struct setscratch *scratch, int n,
+ trl_cb cb, void *ctx)
+{
+ /* XXX Find all the squares which would rule out (x,y); anything
+ * that would light it as well as squares adjacent to same clues
+ * as X assuming that clue only has one remaining light.
+ * Call the callback with each square. */
+ ll_data lld;
+ surrounds s, ss;
+ int i, j, curr_lights, tot_lights;
+
+ /* Find all squares that would rule out a light at (x,y) and call trl_cb
+ * with them: anything that would light (x,y)... */
+
+ list_lights(state, x, y, 0, &lld);
+ FOREACHLIT(&lld, { if (could_place_light_xy(state, lx, ly)) { cb(state, lx, ly, scratch, n, ctx); } });
+
+ /* ... as well as any empty space (that isn't x,y) next to any clue square
+ * next to (x,y) that only has one light left to place. */
+
+ get_surrounds(state, x, y, &s);
+ for (i = 0; i < s.npoints; i++) {
+ if (!GRID(state,flags,s.points[i].x,s.points[i].y) & F_NUMBERED)
+ continue;
+ /* we have an adjacent clue square; find /it's/ surrounds
+ * and count the remaining lights it needs. */
+ get_surrounds(state,s.points[i].x,s.points[i].y,&ss);
+ curr_lights = 0;
+ for (j = 0; j < ss.npoints; j++) {
+ if (GRID(state,flags,ss.points[j].x,ss.points[j].y) & F_LIGHT)
+ curr_lights++;
+ }
+ tot_lights = GRID(state, lights, s.points[i].x, s.points[i].y);
+ /* We have a clue with tot_lights to fill, and curr_lights currently
+ * around it. If adding a light at (x,y) fills up the clue (i.e.
+ * curr_lights + 1 = tot_lights) then we need to discount all other
+ * unlit squares around the clue. */
+ if ((curr_lights + 1) == tot_lights) {
+ for (j = 0; j < ss.npoints; j++) {
+ int lx = ss.points[j].x, ly = ss.points[j].y;
+ if (lx == x && ly == y) continue;
+ if (could_place_light_xy(state, lx, ly))
+ cb(state, lx, ly, scratch, n, ctx);
+ }
+ }
+ }
+}
+
+#ifdef SOLVER_DIAGNOSTICS
+static void debug_scratch(const char *msg, struct setscratch *scratch, int n)
+{
+ int i;
+ debug(("%s scratch (%d elements):\n", msg, n));
+ for (i = 0; i < n; i++) {
+ debug((" (%d,%d) n%d\n", scratch[i].x, scratch[i].y, scratch[i].n));
+ }
+}
+#endif
+
+static int discount_set(game_state *state,
+ struct setscratch *scratch, int n)
+{
+ int i, besti, bestn, didsth = 0;
+
+#ifdef SOLVER_DIAGNOSTICS
+ if (verbose > 1) debug_scratch("discount_set", scratch, n);
+#endif
+ if (n == 0) return 0;
+
+ for (i = 0; i < n; i++) {
+ try_rule_out(state, scratch[i].x, scratch[i].y, scratch, n,
+ trl_callback_incn, (void*)&(scratch[i]));
+ }
+#ifdef SOLVER_DIAGNOSTICS
+ if (verbose > 1) debug_scratch("discount_set after count", scratch, n);
+#endif
+
+ besti = -1; bestn = SCRATCHSZ;
+ for (i = 0; i < n; i++) {
+ if (scratch[i].n < bestn) {
+ bestn = scratch[i].n;
+ besti = i;
+ }
+ }
+#ifdef SOLVER_DIAGNOSTICS
+ if (verbose > 1) debug(("best square (%d,%d) with n%d.\n",
+ scratch[besti].x, scratch[besti].y, scratch[besti].n));
+#endif
+ try_rule_out(state, scratch[besti].x, scratch[besti].y, scratch, n,
+ trl_callback_discount, (void*)&didsth);
+#ifdef SOLVER_DIAGNOSTICS
+ if (didsth) debug((" [from square (%d,%d)]\n",
+ scratch[besti].x, scratch[besti].y));
+#endif
+
+ return didsth;
+}
+
+static void discount_clear(game_state *state, struct setscratch *scratch, int *n)
+{
+ *n = 0;
+ memset(scratch, 0, SCRATCHSZ * sizeof(struct setscratch));
+}
+
+static void unlit_cb(game_state *state, int lx, int ly,
+ struct setscratch *scratch, int *n)
+{
+ if (could_place_light_xy(state, lx, ly)) {
+ scratch[*n].x = lx; scratch[*n].y = ly; (*n)++;
+ }
+}
+
+/* Construct a MAKESLIGHT set from an unlit square. */
+static int discount_unlit(game_state *state, int x, int y,
+ struct setscratch *scratch)
+{
+ ll_data lld;
+ int n, didsth;
+
+#ifdef SOLVER_DIAGNOSTICS
+ if (verbose) debug(("Trying to discount for unlit square at (%d,%d).\n", x, y));
+ if (verbose > 1) debug_state(state);
+#endif
+
+ discount_clear(state, scratch, &n);
+
+ list_lights(state, x, y, 1, &lld);
+ FOREACHLIT(&lld, { unlit_cb(state, lx, ly, scratch, &n); });
+ didsth = discount_set(state, scratch, n);
+#ifdef SOLVER_DIAGNOSTICS
+ if (didsth) debug((" [from unlit square at (%d,%d)].\n", x, y));
+#endif
+ return didsth;
+
+}
+
+/* Construct a series of MAKESLIGHT sets from a clue square.
+ * for a clue square with N remaining spaces that must contain M lights, every
+ * subset of size N-M+1 of those N spaces forms such a set.
+ */
+
+static int discount_clue(game_state *state, int x, int y,
+ struct setscratch *scratch)
+{
+ int slen, m = GRID(state, lights, x, y), n, i, didsth = 0, lights;
+ unsigned int flags;
+ surrounds s, sempty;
+ combi_ctx *combi;
+
+ if (m == 0) return 0;
+
+#ifdef SOLVER_DIAGNOSTICS
+ if (verbose) debug(("Trying to discount for sets at clue (%d,%d).\n", x, y));
+ if (verbose > 1) debug_state(state);
+#endif
+
+ /* m is no. of lights still to place; starts off at the clue value
+ * and decreases when we find a light already down.
+ * n is no. of spaces left; starts off at 0 and goes up when we find
+ * a plausible space. */
+
+ get_surrounds(state, x, y, &s);
+ memset(&sempty, 0, sizeof(surrounds));
+ for (i = 0; i < s.npoints; i++) {
+ int lx = s.points[i].x, ly = s.points[i].y;
+ flags = GRID(state,flags,lx,ly);
+ lights = GRID(state,lights,lx,ly);
+
+ if (flags & F_LIGHT) m--;
+
+ if (could_place_light(flags, lights)) {
+ sempty.points[sempty.npoints].x = lx;
+ sempty.points[sempty.npoints].y = ly;
+ sempty.npoints++;
+ }
+ }
+ n = sempty.npoints; /* sempty is now a surrounds of only blank squares. */
+ if (n == 0) return 0; /* clue is full already. */
+
+ if (m < 0 || m > n) return 0; /* become impossible. */
+
+ combi = new_combi(n - m + 1, n);
+ while (next_combi(combi)) {
+ discount_clear(state, scratch, &slen);
+ for (i = 0; i < combi->r; i++) {
+ scratch[slen].x = sempty.points[combi->a[i]].x;
+ scratch[slen].y = sempty.points[combi->a[i]].y;
+ slen++;
+ }
+ if (discount_set(state, scratch, slen)) didsth = 1;
+ }
+ free_combi(combi);
+#ifdef SOLVER_DIAGNOSTICS
+ if (didsth) debug((" [from clue at (%d,%d)].\n", x, y));
+#endif
+ return didsth;
+}
+
+#define F_SOLVE_FORCEUNIQUE 1
+#define F_SOLVE_DISCOUNTSETS 2
+#define F_SOLVE_ALLOWRECURSE 4
+
+static unsigned int flags_from_difficulty(int difficulty)
+{
+ unsigned int sflags = F_SOLVE_FORCEUNIQUE;
+ assert(difficulty <= DIFFCOUNT);
+ if (difficulty >= 1) sflags |= F_SOLVE_DISCOUNTSETS;
+ if (difficulty >= 2) sflags |= F_SOLVE_ALLOWRECURSE;
+ return sflags;
+}
+
+#define MAXRECURSE 5
+
static int solve_sub(game_state *state,
- int forceunique, int maxrecurse, int depth,
+ unsigned int solve_flags, int depth,
int *maxdepth)
{
unsigned int flags;
int x, y, didstuff, ncanplace, lights;
- int bestx, besty, n, bestn, copy_soluble, self_soluble, ret;
+ int bestx, besty, n, bestn, copy_soluble, self_soluble, ret, maxrecurse = 0;
game_state *scopy;
ll_data lld;
+ struct setscratch *sscratch = NULL;
-#ifdef SOLVE_DIAGNOSTICS
+#ifdef SOLVER_DIAGNOSTICS
printf("solve_sub: depth = %d\n", depth);
#endif
if (maxdepth && *maxdepth < depth) *maxdepth = depth;
+ if (solve_flags & F_SOLVE_ALLOWRECURSE) maxrecurse = MAXRECURSE;
while (1) {
if (grid_overlap(state)) {
@@ -848,10 +1230,10 @@
* (assuming a soluble grid). However, if we're trying to solve
* from a half-completed *incorrect* grid this might occur; we
* just return the 'no solutions' code in this case. */
- return 0;
+ ret = 0; goto done;
}
- if (grid_correct(state)) return 1;
+ if (grid_correct(state)) { ret = 1; goto done; }
ncanplace = 0;
didstuff = 0;
@@ -868,12 +1250,42 @@
}
}
if (didstuff) continue;
- if (!ncanplace) return 0; /* nowhere to put a light, puzzle in unsoluble. */
+ if (!ncanplace) {
+ /* nowhere to put a light, puzzle is unsoluble. */
+ ret = 0; goto done;
+ }
+ if (solve_flags & F_SOLVE_DISCOUNTSETS) {
+ if (!sscratch) sscratch = snewn(SCRATCHSZ, struct setscratch);
+ /* Try a more cunning (and more involved) way... more details above. */
+ for (x = 0; x < state->w; x++) {
+ for (y = 0; y < state->h; y++) {
+ flags = GRID(state,flags,x,y);
+ lights = GRID(state,lights,x,y);
+
+ if (!(flags & F_BLACK) && lights == 0) {
+ if (discount_unlit(state, x, y, sscratch)) {
+ didstuff = 1;
+ goto reduction_success;
+ }
+ } else if (flags & F_NUMBERED) {
+ if (discount_clue(state, x, y, sscratch)) {
+ didstuff = 1;
+ goto reduction_success;
+ }
+ }
+ }
+ }
+ }
+reduction_success:
+ if (didstuff) continue;
+
/* We now have to make a guess; we have places to put lights but
* no definite idea about where they can go. */
- if (depth >= maxrecurse) return -1; /* mustn't delve any deeper. */
-
+ if (depth >= maxrecurse) {
+ /* mustn't delve any deeper. */
+ ret = -1; goto done;
+ }
/* Of all the squares that we could place a light, pick the one
* that would light the most currently unlit squares. */
/* This heuristic was just plucked from the air; there may well be
@@ -902,25 +1314,30 @@
* and once as 'impossible'; we need to make one copy to do this. */
scopy = dup_game(state);
+#ifdef SOLVER_DIAGNOSTICS
+ debug(("Recursing #1: trying (%d,%d) as IMPOSSIBLE\n", bestx, besty));
+#endif
GRID(state,flags,bestx,besty) |= F_IMPOSSIBLE;
- self_soluble = solve_sub(state, forceunique, maxrecurse,
- depth+1, maxdepth);
+ self_soluble = solve_sub(state, solve_flags, depth+1, maxdepth);
- if (!forceunique && self_soluble > 0) {
+ if (!(solve_flags & F_SOLVE_FORCEUNIQUE) && self_soluble > 0) {
/* we didn't care about finding all solutions, and we just
* found one; return with it immediately. */
free_game(scopy);
- return self_soluble;
+ ret = self_soluble;
+ goto done;
}
+#ifdef SOLVER_DIAGNOSTICS
+ debug(("Recursing #2: trying (%d,%d) as LIGHT\n", bestx, besty));
+#endif
set_light(scopy, bestx, besty, 1);
- copy_soluble = solve_sub(scopy, forceunique, maxrecurse,
- depth+1, maxdepth);
+ copy_soluble = solve_sub(scopy, solve_flags, depth+1, maxdepth);
/* If we wanted a unique solution but we hit our recursion limit
* (on either branch) then we have to assume we didn't find possible
* extra solutions, and return 'not soluble'. */
- if (forceunique &&
+ if ((solve_flags & F_SOLVE_FORCEUNIQUE) &&
((copy_soluble < 0) || (self_soluble < 0))) {
ret = -1;
/* Make sure that whether or not it was self or copy (or both) that
@@ -940,17 +1357,25 @@
ret = copy_soluble + self_soluble;
}
free_game(scopy);
- return ret;
+ goto done;
}
+done:
+ if (sscratch) sfree(sscratch);
+#ifdef SOLVER_DIAGNOSTICS
+ if (ret < 0)
+ debug(("solve_sub: depth = %d returning, ran out of recursion.\n",
+ depth));
+ else
+ debug(("solve_sub: depth = %d returning, %d solutions.\n",
+ depth, ret));
+#endif
+ return ret;
}
-#define MAXRECURSE 5
-
/* Fills in the (possibly partially-complete) game_state as far as it can,
* returning the number of possible solutions. If it returns >0 then the
* game_state will be in a solved state, but you won't know which one. */
-static int dosolve(game_state *state,
- int allowguess, int forceunique, int *maxdepth)
+static int dosolve(game_state *state, int solve_flags, int *maxdepth)
{
int x, y, nsol;
@@ -959,8 +1384,7 @@
GRID(state,flags,x,y) &= ~F_NUMBERUSED;
}
}
- nsol = solve_sub(state, forceunique,
- allowguess ? MAXRECURSE : 0, 0, maxdepth);
+ nsol = solve_sub(state, solve_flags, 0, maxdepth);
return nsol;
}
@@ -993,29 +1417,27 @@
}
}
-static int puzzle_is_good(game_state *state, game_params *params, int *mdepth)
+static int puzzle_is_good(game_state *state, int difficulty)
{
- int nsol;
+ int nsol, mdepth = 0;
+ unsigned int sflags = flags_from_difficulty(difficulty);
- *mdepth = 0;
unplace_lights(state);
-#ifdef DIAGNOSTICS
- debug_state(state);
+#ifdef SOLVER_DIAGNOSTICS
+ debug(("Trying to solve with difficulty %d (0x%x):\n",
+ difficulty, sflags));
+ if (verbose) debug_state(state);
#endif
- nsol = dosolve(state, params->recurse, TRUE, mdepth);
+ nsol = dosolve(state, sflags, &mdepth);
/* if we wanted an easy puzzle, make sure we didn't need recursion. */
- if (!params->recurse && *mdepth > 0) {
-#ifdef DIAGNOSTICS
- printf("Ignoring recursive puzzle.\n");
-#endif
+ if (!(sflags & F_SOLVE_ALLOWRECURSE) && mdepth > 0) {
+ debug(("Ignoring recursive puzzle.\n"));
return 0;
}
-#ifdef DIAGNOSTICS
- printf("%d solutions found.\n", nsol);
-#endif
+ debug(("%d solutions found.\n", nsol));
if (nsol <= 0) return 0;
if (nsol > 1) return 0;
return 1;
@@ -1052,7 +1474,7 @@
char **aux, int interactive)
{
game_state *news = new_state(params), *copys;
- int nsol, i, run, x, y, wh = params->w*params->h, num, mdepth;
+ int nsol, i, j, run, x, y, wh = params->w*params->h, num;
char *ret, *p;
int *numindices;
@@ -1060,7 +1482,7 @@
* do this once, because if it gets used more than once it'll
* be on a different grid layout. */
numindices = snewn(wh, int);
- for (i = 0; i < wh; i++) numindices[i] = i;
+ for (j = 0; j < wh; j++) numindices[j] = j;
shuffle(numindices, wh, sizeof(*numindices), rs);
while (1) {
@@ -1071,7 +1493,7 @@
place_lights(news, rs);
debug(("Generating initial grid.\n"));
place_numbers(news);
- if (!puzzle_is_good(news, params, &mdepth)) continue;
+ if (!puzzle_is_good(news, params->difficulty)) continue;
/* Take a copy, remove numbers we didn't use and check there's
* still a unique solution; if so, use the copy subsequently. */
@@ -1078,7 +1500,7 @@
copys = dup_game(news);
nsol = strip_unused_nums(copys);
debug(("Stripped %d unused numbers.\n", nsol));
- if (!puzzle_is_good(copys, params, &mdepth)) {
+ if (!puzzle_is_good(copys, params->difficulty)) {
debug(("Stripped grid is not good, reverting.\n"));
free_game(copys);
} else {
@@ -1088,25 +1510,26 @@
/* Go through grid removing numbers at random one-by-one and
* trying to solve again; if it ceases to be good put the number back. */
- for (i = 0; i < wh; i++) {
- y = numindices[i] / params->w;
- x = numindices[i] % params->w;
+ for (j = 0; j < wh; j++) {
+ y = numindices[j] / params->w;
+ x = numindices[j] % params->w;
if (!(GRID(news, flags, x, y) & F_NUMBERED)) continue;
num = GRID(news, lights, x, y);
GRID(news, lights, x, y) = 0;
GRID(news, flags, x, y) &= ~F_NUMBERED;
- if (!puzzle_is_good(news, params, &mdepth)) {
+ if (!puzzle_is_good(news, params->difficulty)) {
GRID(news, lights, x, y) = num;
GRID(news, flags, x, y) |= F_NUMBERED;
} else
debug(("Removed (%d,%d) still soluble.\n", x, y));
}
- /* Get a good value of mdepth for the following test */
- i = puzzle_is_good(news, params, &mdepth);
- assert(i);
- if (params->recurse && mdepth == 0) {
- debug(("Maximum-difficulty puzzle still not recursive, skipping.\n"));
- continue;
+ if (params->difficulty > 0) {
+ /* Was the maximally-difficult puzzle difficult enough?
+ * Check we can't solve it with a more simplistic solver. */
+ if (puzzle_is_good(news, params->difficulty-1)) {
+ debug(("Maximally-hard puzzle still not hard enough, skipping.\n"));
+ continue;
+ }
}
goto goodpuzzle;
@@ -1115,9 +1538,7 @@
* %age of black squares (if we didn't already have lots; in which case
* why couldn't we generate a puzzle?) and try again. */
if (params->blackpc < 90) params->blackpc += 5;
-#ifdef DIAGNOSTICS
- printf("New black layout %d%%.\n", params->blackpc);
-#endif
+ debug(("New black layout %d%%.\n", params->blackpc));
}
goodpuzzle:
/* Game is encoded as a long string one character per square;
@@ -1234,20 +1655,22 @@
game_state *solved;
char *move = NULL, buf[80];
int movelen, movesize, x, y, len;
- unsigned int oldflags, solvedflags;
+ unsigned int oldflags, solvedflags, sflags;
/* We don't care here about non-unique puzzles; if the
* user entered one themself then I doubt they care. */
+ sflags = F_SOLVE_ALLOWRECURSE | F_SOLVE_DISCOUNTSETS;
+
/* Try and solve from where we are now (for non-unique
* puzzles this may produce a different answer). */
solved = dup_game(currstate);
- if (dosolve(solved, 1, 0, NULL) > 0) goto solved;
+ if (dosolve(solved, sflags, NULL) > 0) goto solved;
free_game(solved);
/* That didn't work; try solving from the clean puzzle. */
solved = dup_game(state);
- if (dosolve(solved, 1, 0, NULL) > 0) goto solved;
+ if (dosolve(solved, sflags, NULL) > 0) goto solved;
*error = "Puzzle is not self-consistent.";
goto done;
@@ -1836,5 +2259,81 @@
FALSE, game_timing_state,
0, /* mouse_priorities */
};
+
+#ifdef STANDALONE_SOLVER
+
+int main(int argc, char **argv)
+{
+ game_params *p;
+ game_state *s;
+ char *id = NULL, *desc, *err, *result;
+ int nsol, diff, really_verbose = 0;
+ unsigned int sflags;
+
+ while (--argc > 0) {
+ char *p = *++argv;
+ if (!strcmp(p, "-v")) {
+ really_verbose++;
+ } else if (*p == '-') {
+ fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
+ return 1;
+ } else {
+ id = p;
+ }
+ }
+
+ if (!id) {
+ fprintf(stderr, "usage: %s [-v] <game_id>\n", argv[0]);
+ return 1;
+ }
+
+ desc = strchr(id, ':');
+ if (!desc) {
+ fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
+ return 1;
+ }
+ *desc++ = '\0';
+
+ p = default_params();
+ decode_params(p, id);
+ err = validate_desc(p, desc);
+ if (err) {
+ fprintf(stderr, "%s: %s\n", argv[0], err);
+ return 1;
+ }
+ s = new_game(NULL, p, desc);
+
+ /* Run the solvers easiest to hardest until we find one that
+ * can solve our puzzle. If it's soluble we know that the
+ * hardest (recursive) solver will always find the solution. */
+ for (diff = 0; diff <= DIFFCOUNT; diff++) {
+ printf("\nSolving with difficulty %d.\n", diff);
+ sflags = flags_from_difficulty(diff);
+ unplace_lights(s);
+ nsol = dosolve(s, sflags, NULL);
+ if (nsol == 1) break;
+ }
+
+ printf("\n");
+ if (nsol == 0) {
+ printf("Puzzle has no solution.\n");
+ } else if (nsol < 0) {
+ printf("Unable to find a unique solution.\n");
+ } else if (nsol > 1) {
+ printf("Puzzle has multiple solutions.\n");
+ } else {
+ verbose = really_verbose;
+ unplace_lights(s);
+ printf("Puzzle has difficulty %d: solving...\n", diff);
+ dosolve(s, sflags, NULL); /* sflags from last successful solve */
+ result = game_text_format(s);
+ printf("%s", result);
+ sfree(result);
+ }
+
+ return 0;
+}
+
+#endif
/* vim: set shiftwidth=4 tabstop=8: */
--- a/map.c
+++ b/map.c
@@ -3119,45 +3119,6 @@
#ifdef STANDALONE_SOLVER
-#include <stdarg.h>
-
-void frontend_default_colour(frontend *fe, float *output) {}
-void draw_text(drawing *dr, int x, int y, int fonttype, int fontsize,
- int align, int colour, char *text) {}
-void draw_rect(drawing *dr, int x, int y, int w, int h, int colour) {}
-void draw_line(drawing *dr, int x1, int y1, int x2, int y2, int colour) {}
-void draw_polygon(drawing *dr, int *coords, int npoints,
- int fillcolour, int outlinecolour) {}
-void draw_circle(drawing *dr, int cx, int cy, int radius,
- int fillcolour, int outlinecolour) {}
-void clip(drawing *dr, int x, int y, int w, int h) {}
-void unclip(drawing *dr) {}
-void start_draw(drawing *dr) {}
-void draw_update(drawing *dr, int x, int y, int w, int h) {}
-void end_draw(drawing *dr) {}
-blitter *blitter_new(drawing *dr, int w, int h) {return NULL;}
-void blitter_free(drawing *dr, blitter *bl) {}
-void blitter_save(drawing *dr, blitter *bl, int x, int y) {}
-void blitter_load(drawing *dr, blitter *bl, int x, int y) {}
-int print_mono_colour(drawing *dr, int grey) { return 0; }
-int print_rgb_colour(drawing *dr, int hatch, float r, float g, float b)
-{ return 0; }
-void print_line_width(drawing *dr, int width) {}
-
-void fatal(char *fmt, ...)
-{
- va_list ap;
-
- fprintf(stderr, "fatal error: ");
-
- va_start(ap, fmt);
- vfprintf(stderr, fmt, ap);
- va_end(ap);
-
- fprintf(stderr, "\n");
- exit(1);
-}
-
int main(int argc, char **argv)
{
game_params *p;
--- a/mines.c
+++ b/mines.c
@@ -3095,40 +3095,7 @@
* 9x9:4,4,004000007c00010022080
* $ ./mineobfusc 9x9:4,4,004000007c00010022080
* 9x9:4,4,mb071b49fbd1cb6a0d5868
- *
- * gcc -DSTANDALONE_OBFUSCATOR -o mineobfusc mines.c malloc.c random.c tree234.c misc.c
*/
-
-#include <stdarg.h>
-
-void frontend_default_colour(frontend *fe, float *output) {}
-void draw_text(drawing *dr, int x, int y, int fonttype, int fontsize,
- int align, int colour, char *text) {}
-void draw_rect(drawing *dr, int x, int y, int w, int h, int colour) {}
-void draw_line(drawing *dr, int x1, int y1, int x2, int y2, int colour) {}
-void draw_polygon(drawing *dr, int *coords, int npoints,
- int fillcolour, int outlinecolour) {}
-void clip(drawing *dr, int x, int y, int w, int h) {}
-void unclip(drawing *dr) {}
-void start_draw(drawing *dr) {}
-void draw_update(drawing *dr, int x, int y, int w, int h) {}
-void end_draw(drawing *dr) {}
-void midend_supersede_game_desc(midend *me, char *desc, char *privdesc) {}
-void status_bar(drawing *dr, char *text) {}
-
-void fatal(char *fmt, ...)
-{
- va_list ap;
-
- fprintf(stderr, "fatal error: ");
-
- va_start(ap, fmt);
- vfprintf(stderr, fmt, ap);
- va_end(ap);
-
- fprintf(stderr, "\n");
- exit(1);
-}
int main(int argc, char **argv)
{
--- /dev/null
+++ b/nullfe.c
@@ -1,0 +1,49 @@
+/*
+ * nullfe.c: Null front-end code containing a bunch of boring stub
+ * functions. Used to ensure successful linking when building the
+ * various stand-alone solver binaries.
+ */
+
+#include <stdarg.h>
+
+#include "puzzles.h"
+
+void frontend_default_colour(frontend *fe, float *output) {}
+void draw_text(drawing *dr, int x, int y, int fonttype, int fontsize,
+ int align, int colour, char *text) {}
+void draw_rect(drawing *dr, int x, int y, int w, int h, int colour) {}
+void draw_line(drawing *dr, int x1, int y1, int x2, int y2, int colour) {}
+void draw_polygon(drawing *dr, int *coords, int npoints,
+ int fillcolour, int outlinecolour) {}
+void draw_circle(drawing *dr, int cx, int cy, int radius,
+ int fillcolour, int outlinecolour) {}
+void clip(drawing *dr, int x, int y, int w, int h) {}
+void unclip(drawing *dr) {}
+void start_draw(drawing *dr) {}
+void draw_update(drawing *dr, int x, int y, int w, int h) {}
+void end_draw(drawing *dr) {}
+blitter *blitter_new(drawing *dr, int w, int h) {return NULL;}
+void blitter_free(drawing *dr, blitter *bl) {}
+void blitter_save(drawing *dr, blitter *bl, int x, int y) {}
+void blitter_load(drawing *dr, blitter *bl, int x, int y) {}
+int print_mono_colour(drawing *dr, int grey) { return 0; }
+int print_rgb_colour(drawing *dr, int hatch, float r, float g, float b)
+{ return 0; }
+void print_line_width(drawing *dr, int width) {}
+void midend_supersede_game_desc(midend *me, char *desc, char *privdesc) {}
+void status_bar(drawing *dr, char *text) {}
+
+void fatal(char *fmt, ...)
+{
+ va_list ap;
+
+ fprintf(stderr, "fatal error: ");
+
+ va_start(ap, fmt);
+ vfprintf(stderr, fmt, ap);
+ va_end(ap);
+
+ fprintf(stderr, "\n");
+ exit(1);
+}
+
--- a/pattern.c
+++ b/pattern.c
@@ -1286,44 +1286,6 @@
#ifdef STANDALONE_SOLVER
-/*
- * gcc -DSTANDALONE_SOLVER -o patternsolver pattern.c malloc.c
- */
-
-#include <stdarg.h>
-
-void frontend_default_colour(frontend *fe, float *output) {}
-void draw_text(drawing *dr, int x, int y, int fonttype, int fontsize,
- int align, int colour, char *text) {}
-void draw_rect(drawing *dr, int x, int y, int w, int h, int colour) {}
-void draw_rect_outline(drawing *dr, int x, int y, int w, int h, int colour) {}
-void draw_line(drawing *dr, int x1, int y1, int x2, int y2, int colour) {}
-void draw_circle(drawing *dr, int cx, int cy, int radius,
- int fillcolour, int outlinecolour) {}
-void clip(drawing *dr, int x, int y, int w, int h) {}
-void unclip(drawing *dr) {}
-void start_draw(drawing *dr) {}
-void draw_update(drawing *dr, int x, int y, int w, int h) {}
-void end_draw(drawing *dr) {}
-unsigned long random_upto(random_state *state, unsigned long limit)
-{ assert(!"Shouldn't get randomness"); return 0; }
-int print_mono_colour(drawing *dr, int grey) { return 0; }
-void print_line_width(drawing *dr, int width) {}
-
-void fatal(char *fmt, ...)
-{
- va_list ap;
-
- fprintf(stderr, "fatal error: ");
-
- va_start(ap, fmt);
- vfprintf(stderr, fmt, ap);
- va_end(ap);
-
- fprintf(stderr, "\n");
- exit(1);
-}
-
int main(int argc, char **argv)
{
game_params *p;
--- a/puzzles.h
+++ b/puzzles.h
@@ -324,6 +324,20 @@
drawing *ps_drawing_api(psdata *ps);
/*
+ * combi.c: provides a structure and functions for iterating over
+ * combinations (i.e. choosing r things out of n).
+ */
+typedef struct _combi_ctx {
+ int r, n, nleft, total;
+ int *a;
+} combi_ctx;
+
+combi_ctx *new_combi(int r, int n);
+void reset_combi(combi_ctx *combi);
+combi_ctx *next_combi(combi_ctx *combi); /* returns NULL for end */
+void free_combi(combi_ctx *combi);
+
+/*
* Data structure containing the function calls and data specific
* to a particular game. This is enclosed in a data structure so
* that a particular platform can choose, if it wishes, to compile
--- a/slant.c
+++ b/slant.c
@@ -1996,48 +1996,6 @@
#include <stdarg.h>
-/*
- * gcc -DSTANDALONE_SOLVER -o slantsolver slant.c malloc.c
- */
-
-void frontend_default_colour(frontend *fe, float *output) {}
-void draw_text(drawing *dr, int x, int y, int fonttype, int fontsize,
- int align, int colour, char *text) {}
-void draw_rect(drawing *dr, int x, int y, int w, int h, int colour) {}
-void draw_rect_outline(drawing *dr, int x, int y, int w, int h, int colour) {}
-void draw_line(drawing *dr, int x1, int y1, int x2, int y2, int colour) {}
-void draw_polygon(drawing *dr, int *coords, int npoints,
- int fillcolour, int outlinecolour) {}
-void draw_circle(drawing *dr, int cx, int cy, int radius,
- int fillcolour, int outlinecolour) {}
-void clip(drawing *dr, int x, int y, int w, int h) {}
-void unclip(drawing *dr) {}
-void start_draw(drawing *dr) {}
-void draw_update(drawing *dr, int x, int y, int w, int h) {}
-void end_draw(drawing *dr) {}
-int print_mono_colour(drawing *dr, int grey) { return 0; }
-void print_line_width(drawing *dr, int width) {}
-unsigned long random_bits(random_state *state, int bits)
-{ assert(!"Shouldn't get randomness"); return 0; }
-unsigned long random_upto(random_state *state, unsigned long limit)
-{ assert(!"Shouldn't get randomness"); return 0; }
-void shuffle(void *array, int nelts, int eltsize, random_state *rs)
-{ assert(!"Shouldn't get randomness"); }
-
-void fatal(char *fmt, ...)
-{
- va_list ap;
-
- fprintf(stderr, "fatal error: ");
-
- va_start(ap, fmt);
- vfprintf(stderr, fmt, ap);
- va_end(ap);
-
- fprintf(stderr, "\n");
- exit(1);
-}
-
int main(int argc, char **argv)
{
game_params *p;
--- a/solo.c
+++ b/solo.c
@@ -3092,46 +3092,6 @@
#ifdef STANDALONE_SOLVER
-/*
- * gcc -DSTANDALONE_SOLVER -o solosolver solo.c malloc.c
- */
-
-void frontend_default_colour(frontend *fe, float *output) {}
-void draw_text(drawing *dr, int x, int y, int fonttype, int fontsize,
- int align, int colour, char *text) {}
-void draw_rect(drawing *dr, int x, int y, int w, int h, int colour) {}
-void draw_rect_outline(drawing *dr, int x, int y, int w, int h, int colour) {}
-void draw_line(drawing *dr, int x1, int y1, int x2, int y2, int colour) {}
-void draw_polygon(drawing *dr, int *coords, int npoints,
- int fillcolour, int outlinecolour) {}
-void clip(drawing *dr, int x, int y, int w, int h) {}
-void unclip(drawing *dr) {}
-void start_draw(drawing *dr) {}
-void draw_update(drawing *dr, int x, int y, int w, int h) {}
-void end_draw(drawing *dr) {}
-int print_mono_colour(drawing *dr, int grey) { return 0; }
-void print_line_width(drawing *dr, int width) {}
-unsigned long random_bits(random_state *state, int bits)
-{ assert(!"Shouldn't get randomness"); return 0; }
-unsigned long random_upto(random_state *state, unsigned long limit)
-{ assert(!"Shouldn't get randomness"); return 0; }
-void shuffle(void *array, int nelts, int eltsize, random_state *rs)
-{ assert(!"Shouldn't get randomness"); }
-
-void fatal(char *fmt, ...)
-{
- va_list ap;
-
- fprintf(stderr, "fatal error: ");
-
- va_start(ap, fmt);
- vfprintf(stderr, fmt, ap);
- va_end(ap);
-
- fprintf(stderr, "\n");
- exit(1);
-}
-
int main(int argc, char **argv)
{
game_params *p;