ref: 862e25c90b8f62fd1cab270b13f5d57f86bff82f
parent: 5810785da10a802feab5bd0964fc9751505c304a
author: Simon Tatham <anakin@pobox.com>
date: Sat May 21 09:23:26 EDT 2005
Solution uniqueness for Net. Can be disabled on request (but is enabled by default), since ambiguous sections in grids can present additional interesting challenges. I think uniqueness is a better default, though. [originally from svn r5816]
--- a/net.c
+++ b/net.c
@@ -72,6 +72,7 @@
int width;
int height;
int wrapping;
+ int unique;
float barrier_probability;
};
@@ -88,9 +89,12 @@
unsigned char *barriers;
};
+#define OFFSETWH(x2,y2,x1,y1,dir,width,height) \
+ ( (x2) = ((x1) + width + X((dir))) % width, \
+ (y2) = ((y1) + height + Y((dir))) % height)
+
#define OFFSET(x2,y2,x1,y1,dir,state) \
- ( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \
- (y2) = ((y1) + (state)->height + Y((dir))) % (state)->height)
+ OFFSETWH(x2,y2,x1,y1,dir,(state)->width,(state)->height)
#define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
#define tile(state, x, y) index(state, (state)->tiles, x, y)
@@ -100,9 +104,9 @@
int x, y, direction;
};
-static int xyd_cmp(void *av, void *bv) {
- struct xyd *a = (struct xyd *)av;
- struct xyd *b = (struct xyd *)bv;
+static int xyd_cmp(const void *av, const void *bv) {
+ const struct xyd *a = (const struct xyd *)av;
+ const struct xyd *b = (const struct xyd *)bv;
if (a->x < b->x)
return -1;
if (a->x > b->x)
@@ -118,6 +122,8 @@
return 0;
};
+static int xyd_cmp_nc(void *av, void *bv) { return xyd_cmp(av, bv); }
+
static struct xyd *new_xyd(int x, int y, int direction)
{
struct xyd *xyd = snew(struct xyd);
@@ -137,6 +143,7 @@
ret->width = 5;
ret->height = 5;
ret->wrapping = FALSE;
+ ret->unique = TRUE;
ret->barrier_probability = 0.0;
return ret;
@@ -166,6 +173,7 @@
ret->width = values[i].x;
ret->height = values[i].y;
ret->wrapping = values[i].wrap;
+ ret->unique = TRUE;
ret->barrier_probability = 0.0;
sprintf(str, "%dx%d%s", ret->width, ret->height,
@@ -198,13 +206,23 @@
p++;
ret->height = atoi(p);
while (*p && isdigit(*p)) p++;
- if ( (ret->wrapping = (*p == 'w')) != 0 )
- p++;
- if (*p == 'b')
- ret->barrier_probability = atof(p+1);
} else {
ret->height = ret->width;
}
+
+ while (*p) {
+ if (*p == 'w') {
+ p++;
+ ret->wrapping = TRUE;
+ } else if (*p == 'b') {
+ p++;
+ ret->barrier_probability = atof(p);
+ while (*p && isdigit(*p)) p++;
+ } else if (*p == 'a') {
+ p++;
+ ret->unique = FALSE;
+ }
+ }
}
static char *encode_params(game_params *params, int full)
@@ -217,6 +235,8 @@
ret[len++] = 'w';
if (full && params->barrier_probability)
len += sprintf(ret+len, "b%g", params->barrier_probability);
+ if (!params->unique)
+ ret[len++] = 'a';
assert(len < lenof(ret));
ret[len] = '\0';
@@ -228,7 +248,7 @@
config_item *ret;
char buf[80];
- ret = snewn(5, config_item);
+ ret = snewn(6, config_item);
ret[0].name = "Width";
ret[0].type = C_STRING;
@@ -253,11 +273,16 @@
ret[3].sval = dupstr(buf);
ret[3].ival = 0;
- ret[4].name = NULL;
- ret[4].type = C_END;
+ ret[4].name = "Ensure unique solution";
+ ret[4].type = C_BOOLEAN;
ret[4].sval = NULL;
- ret[4].ival = 0;
+ ret[4].ival = params->unique;
+ ret[5].name = NULL;
+ ret[5].type = C_END;
+ ret[5].sval = NULL;
+ ret[5].ival = 0;
+
return ret;
}
@@ -269,6 +294,7 @@
ret->height = atoi(cfg[1].sval);
ret->wrapping = cfg[2].ival;
ret->barrier_probability = (float)atof(cfg[3].sval);
+ ret->unique = cfg[4].ival;
return ret;
}
@@ -291,9 +317,754 @@
}
/* ----------------------------------------------------------------------
+ * Solver used to assure solution uniqueness during generation.
+ */
+
+/*
+ * Test cases I used while debugging all this were
+ *
+ * ./net --generate 1 13x11w#12300
+ * which expands under the non-unique grid generation rules to
+ * 13x11w:5eaade1bd222664436d5e2965c12656b1129dd825219e3274d558d5eb2dab5da18898e571d5a2987be79746bd95726c597447d6da96188c513add829da7681da954db113d3cd244
+ * and has two ambiguous areas.
+ *
+ * An even better one is
+ * 13x11w#507896411361192
+ * which expands to
+ * 13x11w:b7125b1aec598eb31bd58d82572bc11494e5dee4e8db2bdd29b88d41a16bdd996d2996ddec8c83741a1e8674e78328ba71737b8894a9271b1cd1399453d1952e43951d9b712822e
+ * and has an ambiguous area _and_ a situation where loop avoidance
+ * is a necessary deductive technique.
+ *
+ * Then there's
+ * 48x25w#820543338195187
+ * becoming
+ * 48x25w:255989d14cdd185deaa753a93821a12edc1ab97943ac127e2685d7b8b3c48861b2192416139212b316eddd35de43714ebc7628d753db32e596284d9ec52c5a7dc1b4c811a655117d16dc28921b2b4161352cab1d89d18bc836b8b891d55ea4622a1251861b5bc9a8aa3e5bcd745c95229ca6c3b5e21d5832d397e917325793d7eb442dc351b2db2a52ba8e1651642275842d8871d5534aabc6d5b741aaa2d48ed2a7dbbb3151ddb49d5b9a7ed1ab98ee75d613d656dbba347bc514c84556b43a9bc65a3256ead792488b862a9d2a8a39b4255a4949ed7dbd79443292521265896b4399c95ede89d7c8c797a6a57791a849adea489359a158aa12e5dacce862b8333b7ebea7d344d1a3c53198864b73a9dedde7b663abb1b539e1e8853b1b7edb14a2a17ebaae4dbe63598a2e7e9a2dbdad415bc1d8cb88cbab5a8c82925732cd282e641ea3bd7d2c6e776de9117a26be86deb7c82c89524b122cb9397cd1acd2284e744ea62b9279bae85479ababe315c3ac29c431333395b24e6a1e3c43a2da42d4dce84aadd5b154aea555eaddcbd6e527d228c19388d9b424d94214555a7edbdeebe569d4a56dc51a86bd9963e377bb74752bd5eaa5761ba545e297b62a1bda46ab4aee423ad6c661311783cc18786d4289236563cb4a75ec67d481c14814994464cd1b87396dee63e5ab6e952cc584baa1d4c47cb557ec84dbb63d487c8728118673a166846dd3a4ebc23d6cb9c5827d96b4556e91899db32b517eda815ae271a8911bd745447121dc8d321557bc2a435ebec1bbac35b1a291669451174e6aa2218a4a9c5a6ca31ebc45d84e3a82c121e9ced7d55e9a
+ * which has a spot (far right) where slightly more complex loop
+ * avoidance is required.
+ */
+
+static int dsf_canonify(int *dsf, int val)
+{
+ int v2 = val;
+
+ while (dsf[val] != val)
+ val = dsf[val];
+
+ while (v2 != val) {
+ int tmp = dsf[v2];
+ dsf[v2] = val;
+ v2 = tmp;
+ }
+
+ return val;
+}
+
+static void dsf_merge(int *dsf, int v1, int v2)
+{
+ v1 = dsf_canonify(dsf, v1);
+ v2 = dsf_canonify(dsf, v2);
+ dsf[v2] = v1;
+}
+
+struct todo {
+ unsigned char *marked;
+ int *buffer;
+ int buflen;
+ int head, tail;
+};
+
+static struct todo *todo_new(int maxsize)
+{
+ struct todo *todo = snew(struct todo);
+ todo->marked = snewn(maxsize, unsigned char);
+ memset(todo->marked, 0, maxsize);
+ todo->buflen = maxsize + 1;
+ todo->buffer = snewn(todo->buflen, int);
+ todo->head = todo->tail = 0;
+ return todo;
+}
+
+static void todo_free(struct todo *todo)
+{
+ sfree(todo->marked);
+ sfree(todo->buffer);
+ sfree(todo);
+}
+
+static void todo_add(struct todo *todo, int index)
+{
+ if (todo->marked[index])
+ return; /* already on the list */
+ todo->marked[index] = TRUE;
+ todo->buffer[todo->tail++] = index;
+ if (todo->tail == todo->buflen)
+ todo->tail = 0;
+}
+
+static int todo_get(struct todo *todo) {
+ int ret;
+
+ if (todo->head == todo->tail)
+ return -1; /* list is empty */
+ ret = todo->buffer[todo->head++];
+ if (todo->head == todo->buflen)
+ todo->head = 0;
+ todo->marked[ret] = FALSE;
+
+ return ret;
+}
+
+static int net_solver(int w, int h, unsigned char *tiles, int wrapping)
+{
+ unsigned char *tilestate;
+ unsigned char *edgestate;
+ int *deadends;
+ int *equivalence;
+ struct todo *todo;
+ int i, j, x, y;
+ int area;
+ int done_something;
+
+ /*
+ * Set up the solver's data structures.
+ */
+
+ /*
+ * tilestate stores the possible orientations of each tile.
+ * There are up to four of these, so we'll index the array in
+ * fours. tilestate[(y * w + x) * 4] and its three successive
+ * members give the possible orientations, clearing to 255 from
+ * the end as things are ruled out.
+ *
+ * In this loop we also count up the area of the grid (which is
+ * not _necessarily_ equal to w*h, because there might be one
+ * or more blank squares present. This will never happen in a
+ * grid generated _by_ this program, but it's worth keeping the
+ * solver as general as possible.)
+ */
+ tilestate = snewn(w * h * 4, unsigned char);
+ area = 0;
+ for (i = 0; i < w*h; i++) {
+ tilestate[i * 4] = tiles[i] & 0xF;
+ for (j = 1; j < 4; j++) {
+ if (tilestate[i * 4 + j - 1] == 255 ||
+ A(tilestate[i * 4 + j - 1]) == tilestate[i * 4])
+ tilestate[i * 4 + j] = 255;
+ else
+ tilestate[i * 4 + j] = A(tilestate[i * 4 + j - 1]);
+ }
+ if (tiles[i] != 0)
+ area++;
+ }
+
+ /*
+ * edgestate stores the known state of each edge. It is 0 for
+ * unknown, 1 for open (connected) and 2 for closed (not
+ * connected).
+ *
+ * In principle we need only worry about each edge once each,
+ * but in fact it's easier to track each edge twice so that we
+ * can reference it from either side conveniently. Also I'm
+ * going to allocate _five_ bytes per tile, rather than the
+ * obvious four, so that I can index edgestate[(y*w+x) * 5 + d]
+ * where d is 1,2,4,8 and they never overlap.
+ */
+ edgestate = snewn((w * h - 1) * 5 + 9, unsigned char);
+ memset(edgestate, 0, (w * h - 1) * 5 + 9);
+
+ /*
+ * deadends tracks which edges have dead ends on them. It is
+ * indexed by tile and direction: deadends[(y*w+x) * 5 + d]
+ * tells you whether heading out of tile (x,y) in direction d
+ * can reach a limited amount of the grid. Values are area+1
+ * (no dead end known) or less than that (can reach _at most_
+ * this many other tiles by heading this way out of this tile).
+ */
+ deadends = snewn((w * h - 1) * 5 + 9, int);
+ for (i = 0; i < (w * h - 1) * 5 + 9; i++)
+ deadends[i] = area+1;
+
+ /*
+ * equivalence tracks which sets of tiles are known to be
+ * connected to one another, so we can avoid creating loops by
+ * linking together tiles which are already linked through
+ * another route.
+ *
+ * This is a disjoint set forest structure: equivalence[i]
+ * contains the index of another member of the equivalence
+ * class containing i, or contains i itself for precisely one
+ * member in each such class. To find a representative member
+ * of the equivalence class containing i, you keep replacing i
+ * with equivalence[i] until it stops changing; then you go
+ * _back_ along the same path and point everything on it
+ * directly at the representative member so as to speed up
+ * future searches. Then you test equivalence between tiles by
+ * finding the representative of each tile and seeing if
+ * they're the same; and you create new equivalence (merge
+ * classes) by finding the representative of each tile and
+ * setting equivalence[one]=the_other.
+ */
+ equivalence = snewn(w * h, int);
+ for (i = 0; i < w*h; i++)
+ equivalence[i] = i; /* initially all distinct */
+
+ /*
+ * On a non-wrapping grid, we instantly know that all the edges
+ * round the edge are closed.
+ */
+ if (!wrapping) {
+ for (i = 0; i < w; i++) {
+ edgestate[i * 5 + 2] = edgestate[((h-1) * w + i) * 5 + 8] = 2;
+ }
+ for (i = 0; i < h; i++) {
+ edgestate[(i * w + w-1) * 5 + 1] = edgestate[(i * w) * 5 + 4] = 2;
+ }
+ }
+
+ /*
+ * Since most deductions made by this solver are local (the
+ * exception is loop avoidance, where joining two tiles
+ * together on one side of the grid can theoretically permit a
+ * fresh deduction on the other), we can address the scaling
+ * problem inherent in iterating repeatedly over the entire
+ * grid by instead working with a to-do list.
+ */
+ todo = todo_new(w * h);
+
+ /*
+ * Main deductive loop.
+ */
+ done_something = TRUE; /* prevent instant termination! */
+ while (1) {
+ int index;
+
+ /*
+ * Take a tile index off the todo list and process it.
+ */
+ index = todo_get(todo);
+ if (index == -1) {
+ /*
+ * If we have run out of immediate things to do, we
+ * have no choice but to scan the whole grid for
+ * longer-range things we've missed. Hence, I now add
+ * every square on the grid back on to the to-do list.
+ * I also set `done_something' to FALSE at this point;
+ * if we later come back here and find it still FALSE,
+ * we will know we've scanned the entire grid without
+ * finding anything new to do, and we can terminate.
+ */
+ if (!done_something)
+ break;
+ for (i = 0; i < w*h; i++)
+ todo_add(todo, i);
+ done_something = FALSE;
+
+ index = todo_get(todo);
+ }
+
+ y = index / w;
+ x = index % w;
+ {
+ int d, ourclass = dsf_canonify(equivalence, y*w+x);
+ int deadendmax[9];
+
+ deadendmax[1] = deadendmax[2] = deadendmax[4] = deadendmax[8] = 0;
+
+ for (i = j = 0; i < 4 && tilestate[(y*w+x) * 4 + i] != 255; i++) {
+ int valid;
+ int nnondeadends, nondeadends[4], deadendtotal;
+ int nequiv, equiv[5];
+ int val = tilestate[(y*w+x) * 4 + i];
+
+ valid = TRUE;
+ nnondeadends = deadendtotal = 0;
+ equiv[0] = ourclass;
+ nequiv = 1;
+ for (d = 1; d <= 8; d += d) {
+ /*
+ * Immediately rule out this orientation if it
+ * conflicts with any known edge.
+ */
+ if ((edgestate[(y*w+x) * 5 + d] == 1 && !(val & d)) ||
+ (edgestate[(y*w+x) * 5 + d] == 2 && (val & d)))
+ valid = FALSE;
+
+ if (val & d) {
+ /*
+ * Count up the dead-end statistics.
+ */
+ if (deadends[(y*w+x) * 5 + d] <= area) {
+ deadendtotal += deadends[(y*w+x) * 5 + d];
+ } else {
+ nondeadends[nnondeadends++] = d;
+ }
+
+ /*
+ * Ensure we aren't linking to any tiles,
+ * through edges not already known to be
+ * open, which create a loop.
+ */
+ if (edgestate[(y*w+x) * 5 + d] == 0) {
+ int c, k, x2, y2;
+
+ OFFSETWH(x2, y2, x, y, d, w, h);
+ c = dsf_canonify(equivalence, y2*w+x2);
+ for (k = 0; k < nequiv; k++)
+ if (c == equiv[k])
+ break;
+ if (k == nequiv)
+ equiv[nequiv++] = c;
+ else
+ valid = FALSE;
+ }
+ }
+ }
+
+ if (nnondeadends == 0) {
+ /*
+ * If this orientation links together dead-ends
+ * with a total area of less than the entire
+ * grid, it is invalid.
+ *
+ * (We add 1 to deadendtotal because of the
+ * tile itself, of course; one tile linking
+ * dead ends of size 2 and 3 forms a subnetwork
+ * with a total area of 6, not 5.)
+ */
+ if (deadendtotal+1 < area)
+ valid = FALSE;
+ } else if (nnondeadends == 1) {
+ /*
+ * If this orientation links together one or
+ * more dead-ends with precisely one
+ * non-dead-end, then we may have to mark that
+ * non-dead-end as a dead end going the other
+ * way. However, it depends on whether all
+ * other orientations share the same property.
+ */
+ deadendtotal++;
+ if (deadendmax[nondeadends[0]] < deadendtotal)
+ deadendmax[nondeadends[0]] = deadendtotal;
+ } else {
+ /*
+ * If this orientation links together two or
+ * more non-dead-ends, then we can rule out the
+ * possibility of putting in new dead-end
+ * markings in those directions.
+ */
+ int k;
+ for (k = 0; k < nnondeadends; k++)
+ deadendmax[nondeadends[k]] = area+1;
+ }
+
+ if (valid)
+ tilestate[(y*w+x) * 4 + j++] = val;
+#ifdef SOLVER_DIAGNOSTICS
+ else
+ printf("ruling out orientation %x at %d,%d\n", val, x, y);
+#endif
+ }
+
+ assert(j > 0); /* we can't lose _all_ possibilities! */
+
+ if (j < i) {
+ int a, o;
+ done_something = TRUE;
+
+ /*
+ * We have ruled out at least one tile orientation.
+ * Make sure the rest are blanked.
+ */
+ while (j < 4)
+ tilestate[(y*w+x) * 4 + j++] = 255;
+
+ /*
+ * Now go through them again and see if we've
+ * deduced anything new about any edges.
+ */
+ a = 0xF; o = 0;
+ for (i = 0; i < 4 && tilestate[(y*w+x) * 4 + i] != 255; i++) {
+ a &= tilestate[(y*w+x) * 4 + i];
+ o |= tilestate[(y*w+x) * 4 + i];
+ }
+ for (d = 1; d <= 8; d += d)
+ if (edgestate[(y*w+x) * 5 + d] == 0) {
+ int x2, y2, d2;
+ OFFSETWH(x2, y2, x, y, d, w, h);
+ d2 = F(d);
+ if (a & d) {
+ /* This edge is open in all orientations. */
+#ifdef SOLVER_DIAGNOSTICS
+ printf("marking edge %d,%d:%d open\n", x, y, d);
+#endif
+ edgestate[(y*w+x) * 5 + d] = 1;
+ edgestate[(y2*w+x2) * 5 + d2] = 1;
+ dsf_merge(equivalence, y*w+x, y2*w+x2);
+ done_something = TRUE;
+ todo_add(todo, y2*w+x2);
+ } else if (!(o & d)) {
+ /* This edge is closed in all orientations. */
+#ifdef SOLVER_DIAGNOSTICS
+ printf("marking edge %d,%d:%d closed\n", x, y, d);
+#endif
+ edgestate[(y*w+x) * 5 + d] = 2;
+ edgestate[(y2*w+x2) * 5 + d2] = 2;
+ done_something = TRUE;
+ todo_add(todo, y2*w+x2);
+ }
+ }
+
+ }
+
+ /*
+ * Now check the dead-end markers and see if any of
+ * them has lowered from the real ones.
+ */
+ for (d = 1; d <= 8; d += d) {
+ int x2, y2, d2;
+ OFFSETWH(x2, y2, x, y, d, w, h);
+ d2 = F(d);
+ if (deadendmax[d] > 0 &&
+ deadends[(y2*w+x2) * 5 + d2] > deadendmax[d]) {
+#ifdef SOLVER_DIAGNOSTICS
+ printf("setting dead end value %d,%d:%d to %d\n",
+ x2, y2, d2, deadendmax[d]);
+#endif
+ deadends[(y2*w+x2) * 5 + d2] = deadendmax[d];
+ done_something = TRUE;
+ todo_add(todo, y2*w+x2);
+ }
+ }
+
+ }
+ }
+
+ /*
+ * Mark all completely determined tiles as locked.
+ */
+ j = TRUE;
+ for (i = 0; i < w*h; i++) {
+ if (tilestate[i * 4 + 1] == 255) {
+ assert(tilestate[i * 4 + 0] != 255);
+ tiles[i] = tilestate[i * 4] | LOCKED;
+ } else {
+ tiles[i] &= ~LOCKED;
+ j = FALSE;
+ }
+ }
+
+ /*
+ * Free up working space.
+ */
+ todo_free(todo);
+ sfree(tilestate);
+ sfree(edgestate);
+ sfree(deadends);
+ sfree(equivalence);
+
+ return j;
+}
+
+/* ----------------------------------------------------------------------
* Randomly select a new game description.
*/
+/*
+ * Function to randomly perturb an ambiguous section in a grid, to
+ * attempt to ensure unique solvability.
+ */
+static void perturb(int w, int h, unsigned char *tiles, int wrapping,
+ random_state *rs, int startx, int starty, int startd)
+{
+ struct xyd *perimeter, *perim2, *loop[2], looppos[2];
+ int nperim, perimsize, nloop[2], loopsize[2];
+ int x, y, d, i;
+
+ /*
+ * We know that the tile at (startx,starty) is part of an
+ * ambiguous section, and we also know that its neighbour in
+ * direction startd is fully specified. We begin by tracing all
+ * the way round the ambiguous area.
+ */
+ nperim = perimsize = 0;
+ perimeter = NULL;
+ x = startx;
+ y = starty;
+ d = startd;
+#ifdef PERTURB_DIAGNOSTICS
+ printf("perturb %d,%d:%d\n", x, y, d);
+#endif
+ do {
+ int x2, y2, d2;
+
+ if (nperim >= perimsize) {
+ perimsize = perimsize * 3 / 2 + 32;
+ perimeter = sresize(perimeter, perimsize, struct xyd);
+ }
+ perimeter[nperim].x = x;
+ perimeter[nperim].y = y;
+ perimeter[nperim].direction = d;
+ nperim++;
+#ifdef PERTURB_DIAGNOSTICS
+ printf("perimeter: %d,%d:%d\n", x, y, d);
+#endif
+
+ /*
+ * First, see if we can simply turn left from where we are
+ * and find another locked square.
+ */
+ d2 = A(d);
+ OFFSETWH(x2, y2, x, y, d2, w, h);
+ if ((!wrapping && (abs(x2-x) > 1 || abs(y2-y) > 1)) ||
+ (tiles[y2*w+x2] & LOCKED)) {
+ d = d2;
+ } else {
+ /*
+ * Failing that, step left into the new square and look
+ * in front of us.
+ */
+ x = x2;
+ y = y2;
+ OFFSETWH(x2, y2, x, y, d, w, h);
+ if ((wrapping || (abs(x2-x) <= 1 && abs(y2-y) <= 1)) &&
+ !(tiles[y2*w+x2] & LOCKED)) {
+ /*
+ * And failing _that_, we're going to have to step
+ * forward into _that_ square and look right at the
+ * same locked square as we started with.
+ */
+ x = x2;
+ y = y2;
+ d = C(d);
+ }
+ }
+
+ } while (x != startx || y != starty || d != startd);
+
+ /*
+ * Our technique for perturbing this ambiguous area is to
+ * search round its edge for a join we can make: that is, an
+ * edge on the perimeter which is (a) not currently connected,
+ * and (b) connecting it would not yield a full cross on either
+ * side. Then we make that join, search round the network to
+ * find the loop thus constructed, and sever the loop at a
+ * randomly selected other point.
+ */
+ perim2 = snewn(nperim, struct xyd);
+ memcpy(perim2, perimeter, nperim * sizeof(struct xyd));
+ /* Shuffle the perimeter, so as to search it without directional bias. */
+ for (i = nperim; --i ;) {
+ int j = random_upto(rs, i+1);
+ struct xyd t;
+
+ t = perim2[j];
+ perim2[j] = perim2[i];
+ perim2[i] = t;
+ }
+ for (i = 0; i < nperim; i++) {
+ int x2, y2;
+
+ x = perim2[i].x;
+ y = perim2[i].y;
+ d = perim2[i].direction;
+
+ OFFSETWH(x2, y2, x, y, d, w, h);
+ if (!wrapping && (abs(x2-x) > 1 || abs(y2-y) > 1))
+ continue; /* can't link across non-wrapping border */
+ if (tiles[y*w+x] & d)
+ continue; /* already linked in this direction! */
+ if (((tiles[y*w+x] | d) & 15) == 15)
+ continue; /* can't turn this tile into a cross */
+ if (((tiles[y2*w+x2] | F(d)) & 15) == 15)
+ continue; /* can't turn other tile into a cross */
+
+ /*
+ * We've found the point at which we're going to make a new
+ * link.
+ */
+#ifdef PERTURB_DIAGNOSTICS
+ printf("linking %d,%d:%d\n", x, y, d);
+#endif
+ tiles[y*w+x] |= d;
+ tiles[y2*w+x2] |= F(d);
+
+ break;
+ }
+
+ if (i == nperim)
+ return; /* nothing we can do! */
+
+ /*
+ * Now we've constructed a new link, we need to find the entire
+ * loop of which it is a part.
+ *
+ * In principle, this involves doing a complete search round
+ * the network. However, I anticipate that in the vast majority
+ * of cases the loop will be quite small, so what I'm going to
+ * do is make _two_ searches round the network in parallel, one
+ * keeping its metaphorical hand on the left-hand wall while
+ * the other keeps its hand on the right. As soon as one of
+ * them gets back to its starting point, I abandon the other.
+ */
+ for (i = 0; i < 2; i++) {
+ loopsize[i] = nloop[i] = 0;
+ loop[i] = NULL;
+ looppos[i].x = x;
+ looppos[i].y = y;
+ looppos[i].direction = d;
+ }
+ while (1) {
+ for (i = 0; i < 2; i++) {
+ int x2, y2, j;
+
+ x = looppos[i].x;
+ y = looppos[i].y;
+ d = looppos[i].direction;
+
+ OFFSETWH(x2, y2, x, y, d, w, h);
+
+ /*
+ * Add this path segment to the loop, unless it exactly
+ * reverses the previous one on the loop in which case
+ * we take it away again.
+ */
+#ifdef PERTURB_DIAGNOSTICS
+ printf("looppos[%d] = %d,%d:%d\n", i, x, y, d);
+#endif
+ if (nloop[i] > 0 &&
+ loop[i][nloop[i]-1].x == x2 &&
+ loop[i][nloop[i]-1].y == y2 &&
+ loop[i][nloop[i]-1].direction == F(d)) {
+#ifdef PERTURB_DIAGNOSTICS
+ printf("removing path segment %d,%d:%d from loop[%d]\n",
+ x2, y2, F(d), i);
+#endif
+ nloop[i]--;
+ } else {
+ if (nloop[i] >= loopsize[i]) {
+ loopsize[i] = loopsize[i] * 3 / 2 + 32;
+ loop[i] = sresize(loop[i], loopsize[i], struct xyd);
+ }
+#ifdef PERTURB_DIAGNOSTICS
+ printf("adding path segment %d,%d:%d to loop[%d]\n",
+ x, y, d, i);
+#endif
+ loop[i][nloop[i]++] = looppos[i];
+ }
+
+#ifdef PERTURB_DIAGNOSTICS
+ printf("tile at new location is %x\n", tiles[y2*w+x2] & 0xF);
+#endif
+ d = F(d);
+ for (j = 0; j < 4; j++) {
+ if (i == 0)
+ d = A(d);
+ else
+ d = C(d);
+#ifdef PERTURB_DIAGNOSTICS
+ printf("trying dir %d\n", d);
+#endif
+ if (tiles[y2*w+x2] & d) {
+ looppos[i].x = x2;
+ looppos[i].y = y2;
+ looppos[i].direction = d;
+ break;
+ }
+ }
+
+ assert(j < 4);
+ assert(nloop[i] > 0);
+
+ if (looppos[i].x == loop[i][0].x &&
+ looppos[i].y == loop[i][0].y &&
+ looppos[i].direction == loop[i][0].direction) {
+#ifdef PERTURB_DIAGNOSTICS
+ printf("loop %d finished tracking\n", i);
+#endif
+
+ /*
+ * Having found our loop, we now sever it at a
+ * randomly chosen point - absolutely any will do -
+ * which is not the one we joined it at to begin
+ * with. Conveniently, the one we joined it at is
+ * loop[i][0], so we just avoid that one.
+ */
+ j = random_upto(rs, nloop[i]-1) + 1;
+ x = loop[i][j].x;
+ y = loop[i][j].y;
+ d = loop[i][j].direction;
+ OFFSETWH(x2, y2, x, y, d, w, h);
+ tiles[y*w+x] &= ~d;
+ tiles[y2*w+x2] &= ~F(d);
+
+ break;
+ }
+ }
+ if (i < 2)
+ break;
+ }
+ sfree(loop[0]);
+ sfree(loop[1]);
+
+ /*
+ * Finally, we must mark the entire disputed section as locked,
+ * to prevent the perturb function being called on it multiple
+ * times.
+ *
+ * To do this, we _sort_ the perimeter of the area. The
+ * existing xyd_cmp function will arrange things into columns
+ * for us, in such a way that each column has the edges in
+ * vertical order. Then we can work down each column and fill
+ * in all the squares between an up edge and a down edge.
+ */
+ qsort(perimeter, nperim, sizeof(struct xyd), xyd_cmp);
+ x = y = -1;
+ for (i = 0; i <= nperim; i++) {
+ if (i == nperim || perimeter[i].x > x) {
+ /*
+ * Fill in everything from the last Up edge to the
+ * bottom of the grid, if necessary.
+ */
+ if (x != -1) {
+ while (y < h) {
+#ifdef PERTURB_DIAGNOSTICS
+ printf("resolved: locking tile %d,%d\n", x, y);
+#endif
+ tiles[y * w + x] |= LOCKED;
+ y++;
+ }
+ x = y = -1;
+ }
+
+ if (i == nperim)
+ break;
+
+ x = perimeter[i].x;
+ y = 0;
+ }
+
+ if (perimeter[i].direction == U) {
+ x = perimeter[i].x;
+ y = perimeter[i].y;
+ } else if (perimeter[i].direction == D) {
+ /*
+ * Fill in everything from the last Up edge to here.
+ */
+ assert(x == perimeter[i].x && y <= perimeter[i].y);
+ while (y <= perimeter[i].y) {
+#ifdef PERTURB_DIAGNOSTICS
+ printf("resolved: locking tile %d,%d\n", x, y);
+#endif
+ tiles[y * w + x] |= LOCKED;
+ y++;
+ }
+ x = y = -1;
+ }
+ }
+
+ sfree(perimeter);
+}
+
static char *new_game_desc(game_params *params, random_state *rs,
game_aux_info **aux)
{
@@ -305,14 +1076,17 @@
w = params->width;
h = params->height;
+ cx = w / 2;
+ cy = h / 2;
+
tiles = snewn(w * h, unsigned char);
- memset(tiles, 0, w * h);
barriers = snewn(w * h, unsigned char);
- memset(barriers, 0, w * h);
- cx = w / 2;
- cy = h / 2;
+ begin_generation:
+ memset(tiles, 0, w * h);
+ memset(barriers, 0, w * h);
+
/*
* Construct the unshuffled grid.
*
@@ -355,7 +1129,7 @@
* containing no unreached squares, no full crosses _and_ no
* closed loops. []
*/
- possibilities = newtree234(xyd_cmp);
+ possibilities = newtree234(xyd_cmp_nc);
if (cx+1 < w)
add234(possibilities, new_xyd(cx, cy, R));
@@ -483,10 +1257,64 @@
assert(count234(possibilities) == 0);
freetree234(possibilities);
+ if (params->unique) {
+ int prevn = -1;
+
+ /*
+ * Run the solver to check unique solubility.
+ */
+ while (!net_solver(w, h, tiles, params->wrapping)) {
+ int n = 0;
+
+ /*
+ * We expect (in most cases) that most of the grid will
+ * be uniquely specified already, and the remaining
+ * ambiguous sections will be small and separate. So
+ * our strategy is to find each individual such
+ * section, and perform a perturbation on the network
+ * in that area.
+ */
+ for (y = 0; y < h; y++) for (x = 0; x < w; x++) {
+ if (x+1 < w && ((tiles[y*w+x] ^ tiles[y*w+x+1]) & LOCKED)) {
+ n++;
+ if (tiles[y*w+x] & LOCKED)
+ perturb(w, h, tiles, params->wrapping, rs, x+1, y, L);
+ else
+ perturb(w, h, tiles, params->wrapping, rs, x, y, R);
+ }
+ if (y+1 < h && ((tiles[y*w+x] ^ tiles[(y+1)*w+x]) & LOCKED)) {
+ n++;
+ if (tiles[y*w+x] & LOCKED)
+ perturb(w, h, tiles, params->wrapping, rs, x, y+1, U);
+ else
+ perturb(w, h, tiles, params->wrapping, rs, x, y, D);
+ }
+ }
+
+ /*
+ * Now n counts the number of ambiguous sections we
+ * have fiddled with. If we haven't managed to decrease
+ * it from the last time we ran the solver, give up and
+ * regenerate the entire grid.
+ */
+ if (prevn != -1 && prevn <= n)
+ goto begin_generation; /* (sorry) */
+
+ prevn = n;
+ }
+
+ /*
+ * The solver will have left a lot of LOCKED bits lying
+ * around in the tiles array. Remove them.
+ */
+ for (x = 0; x < w*h; x++)
+ tiles[x] &= ~LOCKED;
+ }
+
/*
* Now compute a list of the possible barrier locations.
*/
- barriertree = newtree234(xyd_cmp);
+ barriertree = newtree234(xyd_cmp_nc);
for (y = 0; y < h; y++) {
for (x = 0; x < w; x++) {
@@ -807,17 +1635,21 @@
game_state *ret;
if (!aux) {
- *error = "Solution not known for this puzzle";
- return NULL;
+ /*
+ * Run the internal solver on the provided grid. This might
+ * not yield a complete solution.
+ */
+ ret = dup_game(state);
+ net_solver(ret->width, ret->height, ret->tiles, ret->wrapping);
+ } else {
+ assert(aux->width == state->width);
+ assert(aux->height == state->height);
+ ret = dup_game(state);
+ memcpy(ret->tiles, aux->tiles, ret->width * ret->height);
+ ret->used_solve = ret->just_used_solve = TRUE;
+ ret->completed = TRUE;
}
- assert(aux->width == state->width);
- assert(aux->height == state->height);
- ret = dup_game(state);
- memcpy(ret->tiles, aux->tiles, ret->width * ret->height);
- ret->used_solve = ret->just_used_solve = TRUE;
- ret->completed = TRUE;
-
return ret;
}
@@ -850,7 +1682,7 @@
* We only store (x,y) pairs in todo, but it's easier to reuse
* xyd_cmp and just store direction 0 every time.
*/
- todo = newtree234(xyd_cmp);
+ todo = newtree234(xyd_cmp_nc);
index(state, active, state->cx, state->cy) = ACTIVE;
add234(todo, new_xyd(state->cx, state->cy, 0));
--- a/puzzles.but
+++ b/puzzles.but
@@ -346,6 +346,15 @@
higher number gives more barriers). Since barriers are immovable, they
act as constraints on the solution (i.e., hints).
+\dt \e{Ensure unique solution}
+
+\dd Normally, Net will make sure that the puzzles it presents have
+only one solution. Puzzles with ambiguous sections can be more
+difficult and more subtle, so if you like you can turn off this
+feature and risk having ambiguous puzzles. (Also, finding \e{all}
+the possible solutions can be an additional challenge for an
+advanced player.)
+
\lcont{
The grid generation in Net has been carefully arranged so that the