ref: 8392232d57b4d1aba82b8005813d39854e8cf74e
parent: c321a88408c4541160c66151210bd048761ae392
author: Simon Tatham <anakin@pobox.com>
date: Sat Aug 6 06:24:52 EDT 2005
A bunch of new reasoning techniques in the Slant solver, leading to a new Hard mode. Also added a command-line `slantsolver' which can grade puzzles and show working. [originally from svn r6167]
--- a/Recipe
+++ b/Recipe
@@ -51,10 +51,12 @@
solosolver : [U] solo[STANDALONE_SOLVER] malloc
patternsolver : [U] pattern[STANDALONE_SOLVER] malloc
mineobfusc : [U] mines[STANDALONE_OBFUSCATOR] malloc random tree234 misc
+slantsolver : [U] slant[STANDALONE_SOLVER] dsf malloc
solosolver : [C] solo[STANDALONE_SOLVER] malloc
patternsolver : [C] pattern[STANDALONE_SOLVER] malloc
mineobfusc : [C] mines[STANDALONE_OBFUSCATOR] malloc random tree234 misc
+slantsolver : [C] slant[STANDALONE_SOLVER] dsf malloc
# The Windows Net shouldn't be called `net.exe' since Windows
# already has a reasonably important utility program by that name!
--- a/slant.c
+++ b/slant.c
@@ -40,8 +40,36 @@
NCOLOURS
};
+/*
+ * In standalone solver mode, `verbose' is a variable which can be
+ * set by command-line option; in debugging mode it's simply always
+ * true.
+ */
+#if defined STANDALONE_SOLVER
+#define SOLVER_DIAGNOSTICS
+int verbose = FALSE;
+#elif defined SOLVER_DIAGNOSTICS
+#define verbose TRUE
+#endif
+
+/*
+ * Difficulty levels. I do some macro ickery here to ensure that my
+ * enum and the various forms of my name list always match up.
+ */
+#define DIFFLIST(A) \
+ A(EASY,Easy,e) \
+ A(HARD,Hard,h)
+#define ENUM(upper,title,lower) DIFF_ ## upper,
+#define TITLE(upper,title,lower) #title,
+#define ENCODE(upper,title,lower) #lower
+#define CONFIG(upper,title,lower) ":" #title
+enum { DIFFLIST(ENUM) DIFFCOUNT };
+static char const *const slant_diffnames[] = { DIFFLIST(TITLE) };
+static char const slant_diffchars[] = DIFFLIST(ENCODE);
+#define DIFFCONFIG DIFFLIST(CONFIG)
+
struct game_params {
- int w, h;
+ int w, h, diff;
};
typedef struct game_clues {
@@ -64,14 +92,18 @@
game_params *ret = snew(game_params);
ret->w = ret->h = 8;
+ ret->diff = DIFF_EASY;
return ret;
}
static const struct game_params slant_presets[] = {
- {5, 5},
- {8, 8},
- {12, 10},
+ {5, 5, DIFF_EASY},
+ {5, 5, DIFF_HARD},
+ {8, 8, DIFF_EASY},
+ {8, 8, DIFF_HARD},
+ {12, 10, DIFF_EASY},
+ {12, 10, DIFF_HARD},
};
static int game_fetch_preset(int i, char **name, game_params **params)
@@ -85,7 +117,7 @@
ret = snew(game_params);
*ret = slant_presets[i];
- sprintf(str, "%dx%d", ret->w, ret->h);
+ sprintf(str, "%dx%d %s", ret->w, ret->h, slant_diffnames[ret->diff]);
*name = dupstr(str);
*params = ret;
@@ -111,7 +143,16 @@
if (*string == 'x') {
string++;
ret->h = atoi(string);
+ while (*string && isdigit((unsigned char)*string)) string++;
}
+ if (*string == 'd') {
+ int i;
+ string++;
+ for (i = 0; i < DIFFCOUNT; i++)
+ if (*string == slant_diffchars[i])
+ ret->diff = i;
+ if (*string) string++;
+ }
}
static char *encode_params(game_params *params, int full)
@@ -119,6 +160,8 @@
char data[256];
sprintf(data, "%dx%d", params->w, params->h);
+ if (full)
+ sprintf(data + strlen(data), "d%c", slant_diffchars[params->diff]);
return dupstr(data);
}
@@ -128,7 +171,7 @@
config_item *ret;
char buf[80];
- ret = snewn(3, config_item);
+ ret = snewn(2, config_item);
ret[0].name = "Width";
ret[0].type = C_STRING;
@@ -142,11 +185,16 @@
ret[1].sval = dupstr(buf);
ret[1].ival = 0;
- ret[2].name = NULL;
- ret[2].type = C_END;
- ret[2].sval = NULL;
- ret[2].ival = 0;
+ ret[2].name = "Difficulty";
+ ret[2].type = C_CHOICES;
+ ret[2].sval = DIFFCONFIG;
+ ret[2].ival = params->diff;
+ ret[3].name = NULL;
+ ret[3].type = C_END;
+ ret[3].sval = NULL;
+ ret[3].ival = 0;
+
return ret;
}
@@ -156,6 +204,7 @@
ret->w = atoi(cfg[0].sval);
ret->h = atoi(cfg[1].sval);
+ ret->diff = cfg[2].ival;
return ret;
}
@@ -167,37 +216,62 @@
* generator is actually capable of handling even zero grid
* dimensions without crashing. Puzzles with a zero-area grid
* are a bit boring, though, because they're already solved :-)
+ * And puzzles with a dimension of 1 can't be made Hard, which
+ * means the simplest thing is to forbid them altogether.
*/
- if (params->w < 1 || params->h < 1)
- return "Width and height must both be at least one";
+ if (params->w < 2 || params->h < 2)
+ return "Width and height must both be at least two";
return NULL;
}
/*
- * Utility function used by both the solver and the filled-grid
- * generator.
+ * Scratch space for solver.
*/
+struct solver_scratch {
+ /*
+ * Disjoint set forest which tracks the connected sets of
+ * points.
+ */
+ int *connected;
-static void fill_square(int w, int h, int y, int x, int v,
- signed char *soln, int *dsf)
-{
- int W = w+1 /*, H = h+1 */;
+ /*
+ * Counts the number of possible exits from each connected set
+ * of points. (That is, the number of possible _simultaneous_
+ * exits: an unconnected point labelled 2 has an exit count of
+ * 2 even if all four possible edges are still under
+ * consideration.)
+ */
+ int *exits;
- soln[y*w+x] = v;
+ /*
+ * Tracks whether each connected set of points includes a
+ * border point.
+ */
+ unsigned char *border;
- if (v < 0)
- dsf_merge(dsf, y*W+x, (y+1)*W+(x+1));
- else
- dsf_merge(dsf, y*W+(x+1), (y+1)*W+x);
-}
+ /*
+ * Another disjoint set forest. This one tracks _squares_ which
+ * are known to slant in the same direction.
+ */
+ int *equiv;
-/*
- * Scratch space for solver.
- */
-struct solver_scratch {
- int *dsf;
+ /*
+ * Stores slash values which we know for an equivalence class.
+ * When we fill in a square, we set slashval[canonify(x)] to
+ * the same value as soln[x], so that we can then spot other
+ * squares equivalent to it and fill them in immediately via
+ * their known equivalence.
+ */
+ signed char *slashval;
+
+ /*
+ * Useful to have this information automatically passed to
+ * solver subroutines. (This pointer is not dynamically
+ * allocated by new_scratch and free_scratch.)
+ */
+ const signed char *clues;
};
static struct solver_scratch *new_scratch(int w, int h)
@@ -204,25 +278,120 @@
{
int W = w+1, H = h+1;
struct solver_scratch *ret = snew(struct solver_scratch);
- ret->dsf = snewn(W*H, int);
+ ret->connected = snewn(W*H, int);
+ ret->exits = snewn(W*H, int);
+ ret->border = snewn(W*H, unsigned char);
+ ret->equiv = snewn(w*h, int);
+ ret->slashval = snewn(w*h, signed char);
return ret;
}
static void free_scratch(struct solver_scratch *sc)
{
- sfree(sc->dsf);
+ sfree(sc->slashval);
+ sfree(sc->equiv);
+ sfree(sc->border);
+ sfree(sc->exits);
+ sfree(sc->connected);
sfree(sc);
}
/*
+ * Wrapper on dsf_merge() which updates the `exits' and `border'
+ * arrays.
+ */
+static void merge_vertices(int *connected,
+ struct solver_scratch *sc, int i, int j)
+{
+ int exits = -1, border = FALSE; /* initialise to placate optimiser */
+
+ if (sc) {
+ i = dsf_canonify(connected, i);
+ j = dsf_canonify(connected, j);
+
+ /*
+ * We have used one possible exit from each of the two
+ * classes. Thus, the viable exit count of the new class is
+ * the sum of the old exit counts minus two.
+ */
+ exits = sc->exits[i] + sc->exits[j] - 2;
+
+ border = sc->border[i] || sc->border[j];
+ }
+
+ dsf_merge(connected, i, j);
+
+ if (sc) {
+ i = dsf_canonify(connected, i);
+ sc->exits[i] = exits;
+ sc->border[i] = border;
+ }
+}
+
+/*
+ * Called when we have just blocked one way out of a particular
+ * point. If that point is a non-clue point (thus has a variable
+ * number of exits), we have therefore decreased its potential exit
+ * count, so we must decrement the exit count for the group as a
+ * whole.
+ */
+static void decr_exits(struct solver_scratch *sc, int i)
+{
+ if (sc->clues[i] < 0) {
+ i = dsf_canonify(sc->connected, i);
+ sc->exits[i]--;
+ }
+}
+
+static void fill_square(int w, int h, int x, int y, int v,
+ signed char *soln,
+ int *connected, struct solver_scratch *sc)
+{
+ int W = w+1 /*, H = h+1 */;
+
+ assert(x >= 0 && x < w && y >= 0 && y < h);
+
+ if (soln[y*w+x] != 0) {
+ return; /* do nothing */
+ }
+
+#ifdef SOLVER_DIAGNOSTICS
+ if (verbose)
+ printf(" placing %c in %d,%d\n", v == -1 ? '\\' : '/', x, y);
+#endif
+
+ soln[y*w+x] = v;
+
+ if (sc) {
+ int c = dsf_canonify(sc->equiv, y*w+x);
+ sc->slashval[c] = v;
+ }
+
+ if (v < 0) {
+ merge_vertices(connected, sc, y*W+x, (y+1)*W+(x+1));
+ if (sc) {
+ decr_exits(sc, y*W+(x+1));
+ decr_exits(sc, (y+1)*W+x);
+ }
+ } else {
+ merge_vertices(connected, sc, y*W+(x+1), (y+1)*W+x);
+ if (sc) {
+ decr_exits(sc, y*W+x);
+ decr_exits(sc, (y+1)*W+(x+1));
+ }
+ }
+}
+
+/*
* Solver. Returns 0 for impossibility, 1 for success, 2 for
* ambiguity or failure to converge.
*/
static int slant_solve(int w, int h, const signed char *clues,
- signed char *soln, struct solver_scratch *sc)
+ signed char *soln, struct solver_scratch *sc,
+ int difficulty)
{
int W = w+1, H = h+1;
- int x, y, i;
+ int x, y, i, j;
int done_something;
/*
@@ -230,14 +399,118 @@
*/
memset(soln, 0, w*h);
+ sc->clues = clues;
+
/*
* Establish a disjoint set forest for tracking connectedness
* between grid points.
*/
for (i = 0; i < W*H; i++)
- sc->dsf[i] = i; /* initially all distinct */
+ sc->connected[i] = i; /* initially all distinct */
/*
+ * Establish a disjoint set forest for tracking which squares
+ * are known to slant in the same direction.
+ */
+ for (i = 0; i < w*h; i++)
+ sc->equiv[i] = i; /* initially all distinct */
+
+ /*
+ * Clear the slashval array.
+ */
+ memset(sc->slashval, 0, w*h);
+
+ /*
+ * Initialise the `exits' and `border' arrays. Theses is used
+ * to do second-order loop avoidance: the dual of the no loops
+ * constraint is that every point must be somehow connected to
+ * the border of the grid (otherwise there would be a solid
+ * loop around it which prevented this).
+ *
+ * I define a `dead end' to be a connected group of points
+ * which contains no border point, and which can form at most
+ * one new connection outside itself. Then I forbid placing an
+ * edge so that it connects together two dead-end groups, since
+ * this would yield a non-border-connected isolated subgraph
+ * with no further scope to extend it.
+ */
+ for (y = 0; y < H; y++)
+ for (x = 0; x < W; x++) {
+ if (y == 0 || y == H-1 || x == 0 || x == W-1)
+ sc->border[y*W+x] = TRUE;
+ else
+ sc->border[y*W+x] = FALSE;
+
+ if (clues[y*W+x] < 0)
+ sc->exits[y*W+x] = 4;
+ else
+ sc->exits[y*W+x] = clues[y*W+x];
+ }
+
+ /*
+ * Make a one-off preliminary pass over the grid looking for
+ * starting-point arrangements. The ones we need to spot are:
+ *
+ * - two adjacent 1s in the centre of the grid imply that each
+ * one's single line points towards the other. (If either 1
+ * were connected on the far side, the two squares shared
+ * between the 1s would both link to the other 1 as a
+ * consequence of neither linking to the first.) Thus, we
+ * can fill in the four squares around them.
+ *
+ * - dually, two adjacent 3s imply that each one's _non_-line
+ * points towards the other.
+ *
+ * - if the pair of 1s and 3s is not _adjacent_ but is
+ * separated by one or more 2s, the reasoning still applies.
+ *
+ * This is more advanced than just spotting obvious starting
+ * squares such as central 4s and edge 2s, so we disable it on
+ * DIFF_EASY.
+ *
+ * (I don't like this loop; it feels grubby to me. My
+ * mathematical intuition feels there ought to be some more
+ * general deductive form which contains this loop as a special
+ * case, but I can't bring it to mind right now.)
+ */
+ if (difficulty > DIFF_EASY) {
+ for (y = 1; y+1 < H; y++)
+ for (x = 1; x+1 < W; x++) {
+ int v = clues[y*W+x], s, x2, y2, dx, dy;
+ if (v != 1 && v != 3)
+ continue;
+ /* Slash value of the square up and left of (x,y). */
+ s = (v == 1 ? +1 : -1);
+
+ /* Look in each direction once. */
+ for (dy = 0; dy < 2; dy++) {
+ dx = 1 - dy;
+ x2 = x+dx;
+ y2 = y+dy;
+ if (x2+1 >= W || y2+1 >= H)
+ continue; /* too close to the border */
+ while (x2+dx+1 < W && y2+dy+1 < H && clues[y2*W+x2] == 2)
+ x2 += dx, y2 += dy;
+ if (clues[y2*W+x2] == v) {
+#ifdef SOLVER_DIAGNOSTICS
+ if (verbose)
+ printf("found adjacent %ds at %d,%d and %d,%d\n",
+ v, x, y, x2, y2);
+#endif
+ fill_square(w, h, x-1, y-1, s, soln,
+ sc->connected, sc);
+ fill_square(w, h, x-1+dy, y-1+dx, -s, soln,
+ sc->connected, sc);
+ fill_square(w, h, x2, y2, s, soln,
+ sc->connected, sc);
+ fill_square(w, h, x2-dy, y2-dx, -s, soln,
+ sc->connected, sc);
+ }
+ }
+ }
+ }
+
+ /*
* Repeatedly try to deduce something until we can't.
*/
do {
@@ -250,26 +523,94 @@
*/
for (y = 0; y < H; y++)
for (x = 0; x < W; x++) {
- int nu, nl, v, c;
+ struct {
+ int pos, slash;
+ } neighbours[4];
+ int nneighbours;
+ int nu, nl, c, s, eq, eq2, last, meq, mj1, mj2;
if ((c = clues[y*W+x]) < 0)
continue;
/*
- * We have a clue point. Count up the number of
- * undecided neighbours, and also the number of
- * lines already present.
+ * We have a clue point. Start by listing its
+ * neighbouring squares, in order around the point,
+ * together with the type of slash that would be
+ * required in that square to connect to the point.
*/
+ nneighbours = 0;
+ if (x > 0 && y > 0) {
+ neighbours[nneighbours].pos = (y-1)*w+(x-1);
+ neighbours[nneighbours].slash = -1;
+ nneighbours++;
+ }
+ if (x > 0 && y < h) {
+ neighbours[nneighbours].pos = y*w+(x-1);
+ neighbours[nneighbours].slash = +1;
+ nneighbours++;
+ }
+ if (x < w && y < h) {
+ neighbours[nneighbours].pos = y*w+x;
+ neighbours[nneighbours].slash = -1;
+ nneighbours++;
+ }
+ if (x < w && y > 0) {
+ neighbours[nneighbours].pos = (y-1)*w+x;
+ neighbours[nneighbours].slash = +1;
+ nneighbours++;
+ }
+
+ /*
+ * Count up the number of undecided neighbours, and
+ * also the number of lines already present.
+ *
+ * If we're not on DIFF_EASY, then in this loop we
+ * also track whether we've seen two adjacent empty
+ * squares belonging to the same equivalence class
+ * (meaning they have the same type of slash). If
+ * so, we count them jointly as one line.
+ */
nu = 0;
nl = c;
- if (x > 0 && y > 0 && (v = soln[(y-1)*w+(x-1)]) != +1)
- v == 0 ? nu++ : nl--;
- if (x > 0 && y < h && (v = soln[y*w+(x-1)]) != -1)
- v == 0 ? nu++ : nl--;
- if (x < w && y > 0 && (v = soln[(y-1)*w+x]) != -1)
- v == 0 ? nu++ : nl--;
- if (x < w && y < h && (v = soln[y*w+x]) != +1)
- v == 0 ? nu++ : nl--;
+ last = neighbours[nneighbours-1].pos;
+ if (soln[last] == 0)
+ eq = dsf_canonify(sc->equiv, last);
+ else
+ eq = -1;
+ meq = mj1 = mj2 = -1;
+ for (i = 0; i < nneighbours; i++) {
+ j = neighbours[i].pos;
+ s = neighbours[i].slash;
+ if (soln[j] == 0) {
+ nu++; /* undecided */
+ if (meq < 0 && difficulty > DIFF_EASY) {
+ eq2 = dsf_canonify(sc->equiv, j);
+ if (eq == eq2 && last != j) {
+ /*
+ * We've found an equivalent pair.
+ * Mark it. This also inhibits any
+ * further equivalence tracking
+ * around this square, since we can
+ * only handle one pair (and in
+ * particular we want to avoid
+ * being misled by two overlapping
+ * equivalence pairs).
+ */
+ meq = eq;
+ mj1 = last;
+ mj2 = j;
+ nl--; /* count one line */
+ nu -= 2; /* and lose two undecideds */
+ } else
+ eq = eq2;
+ }
+ } else {
+ eq = -1;
+ if (soln[j] == s)
+ nl--; /* here's a line */
+ }
+ last = j;
+ }
/*
* Check the counts.
@@ -278,28 +619,99 @@
/*
* No consistent value for this at all!
*/
+#ifdef SOLVER_DIAGNOSTICS
+ if (verbose)
+ printf("need %d / %d lines around clue point at %d,%d!\n",
+ nl, nu, x, y);
+#endif
return 0; /* impossible */
}
if (nu > 0 && (nl == 0 || nl == nu)) {
#ifdef SOLVER_DIAGNOSTICS
- printf("%s around clue point at %d,%d\n",
- nl ? "filling" : "emptying", x, y);
+ if (verbose) {
+ if (meq >= 0)
+ printf("partially (since %d,%d == %d,%d) ",
+ mj1%w, mj1/w, mj2%w, mj2/w);
+ printf("%s around clue point at %d,%d\n",
+ nl ? "filling" : "emptying", x, y);
+ }
#endif
- if (x > 0 && y > 0 && soln[(y-1)*w+(x-1)] == 0)
- fill_square(w, h, y-1, x-1, (nl ? -1 : +1), soln,
- sc->dsf);
- if (x > 0 && y < h && soln[y*w+(x-1)] == 0)
- fill_square(w, h, y, x-1, (nl ? +1 : -1), soln,
- sc->dsf);
- if (x < w && y > 0 && soln[(y-1)*w+x] == 0)
- fill_square(w, h, y-1, x, (nl ? +1 : -1), soln,
- sc->dsf);
- if (x < w && y < h && soln[y*w+x] == 0)
- fill_square(w, h, y, x, (nl ? -1 : +1), soln,
- sc->dsf);
+ for (i = 0; i < nneighbours; i++) {
+ j = neighbours[i].pos;
+ s = neighbours[i].slash;
+ if (soln[j] == 0 && j != mj1 && j != mj2)
+ fill_square(w, h, j%w, j/w, (nl ? s : -s), soln,
+ sc->connected, sc);
+ }
done_something = TRUE;
+ } else if (nu == 2 && nl == 1 && difficulty > DIFF_EASY) {
+ /*
+ * If we have precisely two undecided squares
+ * and precisely one line to place between
+ * them, _and_ those squares are adjacent, then
+ * we can mark them as equivalent to one
+ * another.
+ *
+ * This even applies if meq >= 0: if we have a
+ * 2 clue point and two of its neighbours are
+ * already marked equivalent, we can indeed
+ * mark the other two as equivalent.
+ *
+ * We don't bother with this on DIFF_EASY,
+ * since we wouldn't have used the results
+ * anyway.
+ */
+ last = -1;
+ for (i = 0; i < nneighbours; i++) {
+ j = neighbours[i].pos;
+ if (soln[j] == 0 && j != mj1 && j != mj2) {
+ if (last < 0)
+ last = i;
+ else if (last == i-1 || (last == 0 && i == 3))
+ break; /* found a pair */
+ }
+ }
+ if (i < nneighbours) {
+ int sv1, sv2;
+
+ assert(last >= 0);
+ /*
+ * neighbours[last] and neighbours[i] are
+ * the pair. Mark them equivalent.
+ */
+#ifdef SOLVER_DIAGNOSTICS
+ if (verbose) {
+ if (meq >= 0)
+ printf("since %d,%d == %d,%d, ",
+ mj1%w, mj1/w, mj2%w, mj2/w);
+ }
+#endif
+ mj1 = neighbours[last].pos;
+ mj2 = neighbours[i].pos;
+#ifdef SOLVER_DIAGNOSTICS
+ if (verbose)
+ printf("clue point at %d,%d implies %d,%d == %d,"
+ "%d\n", x, y, mj1%w, mj1/w, mj2%w, mj2/w);
+#endif
+ mj1 = dsf_canonify(sc->equiv, mj1);
+ sv1 = sc->slashval[mj1];
+ mj2 = dsf_canonify(sc->equiv, mj2);
+ sv2 = sc->slashval[mj2];
+ if (sv1 != 0 && sv2 != 0 && sv1 != sv2) {
+#ifdef SOLVER_DIAGNOSTICS
+ if (verbose)
+ printf("merged two equivalence classes with"
+ " different slash values!\n");
+#endif
+ return 0;
+ }
+ sv1 = sv1 ? sv1 : sv2;
+ dsf_merge(sc->equiv, mj1, mj2);
+ mj1 = dsf_canonify(sc->equiv, mj1);
+ sc->slashval[mj1] = sv1;
+ }
}
}
@@ -309,50 +721,112 @@
/*
* Failing that, we now apply the second condition, which
* is that no square may be filled in such a way as to form
- * a loop.
+ * a loop. Also in this loop (since it's over squares
+ * rather than points), we check slashval to see if we've
+ * already filled in another square in the same equivalence
+ * class.
+ *
+ * The slashval check is disabled on DIFF_EASY, as is dead
+ * end avoidance. Only _immediate_ loop avoidance remains.
*/
for (y = 0; y < h; y++)
for (x = 0; x < w; x++) {
- int fs, bs;
+ int fs, bs, v;
+ int c1, c2;
+#ifdef SOLVER_DIAGNOSTICS
+ char *reason = "<internal error>";
+#endif
if (soln[y*w+x])
continue; /* got this one already */
- fs = (dsf_canonify(sc->dsf, y*W+x) ==
- dsf_canonify(sc->dsf, (y+1)*W+(x+1)));
- bs = (dsf_canonify(sc->dsf, (y+1)*W+x) ==
- dsf_canonify(sc->dsf, y*W+(x+1)));
+ fs = FALSE;
+ bs = FALSE;
+ if (difficulty > DIFF_EASY)
+ v = sc->slashval[dsf_canonify(sc->equiv, y*w+x)];
+ else
+ v = 0;
+
+ /*
+ * Try to rule out connectivity between (x,y) and
+ * (x+1,y+1); if successful, we will deduce that we
+ * must have a forward slash.
+ */
+ c1 = dsf_canonify(sc->connected, y*W+x);
+ c2 = dsf_canonify(sc->connected, (y+1)*W+(x+1));
+ if (c1 == c2) {
+ fs = TRUE;
+#ifdef SOLVER_DIAGNOSTICS
+ reason = "simple loop avoidance";
+#endif
+ }
+ if (difficulty > DIFF_EASY &&
+ !sc->border[c1] && !sc->border[c2] &&
+ sc->exits[c1] <= 1 && sc->exits[c2] <= 1) {
+ fs = TRUE;
+#ifdef SOLVER_DIAGNOSTICS
+ reason = "dead end avoidance";
+#endif
+ }
+ if (v == +1) {
+ fs = TRUE;
+#ifdef SOLVER_DIAGNOSTICS
+ reason = "equivalence to an already filled square";
+#endif
+ }
+
+ /*
+ * Now do the same between (x+1,y) and (x,y+1), to
+ * see if we are required to have a backslash.
+ */
+ c1 = dsf_canonify(sc->connected, y*W+(x+1));
+ c2 = dsf_canonify(sc->connected, (y+1)*W+x);
+ if (c1 == c2) {
+ bs = TRUE;
+#ifdef SOLVER_DIAGNOSTICS
+ reason = "simple loop avoidance";
+#endif
+ }
+ if (difficulty > DIFF_EASY &&
+ !sc->border[c1] && !sc->border[c2] &&
+ sc->exits[c1] <= 1 && sc->exits[c2] <= 1) {
+ bs = TRUE;
+#ifdef SOLVER_DIAGNOSTICS
+ reason = "dead end avoidance";
+#endif
+ }
+ if (v == -1) {
+ bs = TRUE;
+#ifdef SOLVER_DIAGNOSTICS
+ reason = "equivalence to an already filled square";
+#endif
+ }
+
if (fs && bs) {
/*
- * Loop avoidance leaves no consistent value
- * for this at all!
+ * No consistent value for this at all!
*/
+#ifdef SOLVER_DIAGNOSTICS
+ if (verbose)
+ printf("%d,%d has no consistent slash!\n", x, y);
+#endif
return 0; /* impossible */
}
if (fs) {
- /*
- * Top left and bottom right corners of this
- * square are already connected, which means we
- * aren't allowed to put a backslash in here.
- */
#ifdef SOLVER_DIAGNOSTICS
- printf("placing / in %d,%d by loop avoidance\n", x, y);
+ if (verbose)
+ printf("employing %s\n", reason);
#endif
- fill_square(w, h, y, x, +1, soln, sc->dsf);
+ fill_square(w, h, x, y, +1, soln, sc->connected, sc);
done_something = TRUE;
} else if (bs) {
- /*
- * Top right and bottom left corners of this
- * square are already connected, which means we
- * aren't allowed to put a forward slash in
- * here.
- */
#ifdef SOLVER_DIAGNOSTICS
- printf("placing \\ in %d,%d by loop avoidance\n", x, y);
+ if (verbose)
+ printf("employing %s\n", reason);
#endif
- fill_square(w, h, y, x, -1, soln, sc->dsf);
+ fill_square(w, h, x, y, -1, soln, sc->connected, sc);
done_something = TRUE;
}
}
@@ -375,7 +849,7 @@
{
int W = w+1, H = h+1;
int x, y, i;
- int *dsf, *indices;
+ int *connected, *indices;
/*
* Clear the output.
@@ -386,9 +860,9 @@
* Establish a disjoint set forest for tracking connectedness
* between grid points.
*/
- dsf = snewn(W*H, int);
+ connected = snewn(W*H, int);
for (i = 0; i < W*H; i++)
- dsf[i] = i; /* initially all distinct */
+ connected[i] = i; /* initially all distinct */
/*
* Prepare a list of the squares in the grid, and fill them in
@@ -408,15 +882,16 @@
y = indices[i] / w;
x = indices[i] % w;
- fs = (dsf_canonify(dsf, y*W+x) ==
- dsf_canonify(dsf, (y+1)*W+(x+1)));
- bs = (dsf_canonify(dsf, (y+1)*W+x) ==
- dsf_canonify(dsf, y*W+(x+1)));
+ fs = (dsf_canonify(connected, y*W+x) ==
+ dsf_canonify(connected, (y+1)*W+(x+1)));
+ bs = (dsf_canonify(connected, (y+1)*W+x) ==
+ dsf_canonify(connected, y*W+(x+1)));
/*
* It isn't possible to get into a situation where we
* aren't allowed to place _either_ type of slash in a
- * square.
+ * square. Thus, filled-grid generation never has to
+ * backtrack.
*
* Proof (thanks to Gareth Taylor):
*
@@ -438,11 +913,11 @@
assert(!(fs && bs));
v = fs ? +1 : bs ? -1 : 2 * random_upto(rs, 2) - 1;
- fill_square(w, h, y, x, v, soln, dsf);
+ fill_square(w, h, x, y, v, soln, connected, NULL);
}
sfree(indices);
- sfree(dsf);
+ sfree(connected);
}
static char *new_game_desc(game_params *params, random_state *rs,
@@ -452,7 +927,7 @@
signed char *soln, *tmpsoln, *clues;
int *clueindices;
struct solver_scratch *sc;
- int x, y, v, i;
+ int x, y, v, i, j;
char *desc;
soln = snewn(w*h, signed char);
@@ -481,22 +956,66 @@
clues[y*W+x] = v;
}
- } while (slant_solve(w, h, clues, tmpsoln, sc) != 1);
- /*
- * Remove as many clues as possible while retaining solubility.
- */
- for (i = 0; i < W*H; i++)
- clueindices[i] = i;
- shuffle(clueindices, W*H, sizeof(*clueindices), rs);
- for (i = 0; i < W*H; i++) {
- y = clueindices[i] / W;
- x = clueindices[i] % W;
- v = clues[y*W+x];
- clues[y*W+x] = -1;
- if (slant_solve(w, h, clues, tmpsoln, sc) != 1)
- clues[y*W+x] = v; /* put it back */
- }
+ /*
+ * With all clue points filled in, all puzzles are easy: we can
+ * simply process the clue points in lexicographic order, and
+ * at each clue point we will always have at most one square
+ * undecided, which we can then fill in uniquely.
+ */
+ assert(slant_solve(w, h, clues, tmpsoln, sc, DIFF_EASY) == 1);
+
+ /*
+ * Remove as many clues as possible while retaining solubility.
+ *
+ * In DIFF_HARD mode, we prioritise the removal of obvious
+ * starting points (4s, 0s, border 2s and corner 1s), on
+ * the grounds that having as few of these as possible
+ * seems like a good thing. In particular, we can often get
+ * away without _any_ completely obvious starting points,
+ * which is even better.
+ */
+ for (i = 0; i < W*H; i++)
+ clueindices[i] = i;
+ shuffle(clueindices, W*H, sizeof(*clueindices), rs);
+ for (j = 0; j < 2; j++) {
+ for (i = 0; i < W*H; i++) {
+ int pass, yb, xb;
+
+ y = clueindices[i] / W;
+ x = clueindices[i] % W;
+ v = clues[y*W+x];
+
+ /*
+ * Identify which pass we should process this point
+ * in. If it's an obvious start point, _or_ we're
+ * in DIFF_EASY, then it goes in pass 0; otherwise
+ * pass 1.
+ */
+ xb = (x == 0 || x == W-1);
+ yb = (y == 0 || y == H-1);
+ if (params->diff == DIFF_EASY || v == 4 || v == 0 ||
+ (v == 2 && (xb||yb)) || (v == 1 && xb && yb))
+ pass = 0;
+ else
+ pass = 1;
+
+ if (pass == j) {
+ clues[y*W+x] = -1;
+ if (slant_solve(w, h, clues, tmpsoln, sc,
+ params->diff) != 1)
+ clues[y*W+x] = v; /* put it back */
+ }
+ }
+ }
+
+ /*
+ * And finally, verify that the grid is of _at least_ the
+ * requested difficulty, by running the solver one level
+ * down and verifying that it can't manage it.
+ */
+ } while (params->diff > 0 &&
+ slant_solve(w, h, clues, tmpsoln, sc, params->diff - 1) <= 1);
/*
* Now we have the clue set as it will be presented to the
@@ -731,7 +1250,7 @@
struct solver_scratch *sc = new_scratch(w, h);
soln = snewn(w*h, signed char);
bs = -1;
- ret = slant_solve(w, h, state->clues->clues, soln, sc);
+ ret = slant_solve(w, h, state->clues->clues, soln, sc, DIFF_HARD);
free_scratch(sc);
if (ret != 1) {
sfree(soln);
@@ -1271,3 +1790,125 @@
FALSE, game_timing_state,
0, /* mouse_priorities */
};
+
+#ifdef STANDALONE_SOLVER
+
+#include <stdarg.h>
+
+/*
+ * gcc -DSTANDALONE_SOLVER -o slantsolver slant.c malloc.c
+ */
+
+void frontend_default_colour(frontend *fe, float *output) {}
+void draw_text(frontend *fe, int x, int y, int fonttype, int fontsize,
+ int align, int colour, char *text) {}
+void draw_rect(frontend *fe, int x, int y, int w, int h, int colour) {}
+void draw_line(frontend *fe, int x1, int y1, int x2, int y2, int colour) {}
+void draw_polygon(frontend *fe, int *coords, int npoints,
+ int fillcolour, int outlinecolour) {}
+void draw_circle(frontend *fe, int cx, int cy, int radius,
+ int fillcolour, int outlinecolour) {}
+void clip(frontend *fe, int x, int y, int w, int h) {}
+void unclip(frontend *fe) {}
+void start_draw(frontend *fe) {}
+void draw_update(frontend *fe, int x, int y, int w, int h) {}
+void end_draw(frontend *fe) {}
+unsigned long random_bits(random_state *state, int bits)
+{ assert(!"Shouldn't get randomness"); return 0; }
+unsigned long random_upto(random_state *state, unsigned long limit)
+{ assert(!"Shouldn't get randomness"); return 0; }
+void shuffle(void *array, int nelts, int eltsize, random_state *rs)
+{ assert(!"Shouldn't get randomness"); }
+
+void fatal(char *fmt, ...)
+{
+ va_list ap;
+
+ fprintf(stderr, "fatal error: ");
+
+ va_start(ap, fmt);
+ vfprintf(stderr, fmt, ap);
+ va_end(ap);
+
+ fprintf(stderr, "\n");
+ exit(1);
+}
+
+int main(int argc, char **argv)
+{
+ game_params *p;
+ game_state *s;
+ char *id = NULL, *desc, *err;
+ int grade = FALSE;
+ int ret;
+ struct solver_scratch *sc;
+
+ while (--argc > 0) {
+ char *p = *++argv;
+ if (!strcmp(p, "-v")) {
+ verbose = TRUE;
+ } else if (!strcmp(p, "-g")) {
+ grade = TRUE;
+ } else if (*p == '-') {
+ fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p);
+ return 1;
+ } else {
+ id = p;
+ }
+ }
+
+ if (!id) {
+ fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]);
+ return 1;
+ }
+
+ desc = strchr(id, ':');
+ if (!desc) {
+ fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]);
+ return 1;
+ }
+ *desc++ = '\0';
+
+ p = default_params();
+ decode_params(p, id);
+ err = validate_desc(p, desc);
+ if (err) {
+ fprintf(stderr, "%s: %s\n", argv[0], err);
+ return 1;
+ }
+ s = new_game(NULL, p, desc);
+
+ sc = new_scratch(p->w, p->h);
+
+ if (grade) {
+ ret = slant_solve(p->w, p->h, s->clues->clues,
+ s->soln, sc, DIFF_EASY);
+ if (ret == 0)
+ printf("Difficulty rating: impossible (no solution exists)\n");
+ else if (ret == 1)
+ printf("Difficulty rating: Easy\n");
+ else {
+ ret = slant_solve(p->w, p->h, s->clues->clues,
+ s->soln, sc, DIFF_HARD);
+ if (ret == 0)
+ printf("Difficulty rating: impossible (no solution exists)\n");
+ else if (ret == 1)
+ printf("Difficulty rating: Hard\n");
+ else
+ printf("Difficulty rating: harder than Hard, or ambiguous\n");
+ }
+ } else {
+ ret = slant_solve(p->w, p->h, s->clues->clues,
+ s->soln, sc, DIFF_HARD);
+ if (ret == 0)
+ printf("Puzzle is inconsistent\n");
+ else if (ret > 1)
+ printf("Unable to find a unique solution\n");
+ else
+ printf("%s\n", game_text_format(s));
+ }
+
+ return 0;
+}
+
+#endif