shithub: puzzles

Download patch

ref: 8158b5350d2d9321e08ffdd8b7a560ff14ee75cb
parent: 8b9dedcf7547b3c6bfe8706bee0d3c9a93fe002c
author: Simon Tatham <anakin@pobox.com>
date: Wed May 26 05:07:14 EDT 2004

Richard B's utterly evil `netslide': cross between Net and Sixteen.

[originally from svn r4257]

--- a/.cvsignore
+++ b/.cvsignore
@@ -1,5 +1,5 @@
 Makefile*
-net cube fifteen sixteen rect nullgame
+net cube fifteen sixteen rect netslide nullgame
 *.exe *.obj *.o
 *.map *.rsp
 *notes
--- a/LICENCE
+++ b/LICENCE
@@ -1,5 +1,7 @@
 This software is copyright (c) 2004 Simon Tatham.
 
+Portions copyright Richard Boulton.
+
 Permission is hereby granted, free of charge, to any person
 obtaining a copy of this software and associated documentation files
 (the "Software"), to deal in the Software without restriction,
--- a/Recipe
+++ b/Recipe
@@ -15,8 +15,10 @@
 WINDOWS  = windows user32.lib gdi32.lib comctl32.lib
 COMMON   = midend misc malloc random
 NET      = net tree234
+NETSLIDE = netslide tree234
 
 net      : [X] gtk COMMON NET
+netslide : [X] gtk COMMON NETSLIDE
 cube     : [X] gtk COMMON cube
 fifteen  : [X] gtk COMMON fifteen
 sixteen  : [X] gtk COMMON sixteen
@@ -25,6 +27,7 @@
 # The Windows Net shouldn't be called `net.exe' since Windows
 # already has a reasonably important utility program by that name!
 netgame  : [G] WINDOWS COMMON NET
+netslide : [G] WINDOWS COMMON NETSLIDE
 cube     : [G] WINDOWS COMMON cube
 fifteen  : [G] WINDOWS COMMON fifteen
 sixteen  : [G] WINDOWS COMMON sixteen
--- /dev/null
+++ b/netslide.c
@@ -1,0 +1,1514 @@
+/*
+ * netslide.c: cross between Net and Sixteen, courtesy of Richard
+ * Boulton.
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+#include <ctype.h>
+#include <math.h>
+
+#include "puzzles.h"
+#include "tree234.h"
+
+const char *const game_name = "Netslide";
+const int game_can_configure = TRUE;
+
+#define PI 3.141592653589793238462643383279502884197169399
+
+#define MATMUL(xr,yr,m,x,y) do { \
+    float rx, ry, xx = (x), yy = (y), *mat = (m); \
+    rx = mat[0] * xx + mat[2] * yy; \
+    ry = mat[1] * xx + mat[3] * yy; \
+    (xr) = rx; (yr) = ry; \
+} while (0)
+
+/* Direction and other bitfields */
+#define R 0x01
+#define U 0x02
+#define L 0x04
+#define D 0x08
+#define FLASHING 0x10
+#define ACTIVE 0x20
+/* Corner flags go in the barriers array */
+#define RU 0x10
+#define UL 0x20
+#define LD 0x40
+#define DR 0x80
+
+/* Get tile at given coordinate */
+#define T(state, x, y) ( (y) * (state)->width + (x) )
+
+/* Rotations: Anticlockwise, Clockwise, Flip, general rotate */
+#define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) )
+#define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) )
+#define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) )
+#define ROT(x, n) ( ((n)&3) == 0 ? (x) : \
+		    ((n)&3) == 1 ? A(x) : \
+		    ((n)&3) == 2 ? F(x) : C(x) )
+
+/* X and Y displacements */
+#define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 )
+#define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 )
+
+/* Bit count */
+#define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \
+		   (((x) & 0x02) >> 1) + ((x) & 0x01) )
+
+#define TILE_SIZE 48
+#define BORDER TILE_SIZE
+#define TILE_BORDER 1
+#define WINDOW_OFFSET 0
+
+#define ANIM_TIME 0.13F
+#define FLASH_FRAME 0.07F
+
+enum {
+    COL_BACKGROUND,
+    COL_FLASHING,
+    COL_BORDER,
+    COL_WIRE,
+    COL_ENDPOINT,
+    COL_POWERED,
+    COL_BARRIER,
+    COL_LOWLIGHT,
+    COL_TEXT,
+    NCOLOURS
+};
+
+struct game_params {
+    int width;
+    int height;
+    int wrapping;
+    float barrier_probability;
+};
+
+struct game_state {
+    int width, height, cx, cy, wrapping, completed;
+    int move_count;
+
+    /* position (row or col number, starting at 0) of last move. */
+    int last_move_row, last_move_col;
+
+    /* direction of last move: +1 or -1 */
+    int last_move_dir;
+
+    unsigned char *tiles;
+    unsigned char *barriers;
+};
+
+#define OFFSET(x2,y2,x1,y1,dir,state) \
+    ( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \
+      (y2) = ((y1) + (state)->height + Y((dir))) % (state)->height)
+
+#define index(state, a, x, y) ( a[(y) * (state)->width + (x)] )
+#define tile(state, x, y)     index(state, (state)->tiles, x, y)
+#define barrier(state, x, y)  index(state, (state)->barriers, x, y)
+
+struct xyd {
+    int x, y, direction;
+};
+
+static int xyd_cmp(void *av, void *bv) {
+    struct xyd *a = (struct xyd *)av;
+    struct xyd *b = (struct xyd *)bv;
+    if (a->x < b->x)
+	return -1;
+    if (a->x > b->x)
+	return +1;
+    if (a->y < b->y)
+	return -1;
+    if (a->y > b->y)
+	return +1;
+    if (a->direction < b->direction)
+	return -1;
+    if (a->direction > b->direction)
+	return +1;
+    return 0;
+};
+
+static struct xyd *new_xyd(int x, int y, int direction)
+{
+    struct xyd *xyd = snew(struct xyd);
+    xyd->x = x;
+    xyd->y = y;
+    xyd->direction = direction;
+    return xyd;
+}
+
+void slide_col(game_state *state, int dir, int col);
+void slide_row(game_state *state, int dir, int row);
+
+/* ----------------------------------------------------------------------
+ * Manage game parameters.
+ */
+game_params *default_params(void)
+{
+    game_params *ret = snew(game_params);
+
+    ret->width = 3;
+    ret->height = 3;
+    ret->wrapping = FALSE;
+    ret->barrier_probability = 1.0;
+
+    return ret;
+}
+
+int game_fetch_preset(int i, char **name, game_params **params)
+{
+    game_params *ret;
+    char str[80];
+    static const struct { int x, y, wrap, bprob; const char* desc; } values[] = {
+        {3, 3, FALSE, 1.0, " easy"},
+        {3, 3, FALSE, 0.0, " medium"},
+        {3, 3, TRUE,  0.0, " hard"},
+        {4, 4, FALSE, 1.0, " easy"},
+        {4, 4, FALSE, 0.0, " medium"},
+        {4, 4, TRUE,  0.0, " hard"},
+        {5, 5, FALSE, 1.0, " easy"},
+        {5, 5, FALSE, 0.0, " medium"},
+        {5, 5, TRUE,  0.0, " hard"},
+    };
+
+    if (i < 0 || i >= lenof(values))
+        return FALSE;
+
+    ret = snew(game_params);
+    ret->width = values[i].x;
+    ret->height = values[i].y;
+    ret->wrapping = values[i].wrap;
+    ret->barrier_probability = values[i].bprob;
+
+    sprintf(str, "%dx%d%s", ret->width, ret->height,
+            values[i].desc);
+
+    *name = dupstr(str);
+    *params = ret;
+    return TRUE;
+}
+
+void free_params(game_params *params)
+{
+    sfree(params);
+}
+
+game_params *dup_params(game_params *params)
+{
+    game_params *ret = snew(game_params);
+    *ret = *params;		       /* structure copy */
+    return ret;
+}
+
+game_params *decode_params(char const *string)
+{
+    game_params *ret = default_params();
+    char const *p = string;
+
+    ret->wrapping = FALSE;
+    ret->barrier_probability = 0.0;
+
+    ret->width = atoi(p);
+    while (*p && isdigit(*p)) p++;
+    if (*p == 'x') {
+        p++;
+        ret->height = atoi(p);
+        while (*p && isdigit(*p)) p++;
+        if ( (ret->wrapping = (*p == 'w')) != 0 )
+            p++;
+        if (*p == 'b')
+            ret->barrier_probability = atof(p+1);
+    } else {
+        ret->height = ret->width;
+    }
+
+    return ret;
+}
+
+char *encode_params(game_params *params)
+{
+    char ret[400];
+    int len;
+
+    len = sprintf(ret, "%dx%d", params->width, params->height);
+    if (params->wrapping)
+        ret[len++] = 'w';
+    if (params->barrier_probability)
+        len += sprintf(ret+len, "b%g", params->barrier_probability);
+    assert(len < lenof(ret));
+    ret[len] = '\0';
+
+    return dupstr(ret);
+}
+
+config_item *game_configure(game_params *params)
+{
+    config_item *ret;
+    char buf[80];
+
+    ret = snewn(5, config_item);
+
+    ret[0].name = "Width";
+    ret[0].type = C_STRING;
+    sprintf(buf, "%d", params->width);
+    ret[0].sval = dupstr(buf);
+    ret[0].ival = 0;
+
+    ret[1].name = "Height";
+    ret[1].type = C_STRING;
+    sprintf(buf, "%d", params->height);
+    ret[1].sval = dupstr(buf);
+    ret[1].ival = 0;
+
+    ret[2].name = "Walls wrap around";
+    ret[2].type = C_BOOLEAN;
+    ret[2].sval = NULL;
+    ret[2].ival = params->wrapping;
+
+    ret[3].name = "Barrier probability";
+    ret[3].type = C_STRING;
+    sprintf(buf, "%g", params->barrier_probability);
+    ret[3].sval = dupstr(buf);
+    ret[3].ival = 0;
+
+    ret[4].name = NULL;
+    ret[4].type = C_END;
+    ret[4].sval = NULL;
+    ret[4].ival = 0;
+
+    return ret;
+}
+
+game_params *custom_params(config_item *cfg)
+{
+    game_params *ret = snew(game_params);
+
+    ret->width = atoi(cfg[0].sval);
+    ret->height = atoi(cfg[1].sval);
+    ret->wrapping = cfg[2].ival;
+    ret->barrier_probability = (float)atof(cfg[3].sval);
+
+    return ret;
+}
+
+char *validate_params(game_params *params)
+{
+    if (params->width <= 1 && params->height <= 1)
+	return "Width and height must both be greater than one";
+    if (params->width <= 1)
+	return "Width must be greater than one";
+    if (params->height <= 1)
+	return "Height must be greater than one";
+    if (params->barrier_probability < 0)
+	return "Barrier probability may not be negative";
+    if (params->barrier_probability > 1)
+	return "Barrier probability may not be greater than 1";
+    return NULL;
+}
+
+/* ----------------------------------------------------------------------
+ * Randomly select a new game seed.
+ */
+
+char *new_game_seed(game_params *params, random_state *rs)
+{
+    /*
+     * The full description of a Net game is far too large to
+     * encode directly in the seed, so by default we'll have to go
+     * for the simple approach of providing a random-number seed.
+     * 
+     * (This does not restrict me from _later on_ inventing a seed
+     * string syntax which can never be generated by this code -
+     * for example, strings beginning with a letter - allowing me
+     * to type in a precise game, and have new_game detect it and
+     * understand it and do something completely different.)
+     */
+    char buf[40];
+    sprintf(buf, "%lu", random_bits(rs, 32));
+    return dupstr(buf);
+}
+
+char *validate_seed(game_params *params, char *seed)
+{
+    /*
+     * Since any string at all will suffice to seed the RNG, there
+     * is no validation required.
+     */
+    return NULL;
+}
+
+/* ----------------------------------------------------------------------
+ * Construct an initial game state, given a seed and parameters.
+ */
+
+game_state *new_game(game_params *params, char *seed)
+{
+    random_state *rs;
+    game_state *state;
+    tree234 *possibilities, *barriers;
+    int w, h, x, y, nbarriers;
+
+    assert(params->width > 0 && params->height > 0);
+    assert(params->width > 1 || params->height > 1);
+
+    /*
+     * Create a blank game state.
+     */
+    state = snew(game_state);
+    w = state->width = params->width;
+    h = state->height = params->height;
+    state->cx = state->width / 2;
+    state->cy = state->height / 2;
+    state->wrapping = params->wrapping;
+    state->completed = 0;
+    state->move_count = 0;
+    state->last_move_row = -1;
+    state->last_move_col = -1;
+    state->last_move_dir = 0;
+    state->tiles = snewn(state->width * state->height, unsigned char);
+    memset(state->tiles, 0, state->width * state->height);
+    state->barriers = snewn(state->width * state->height, unsigned char);
+    memset(state->barriers, 0, state->width * state->height);
+
+    /*
+     * Set up border barriers if this is a non-wrapping game.
+     */
+    if (!state->wrapping) {
+	for (x = 0; x < state->width; x++) {
+	    barrier(state, x, 0) |= U;
+	    barrier(state, x, state->height-1) |= D;
+	}
+	for (y = 0; y < state->height; y++) {
+	    barrier(state, 0, y) |= L;
+	    barrier(state, state->width-1, y) |= R;
+	}
+    }
+
+    /*
+     * Seed the internal random number generator.
+     */
+    rs = random_init(seed, strlen(seed));
+
+    /*
+     * Construct the unshuffled grid.
+     * 
+     * To do this, we simply start at the centre point, repeatedly
+     * choose a random possibility out of the available ways to
+     * extend a used square into an unused one, and do it. After
+     * extending the third line out of a square, we remove the
+     * fourth from the possibilities list to avoid any full-cross
+     * squares (which would make the game too easy because they
+     * only have one orientation).
+     * 
+     * The slightly worrying thing is the avoidance of full-cross
+     * squares. Can this cause our unsophisticated construction
+     * algorithm to paint itself into a corner, by getting into a
+     * situation where there are some unreached squares and the
+     * only way to reach any of them is to extend a T-piece into a
+     * full cross?
+     * 
+     * Answer: no it can't, and here's a proof.
+     * 
+     * Any contiguous group of such unreachable squares must be
+     * surrounded on _all_ sides by T-pieces pointing away from the
+     * group. (If not, then there is a square which can be extended
+     * into one of the `unreachable' ones, and so it wasn't
+     * unreachable after all.) In particular, this implies that
+     * each contiguous group of unreachable squares must be
+     * rectangular in shape (any deviation from that yields a
+     * non-T-piece next to an `unreachable' square).
+     * 
+     * So we have a rectangle of unreachable squares, with T-pieces
+     * forming a solid border around the rectangle. The corners of
+     * that border must be connected (since every tile connects all
+     * the lines arriving in it), and therefore the border must
+     * form a closed loop around the rectangle.
+     * 
+     * But this can't have happened in the first place, since we
+     * _know_ we've avoided creating closed loops! Hence, no such
+     * situation can ever arise, and the naive grid construction
+     * algorithm will guaranteeably result in a complete grid
+     * containing no unreached squares, no full crosses _and_ no
+     * closed loops. []
+     */
+    possibilities = newtree234(xyd_cmp);
+
+    if (state->cx+1 < state->width)
+	add234(possibilities, new_xyd(state->cx, state->cy, R));
+    if (state->cy-1 >= 0)
+	add234(possibilities, new_xyd(state->cx, state->cy, U));
+    if (state->cx-1 >= 0)
+	add234(possibilities, new_xyd(state->cx, state->cy, L));
+    if (state->cy+1 < state->height)
+	add234(possibilities, new_xyd(state->cx, state->cy, D));
+
+    while (count234(possibilities) > 0) {
+	int i;
+	struct xyd *xyd;
+	int x1, y1, d1, x2, y2, d2, d;
+
+	/*
+	 * Extract a randomly chosen possibility from the list.
+	 */
+	i = random_upto(rs, count234(possibilities));
+	xyd = delpos234(possibilities, i);
+	x1 = xyd->x;
+	y1 = xyd->y;
+	d1 = xyd->direction;
+	sfree(xyd);
+
+	OFFSET(x2, y2, x1, y1, d1, state);
+	d2 = F(d1);
+#ifdef DEBUG
+	printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n",
+	       x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]);
+#endif
+
+	/*
+	 * Make the connection. (We should be moving to an as yet
+	 * unused tile.)
+	 */
+	tile(state, x1, y1) |= d1;
+	assert(tile(state, x2, y2) == 0);
+	tile(state, x2, y2) |= d2;
+
+	/*
+	 * If we have created a T-piece, remove its last
+	 * possibility.
+	 */
+	if (COUNT(tile(state, x1, y1)) == 3) {
+	    struct xyd xyd1, *xydp;
+
+	    xyd1.x = x1;
+	    xyd1.y = y1;
+	    xyd1.direction = 0x0F ^ tile(state, x1, y1);
+
+	    xydp = find234(possibilities, &xyd1, NULL);
+
+	    if (xydp) {
+#ifdef DEBUG
+		printf("T-piece; removing (%d,%d,%c)\n",
+		       xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
+#endif
+		del234(possibilities, xydp);
+		sfree(xydp);
+	    }
+	}
+
+	/*
+	 * Remove all other possibilities that were pointing at the
+	 * tile we've just moved into.
+	 */
+	for (d = 1; d < 0x10; d <<= 1) {
+	    int x3, y3, d3;
+	    struct xyd xyd1, *xydp;
+
+	    OFFSET(x3, y3, x2, y2, d, state);
+	    d3 = F(d);
+
+	    xyd1.x = x3;
+	    xyd1.y = y3;
+	    xyd1.direction = d3;
+
+	    xydp = find234(possibilities, &xyd1, NULL);
+
+	    if (xydp) {
+#ifdef DEBUG
+		printf("Loop avoidance; removing (%d,%d,%c)\n",
+		       xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]);
+#endif
+		del234(possibilities, xydp);
+		sfree(xydp);
+	    }
+	}
+
+	/*
+	 * Add new possibilities to the list for moving _out_ of
+	 * the tile we have just moved into.
+	 */
+	for (d = 1; d < 0x10; d <<= 1) {
+	    int x3, y3;
+
+	    if (d == d2)
+		continue;	       /* we've got this one already */
+
+	    if (!state->wrapping) {
+		if (d == U && y2 == 0)
+		    continue;
+		if (d == D && y2 == state->height-1)
+		    continue;
+		if (d == L && x2 == 0)
+		    continue;
+		if (d == R && x2 == state->width-1)
+		    continue;
+	    }
+
+	    OFFSET(x3, y3, x2, y2, d, state);
+
+	    if (tile(state, x3, y3))
+		continue;	       /* this would create a loop */
+
+#ifdef DEBUG
+	    printf("New frontier; adding (%d,%d,%c)\n",
+		   x2, y2, "0RU3L567D9abcdef"[d]);
+#endif
+	    add234(possibilities, new_xyd(x2, y2, d));
+	}
+    }
+    /* Having done that, we should have no possibilities remaining. */
+    assert(count234(possibilities) == 0);
+    freetree234(possibilities);
+
+    /*
+     * Now compute a list of the possible barrier locations.
+     */
+    barriers = newtree234(xyd_cmp);
+    for (y = 0; y < state->height; y++) {
+	for (x = 0; x < state->width; x++) {
+
+	    if (!(tile(state, x, y) & R) &&
+                (state->wrapping || x < state->width-1))
+		add234(barriers, new_xyd(x, y, R));
+	    if (!(tile(state, x, y) & D) &&
+                (state->wrapping || y < state->height-1))
+		add234(barriers, new_xyd(x, y, D));
+	}
+    }
+
+    /*
+     * Now shuffle the grid.
+     * FIXME - this simply does a set of random moves to shuffle the pieces.
+     * A better way would be to number all the pieces, generate a placement
+     * for all the numbers as for "sixteen", observing parity constraints if
+     * neccessary, and then place the pieces according to their numbering.
+     * BUT - I'm not sure if this will work, since we disallow movement of
+     * the middle row and column.
+     */
+    {
+        int i;
+        int cols = state->width - 1;
+        int rows = state->height - 1;
+        for (i = 0; i < cols * rows * 2; i++) {
+            /* Choose a direction: 0,1,2,3 = up, right, down, left. */
+            int dir = random_upto(rs, 4);
+            if (dir % 2 == 0) {
+                int col = random_upto(rs, cols);
+                if (col >= state->cx) col += 1;
+                slide_col(state, 1 - dir, col);
+            } else {
+                int row = random_upto(rs, rows);
+                if (row >= state->cy) row += 1;
+                slide_row(state, 2 - dir, row);
+            }
+        }
+    }
+
+    /*
+     * And now choose barrier locations. (We carefully do this
+     * _after_ shuffling, so that changing the barrier rate in the
+     * params while keeping the game seed the same will give the
+     * same shuffled grid and _only_ change the barrier locations.
+     * Also the way we choose barrier locations, by repeatedly
+     * choosing one possibility from the list until we have enough,
+     * is designed to ensure that raising the barrier rate while
+     * keeping the seed the same will provide a superset of the
+     * previous barrier set - i.e. if you ask for 10 barriers, and
+     * then decide that's still too hard and ask for 20, you'll get
+     * the original 10 plus 10 more, rather than getting 20 new
+     * ones and the chance of remembering your first 10.)
+     */
+    nbarriers = (int)(params->barrier_probability * count234(barriers));
+    assert(nbarriers >= 0 && nbarriers <= count234(barriers));
+
+    while (nbarriers > 0) {
+	int i;
+	struct xyd *xyd;
+	int x1, y1, d1, x2, y2, d2;
+
+	/*
+	 * Extract a randomly chosen barrier from the list.
+	 */
+	i = random_upto(rs, count234(barriers));
+	xyd = delpos234(barriers, i);
+
+	assert(xyd != NULL);
+
+	x1 = xyd->x;
+	y1 = xyd->y;
+	d1 = xyd->direction;
+	sfree(xyd);
+
+	OFFSET(x2, y2, x1, y1, d1, state);
+	d2 = F(d1);
+
+	barrier(state, x1, y1) |= d1;
+	barrier(state, x2, y2) |= d2;
+
+	nbarriers--;
+    }
+
+    /*
+     * Clean up the rest of the barrier list.
+     */
+    {
+	struct xyd *xyd;
+
+	while ( (xyd = delpos234(barriers, 0)) != NULL)
+	    sfree(xyd);
+
+	freetree234(barriers);
+    }
+
+    /*
+     * Set up the barrier corner flags, for drawing barriers
+     * prettily when they meet.
+     */
+    for (y = 0; y < state->height; y++) {
+	for (x = 0; x < state->width; x++) {
+            int dir;
+
+            for (dir = 1; dir < 0x10; dir <<= 1) {
+                int dir2 = A(dir);
+                int x1, y1, x2, y2, x3, y3;
+                int corner = FALSE;
+
+                if (!(barrier(state, x, y) & dir))
+                    continue;
+
+                if (barrier(state, x, y) & dir2)
+                    corner = TRUE;
+
+                x1 = x + X(dir), y1 = y + Y(dir);
+                if (x1 >= 0 && x1 < state->width &&
+                    y1 >= 0 && y1 < state->height &&
+                    (barrier(state, x1, y1) & dir2))
+                    corner = TRUE;
+
+                x2 = x + X(dir2), y2 = y + Y(dir2);
+                if (x2 >= 0 && x2 < state->width &&
+                    y2 >= 0 && y2 < state->height &&
+                    (barrier(state, x2, y2) & dir))
+                    corner = TRUE;
+
+                if (corner) {
+                    barrier(state, x, y) |= (dir << 4);
+                    if (x1 >= 0 && x1 < state->width &&
+                        y1 >= 0 && y1 < state->height)
+                        barrier(state, x1, y1) |= (A(dir) << 4);
+                    if (x2 >= 0 && x2 < state->width &&
+                        y2 >= 0 && y2 < state->height)
+                        barrier(state, x2, y2) |= (C(dir) << 4);
+                    x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2);
+                    if (x3 >= 0 && x3 < state->width &&
+                        y3 >= 0 && y3 < state->height)
+                        barrier(state, x3, y3) |= (F(dir) << 4);
+                }
+            }
+	}
+    }
+
+    random_free(rs);
+
+    return state;
+}
+
+game_state *dup_game(game_state *state)
+{
+    game_state *ret;
+
+    ret = snew(game_state);
+    ret->width = state->width;
+    ret->height = state->height;
+    ret->cx = state->cx;
+    ret->cy = state->cy;
+    ret->wrapping = state->wrapping;
+    ret->completed = state->completed;
+    ret->move_count = state->move_count;
+    ret->last_move_row = state->last_move_row;
+    ret->last_move_col = state->last_move_col;
+    ret->last_move_dir = state->last_move_dir;
+    ret->tiles = snewn(state->width * state->height, unsigned char);
+    memcpy(ret->tiles, state->tiles, state->width * state->height);
+    ret->barriers = snewn(state->width * state->height, unsigned char);
+    memcpy(ret->barriers, state->barriers, state->width * state->height);
+
+    return ret;
+}
+
+void free_game(game_state *state)
+{
+    sfree(state->tiles);
+    sfree(state->barriers);
+    sfree(state);
+}
+
+/* ----------------------------------------------------------------------
+ * Utility routine.
+ */
+
+/*
+ * Compute which squares are reachable from the centre square, as a
+ * quick visual aid to determining how close the game is to
+ * completion. This is also a simple way to tell if the game _is_
+ * completed - just call this function and see whether every square
+ * is marked active.
+ *
+ * squares in the moving_row and moving_col are always inactive - this
+ * is so that "current" doesn't appear to jump across moving lines.
+ */
+static unsigned char *compute_active(game_state *state,
+                                     int moving_row, int moving_col)
+{
+    unsigned char *active;
+    tree234 *todo;
+    struct xyd *xyd;
+
+    active = snewn(state->width * state->height, unsigned char);
+    memset(active, 0, state->width * state->height);
+
+    /*
+     * We only store (x,y) pairs in todo, but it's easier to reuse
+     * xyd_cmp and just store direction 0 every time.
+     */
+    todo = newtree234(xyd_cmp);
+    index(state, active, state->cx, state->cy) = ACTIVE;
+    add234(todo, new_xyd(state->cx, state->cy, 0));
+
+    while ( (xyd = delpos234(todo, 0)) != NULL) {
+	int x1, y1, d1, x2, y2, d2;
+
+	x1 = xyd->x;
+	y1 = xyd->y;
+	sfree(xyd);
+
+	for (d1 = 1; d1 < 0x10; d1 <<= 1) {
+	    OFFSET(x2, y2, x1, y1, d1, state);
+	    d2 = F(d1);
+
+	    /*
+	     * If the next tile in this direction is connected to
+	     * us, and there isn't a barrier in the way, and it
+	     * isn't already marked active, then mark it active and
+	     * add it to the to-examine list.
+	     */
+	    if ((x2 != moving_col && y2 != moving_row) &&
+                (tile(state, x1, y1) & d1) &&
+		(tile(state, x2, y2) & d2) &&
+		!(barrier(state, x1, y1) & d1) &&
+		!index(state, active, x2, y2)) {
+		index(state, active, x2, y2) = ACTIVE;
+		add234(todo, new_xyd(x2, y2, 0));
+	    }
+	}
+    }
+    /* Now we expect the todo list to have shrunk to zero size. */
+    assert(count234(todo) == 0);
+    freetree234(todo);
+
+    return active;
+}
+
+struct game_ui {
+    int cur_x, cur_y;
+    int cur_visible;
+};
+
+game_ui *new_ui(game_state *state)
+{
+    game_ui *ui = snew(game_ui);
+    ui->cur_x = state->width / 2;
+    ui->cur_y = state->height / 2;
+    ui->cur_visible = FALSE;
+
+    return ui;
+}
+
+void free_ui(game_ui *ui)
+{
+    sfree(ui);
+}
+
+/* ----------------------------------------------------------------------
+ * Process a move.
+ */
+
+void slide_row(game_state *state, int dir, int row)
+{
+    int x = dir > 0 ? -1 : state->width;
+    int tx = x + dir;
+    int n = state->width - 1;
+    unsigned char endtile = state->tiles[T(state, tx, row)];
+    do {
+        x = tx;
+        tx = (x + dir + state->width) % state->width;
+        state->tiles[T(state, x, row)] = state->tiles[T(state, tx, row)];
+    } while (--n > 0);
+    state->tiles[T(state, tx, row)] = endtile;
+}
+
+void slide_col(game_state *state, int dir, int col)
+{
+    int y = dir > 0 ? -1 : state->height;
+    int ty = y + dir;
+    int n = state->height - 1;
+    unsigned char endtile = state->tiles[T(state, col, ty)];
+    do {
+        y = ty;
+        ty = (y + dir + state->height) % state->height;
+        state->tiles[T(state, col, y)] = state->tiles[T(state, col, ty)];
+    } while (--n > 0);
+    state->tiles[T(state, col, ty)] = endtile;
+}
+
+game_state *make_move(game_state *state, game_ui *ui, int x, int y, int button)
+{
+    int cx, cy;
+    int n, dx, dy;
+    game_state *ret;
+
+    if (button != LEFT_BUTTON && button != RIGHT_BUTTON)
+        return NULL;
+
+    cx = (x - (BORDER + WINDOW_OFFSET + TILE_BORDER) + 2*TILE_SIZE) / TILE_SIZE - 2;
+    cy = (y - (BORDER + WINDOW_OFFSET + TILE_BORDER) + 2*TILE_SIZE) / TILE_SIZE - 2;
+
+    if (cy >= 0 && cy < state->height && cy != state->cy)
+    {
+        if (cx == -1) dx = +1;
+        else if (cx == state->width) dx = -1;
+        else return NULL;
+        n = state->width;
+        dy = 0;
+    }
+    else if (cx >= 0 && cx < state->width && cx != state->cx)
+    {
+        if (cy == -1) dy = +1;
+        else if (cy == state->height) dy = -1;
+        else return NULL;
+        n = state->height;
+        dx = 0;
+    }
+    else
+        return NULL;
+
+    /* reverse direction if right hand button is pressed */
+    if (button == RIGHT_BUTTON)
+    {
+        dx = -dx;
+        dy = -dy;
+    }
+
+    ret = dup_game(state);
+
+    if (dx == 0) slide_col(ret, dy, cx);
+    else slide_row(ret, dx, cy);
+
+    ret->move_count++;
+    ret->last_move_row = dx ? cy : -1;
+    ret->last_move_col = dx ? -1 : cx;
+    ret->last_move_dir = dx + dy;
+
+    /*
+     * See if the game has been completed.
+     */
+    if (!ret->completed) {
+	unsigned char *active = compute_active(ret, -1, -1);
+	int x1, y1;
+	int complete = TRUE;
+
+	for (x1 = 0; x1 < ret->width; x1++)
+	    for (y1 = 0; y1 < ret->height; y1++)
+		if (!index(ret, active, x1, y1)) {
+		    complete = FALSE;
+		    goto break_label;  /* break out of two loops at once */
+		}
+	break_label:
+
+	sfree(active);
+
+	if (complete)
+	    ret->completed = ret->move_count;
+    }
+
+    return ret;
+}
+
+/* ----------------------------------------------------------------------
+ * Routines for drawing the game position on the screen.
+ */
+
+struct game_drawstate {
+    int started;
+    int width, height;
+    unsigned char *visible;
+};
+
+game_drawstate *game_new_drawstate(game_state *state)
+{
+    game_drawstate *ds = snew(game_drawstate);
+
+    ds->started = FALSE;
+    ds->width = state->width;
+    ds->height = state->height;
+    ds->visible = snewn(state->width * state->height, unsigned char);
+    memset(ds->visible, 0xFF, state->width * state->height);
+
+    return ds;
+}
+
+void game_free_drawstate(game_drawstate *ds)
+{
+    sfree(ds->visible);
+    sfree(ds);
+}
+
+void game_size(game_params *params, int *x, int *y)
+{
+    *x = BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER;
+    *y = BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER;
+}
+
+float *game_colours(frontend *fe, game_state *state, int *ncolours)
+{
+    float *ret;
+
+    ret = snewn(NCOLOURS * 3, float);
+    *ncolours = NCOLOURS;
+
+    /*
+     * Basic background colour is whatever the front end thinks is
+     * a sensible default.
+     */
+    frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
+
+    /*
+     * Wires are black.
+     */
+    ret[COL_WIRE * 3 + 0] = 0.0F;
+    ret[COL_WIRE * 3 + 1] = 0.0F;
+    ret[COL_WIRE * 3 + 2] = 0.0F;
+
+    /*
+     * Powered wires and powered endpoints are cyan.
+     */
+    ret[COL_POWERED * 3 + 0] = 0.0F;
+    ret[COL_POWERED * 3 + 1] = 1.0F;
+    ret[COL_POWERED * 3 + 2] = 1.0F;
+
+    /*
+     * Barriers are red.
+     */
+    ret[COL_BARRIER * 3 + 0] = 1.0F;
+    ret[COL_BARRIER * 3 + 1] = 0.0F;
+    ret[COL_BARRIER * 3 + 2] = 0.0F;
+
+    /*
+     * Unpowered endpoints are blue.
+     */
+    ret[COL_ENDPOINT * 3 + 0] = 0.0F;
+    ret[COL_ENDPOINT * 3 + 1] = 0.0F;
+    ret[COL_ENDPOINT * 3 + 2] = 1.0F;
+
+    /*
+     * Tile borders are a darker grey than the background.
+     */
+    ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
+    ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
+    ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2];
+
+    /*
+     * Flashing tiles are a grey in between those two.
+     */
+    ret[COL_FLASHING * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0];
+    ret[COL_FLASHING * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1];
+    ret[COL_FLASHING * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2];
+
+    ret[COL_LOWLIGHT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.8F;
+    ret[COL_LOWLIGHT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.8F;
+    ret[COL_LOWLIGHT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.8F;
+    ret[COL_TEXT * 3 + 0] = 0.0;
+    ret[COL_TEXT * 3 + 1] = 0.0;
+    ret[COL_TEXT * 3 + 2] = 0.0;
+
+    return ret;
+}
+
+static void draw_thick_line(frontend *fe, int x1, int y1, int x2, int y2,
+                            int colour)
+{
+    draw_line(fe, x1-1, y1, x2-1, y2, COL_WIRE);
+    draw_line(fe, x1+1, y1, x2+1, y2, COL_WIRE);
+    draw_line(fe, x1, y1-1, x2, y2-1, COL_WIRE);
+    draw_line(fe, x1, y1+1, x2, y2+1, COL_WIRE);
+    draw_line(fe, x1, y1, x2, y2, colour);
+}
+
+static void draw_rect_coords(frontend *fe, int x1, int y1, int x2, int y2,
+                             int colour)
+{
+    int mx = (x1 < x2 ? x1 : x2);
+    int my = (y1 < y2 ? y1 : y2);
+    int dx = (x2 + x1 - 2*mx + 1);
+    int dy = (y2 + y1 - 2*my + 1);
+
+    draw_rect(fe, mx, my, dx, dy, colour);
+}
+
+static void draw_barrier_corner(frontend *fe, int x, int y, int dir, int phase)
+{
+    int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
+    int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
+    int x1, y1, dx, dy, dir2;
+
+    dir >>= 4;
+
+    dir2 = A(dir);
+    dx = X(dir) + X(dir2);
+    dy = Y(dir) + Y(dir2);
+    x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
+    y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0);
+
+    if (phase == 0) {
+        draw_rect_coords(fe, bx+x1, by+y1,
+                         bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy,
+                         COL_WIRE);
+        draw_rect_coords(fe, bx+x1, by+y1,
+                         bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy,
+                         COL_WIRE);
+    } else {
+        draw_rect_coords(fe, bx+x1, by+y1,
+                         bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy,
+                         COL_BARRIER);
+    }
+}
+
+static void draw_barrier(frontend *fe, int x, int y, int dir, int phase)
+{
+    int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
+    int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
+    int x1, y1, w, h;
+
+    x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0);
+    y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0);
+    w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
+    h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER);
+
+    if (phase == 0) {
+        draw_rect(fe, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE);
+    } else {
+        draw_rect(fe, bx+x1, by+y1, w, h, COL_BARRIER);
+    }
+}
+
+static void draw_tile(frontend *fe, game_state *state, int x, int y, int tile,
+                      float xshift, float yshift)
+{
+    int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x + (xshift * TILE_SIZE);
+    int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y + (yshift * TILE_SIZE);
+    float cx, cy, ex, ey;
+    int dir, col;
+
+    /*
+     * When we draw a single tile, we must draw everything up to
+     * and including the borders around the tile. This means that
+     * if the neighbouring tiles have connections to those borders,
+     * we must draw those connections on the borders themselves.
+     *
+     * This would be terribly fiddly if we ever had to draw a tile
+     * while its neighbour was in mid-rotate, because we'd have to
+     * arrange to _know_ that the neighbour was being rotated and
+     * hence had an anomalous effect on the redraw of this tile.
+     * Fortunately, the drawing algorithm avoids ever calling us in
+     * this circumstance: we're either drawing lots of straight
+     * tiles at game start or after a move is complete, or we're
+     * repeatedly drawing only the rotating tile. So no problem.
+     */
+
+    /*
+     * So. First blank the tile out completely: draw a big
+     * rectangle in border colour, and a smaller rectangle in
+     * background colour to fill it in.
+     */
+    draw_rect(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER,
+              COL_BORDER);
+    draw_rect(fe, bx+TILE_BORDER, by+TILE_BORDER,
+              TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER,
+              tile & FLASHING ? COL_FLASHING : COL_BACKGROUND);
+
+    /*
+     * Draw the wires.
+     */
+    cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F;
+    col = (tile & ACTIVE ? COL_POWERED : COL_WIRE);
+    for (dir = 1; dir < 0x10; dir <<= 1) {
+        if (tile & dir) {
+            ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
+            ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
+            draw_thick_line(fe, bx+(int)cx, by+(int)cy,
+			    bx+(int)(cx+ex), by+(int)(cy+ey),
+                            COL_WIRE);
+        }
+    }
+    for (dir = 1; dir < 0x10; dir <<= 1) {
+        if (tile & dir) {
+            ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir);
+            ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir);
+            draw_line(fe, bx+(int)cx, by+(int)cy,
+		      bx+(int)(cx+ex), by+(int)(cy+ey), col);
+        }
+    }
+
+    /*
+     * Draw the box in the middle. We do this in blue if the tile
+     * is an unpowered endpoint, in cyan if the tile is a powered
+     * endpoint, in black if the tile is the centrepiece, and
+     * otherwise not at all.
+     */
+    col = -1;
+    if (x == state->cx && y == state->cy)
+        col = COL_WIRE;
+    else if (COUNT(tile) == 1) {
+        col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT);
+    }
+    if (col >= 0) {
+        int i, points[8];
+
+        points[0] = +1; points[1] = +1;
+        points[2] = +1; points[3] = -1;
+        points[4] = -1; points[5] = -1;
+        points[6] = -1; points[7] = +1;
+
+        for (i = 0; i < 8; i += 2) {
+            ex = (TILE_SIZE * 0.24F) * points[i];
+            ey = (TILE_SIZE * 0.24F) * points[i+1];
+            points[i] = bx+(int)(cx+ex);
+            points[i+1] = by+(int)(cy+ey);
+        }
+
+        draw_polygon(fe, points, 4, TRUE, col);
+        draw_polygon(fe, points, 4, FALSE, COL_WIRE);
+    }
+
+    /*
+     * Draw the points on the border if other tiles are connected
+     * to us.
+     */
+    for (dir = 1; dir < 0x10; dir <<= 1) {
+        int dx, dy, px, py, lx, ly, vx, vy, ox, oy;
+
+        dx = X(dir);
+        dy = Y(dir);
+
+        ox = x + dx;
+        oy = y + dy;
+
+        if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height)
+            continue;
+
+        if (!(tile(state, ox, oy) & F(dir)))
+            continue;
+
+        px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx);
+        py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy);
+        lx = dx * (TILE_BORDER-1);
+        ly = dy * (TILE_BORDER-1);
+        vx = (dy ? 1 : 0);
+        vy = (dx ? 1 : 0);
+
+        if (xshift == 0.0 && yshift == 0.0 && (tile & dir)) {
+            /*
+             * If we are fully connected to the other tile, we must
+             * draw right across the tile border. (We can use our
+             * own ACTIVE state to determine what colour to do this
+             * in: if we are fully connected to the other tile then
+             * the two ACTIVE states will be the same.)
+             */
+            draw_rect_coords(fe, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE);
+            draw_rect_coords(fe, px, py, px+lx, py+ly,
+                             (tile & ACTIVE) ? COL_POWERED : COL_WIRE);
+        } else {
+            /*
+             * The other tile extends into our border, but isn't
+             * actually connected to us. Just draw a single black
+             * dot.
+             */
+            draw_rect_coords(fe, px, py, px, py, COL_WIRE);
+        }
+    }
+
+    draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
+}
+
+static void draw_tile_barriers(frontend *fe, game_state *state, int x, int y)
+{
+    int phase;
+    int dir;
+    int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x;
+    int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y;
+    /*
+     * Draw barrier corners, and then barriers.
+     */
+    for (phase = 0; phase < 2; phase++) {
+        for (dir = 1; dir < 0x10; dir <<= 1)
+            if (barrier(state, x, y) & (dir << 4))
+                draw_barrier_corner(fe, x, y, dir << 4, phase);
+        for (dir = 1; dir < 0x10; dir <<= 1)
+            if (barrier(state, x, y) & dir)
+                draw_barrier(fe, x, y, dir, phase);
+    }
+
+    draw_update(fe, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER);
+}
+
+static void draw_arrow(frontend *fe, int x, int y, int xdx, int xdy)
+{
+    int coords[14];
+    int ydy = -xdx, ydx = xdy;
+
+    x = x * TILE_SIZE + BORDER + WINDOW_OFFSET;
+    y = y * TILE_SIZE + BORDER + WINDOW_OFFSET;
+
+#define POINT(n, xx, yy) ( \
+    coords[2*(n)+0] = x + (xx)*xdx + (yy)*ydx, \
+    coords[2*(n)+1] = y + (xx)*xdy + (yy)*ydy)
+
+    POINT(0, TILE_SIZE / 2, 3 * TILE_SIZE / 4);   /* top of arrow */
+    POINT(1, 3 * TILE_SIZE / 4, TILE_SIZE / 2);   /* right corner */
+    POINT(2, 5 * TILE_SIZE / 8, TILE_SIZE / 2);   /* right concave */
+    POINT(3, 5 * TILE_SIZE / 8, TILE_SIZE / 4);   /* bottom right */
+    POINT(4, 3 * TILE_SIZE / 8, TILE_SIZE / 4);   /* bottom left */
+    POINT(5, 3 * TILE_SIZE / 8, TILE_SIZE / 2);   /* left concave */
+    POINT(6,     TILE_SIZE / 4, TILE_SIZE / 2);   /* left corner */
+
+    draw_polygon(fe, coords, 7, TRUE, COL_LOWLIGHT);
+    draw_polygon(fe, coords, 7, FALSE, COL_TEXT);
+}
+
+void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
+                 game_state *state, game_ui *ui, float t, float ft)
+{
+    int x, y, tx, ty, frame;
+    unsigned char *active;
+    float xshift = 0.0;
+    float yshift = 0.0;
+
+    /*
+     * Clear the screen and draw the exterior barrier lines if this
+     * is our first call.
+     */
+    if (!ds->started) {
+        int phase;
+
+        ds->started = TRUE;
+
+        draw_rect(fe, 0, 0, 
+                  BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER,
+                  BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER,
+                  COL_BACKGROUND);
+        draw_update(fe, 0, 0, 
+                    BORDER * 2 + WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER,
+                    BORDER * 2 + WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER);
+
+        for (phase = 0; phase < 2; phase++) {
+
+            for (x = 0; x < ds->width; x++) {
+                if (barrier(state, x, 0) & UL)
+                    draw_barrier_corner(fe, x, -1, LD, phase);
+                if (barrier(state, x, 0) & RU)
+                    draw_barrier_corner(fe, x, -1, DR, phase);
+                if (barrier(state, x, 0) & U)
+                    draw_barrier(fe, x, -1, D, phase);
+                if (barrier(state, x, ds->height-1) & DR)
+                    draw_barrier_corner(fe, x, ds->height, RU, phase);
+                if (barrier(state, x, ds->height-1) & LD)
+                    draw_barrier_corner(fe, x, ds->height, UL, phase);
+                if (barrier(state, x, ds->height-1) & D)
+                    draw_barrier(fe, x, ds->height, U, phase);
+            }
+
+            for (y = 0; y < ds->height; y++) {
+                if (barrier(state, 0, y) & UL)
+                    draw_barrier_corner(fe, -1, y, RU, phase);
+                if (barrier(state, 0, y) & LD)
+                    draw_barrier_corner(fe, -1, y, DR, phase);
+                if (barrier(state, 0, y) & L)
+                    draw_barrier(fe, -1, y, R, phase);
+                if (barrier(state, ds->width-1, y) & RU)
+                    draw_barrier_corner(fe, ds->width, y, UL, phase);
+                if (barrier(state, ds->width-1, y) & DR)
+                    draw_barrier_corner(fe, ds->width, y, LD, phase);
+                if (barrier(state, ds->width-1, y) & R)
+                    draw_barrier(fe, ds->width, y, L, phase);
+            }
+        }
+
+        /*
+         * Arrows for making moves.
+         */
+        for (x = 0; x < ds->width; x++) {
+            if (x == state->cx) continue;
+            draw_arrow(fe, x, 0, +1, 0);
+            draw_arrow(fe, x+1, ds->height, -1, 0);
+        }
+        for (y = 0; y < ds->height; y++) {
+            if (y == state->cy) continue;
+            draw_arrow(fe, ds->width, y, 0, +1);
+            draw_arrow(fe, 0, y+1, 0, -1);
+        }
+    }
+
+    /* Check if this is an undo.  If so, we will need to run any animation
+     * backwards.
+     */
+    if (oldstate && oldstate->move_count > state->move_count) {
+        game_state * tmpstate = state;
+        state = oldstate;
+        oldstate = tmpstate;
+        t = ANIM_TIME - t;
+    }
+
+    tx = ty = -1;
+    if (oldstate && (t < ANIM_TIME)) {
+        /*
+         * We're animating a slide, of row/column number
+         * state->last_move_pos, in direction
+         * state->last_move_dir
+         */
+        xshift = state->last_move_row == -1 ? 0.0 :
+                (1 - t / ANIM_TIME) * state->last_move_dir;
+        yshift = state->last_move_col == -1 ? 0.0 :
+                (1 - t / ANIM_TIME) * state->last_move_dir;
+    }
+    
+    frame = -1;
+    if (ft > 0) {
+        /*
+         * We're animating a completion flash. Find which frame
+         * we're at.
+         */
+        frame = (int)(ft / FLASH_FRAME);
+    }
+
+    /*
+     * Draw any tile which differs from the way it was last drawn.
+     */
+    if (xshift != 0.0 || yshift != 0.0) {
+        active = compute_active(state,
+                                state->last_move_row, state->last_move_col);
+    } else {
+        active = compute_active(state, -1, -1);
+    }
+
+    clip(fe,
+         BORDER + WINDOW_OFFSET, BORDER + WINDOW_OFFSET,
+         TILE_SIZE * state->width + TILE_BORDER,
+         TILE_SIZE * state->height + TILE_BORDER);
+    
+    for (x = 0; x < ds->width; x++)
+        for (y = 0; y < ds->height; y++) {
+            unsigned char c = tile(state, x, y) | index(state, active, x, y);
+
+            /*
+             * In a completion flash, we adjust the FLASHING bit
+             * depending on our distance from the centre point and
+             * the frame number.
+             */
+            if (frame >= 0) {
+                int xdist, ydist, dist;
+                xdist = (x < state->cx ? state->cx - x : x - state->cx);
+                ydist = (y < state->cy ? state->cy - y : y - state->cy);
+                dist = (xdist > ydist ? xdist : ydist);
+
+                if (frame >= dist && frame < dist+4) {
+                    int flash = (frame - dist) & 1;
+                    flash = flash ? FLASHING : 0;
+                    c = (c &~ FLASHING) | flash;
+                }
+            }
+
+            if (index(state, ds->visible, x, y) != c ||
+                index(state, ds->visible, x, y) == 0xFF ||
+                (x == state->last_move_col || y == state->last_move_row))
+            {
+                float xs = (y == state->last_move_row ? xshift : 0.0);
+                float ys = (x == state->last_move_col ? yshift : 0.0);
+
+                draw_tile(fe, state, x, y, c, xs, ys);
+                if (xs < 0 && x == 0)
+                    draw_tile(fe, state, state->width, y, c, xs, ys);
+                else if (xs > 0 && x == state->width - 1)
+                    draw_tile(fe, state, -1, y, c, xs, ys);
+                else if (ys < 0 && y == 0)
+                    draw_tile(fe, state, x, state->height, c, xs, ys);
+                else if (ys > 0 && y == state->height - 1)
+                    draw_tile(fe, state, x, -1, c, xs, ys);
+
+                if (x == state->last_move_col || y == state->last_move_row)
+                    index(state, ds->visible, x, y) = 0xFF;
+                else
+                    index(state, ds->visible, x, y) = c;
+            }
+        }
+
+    for (x = 0; x < ds->width; x++)
+        for (y = 0; y < ds->height; y++)
+            draw_tile_barriers(fe, state, x, y);
+
+    unclip(fe);
+
+    /*
+     * Update the status bar.
+     */
+    {
+	char statusbuf[256];
+	int i, n, a;
+
+	n = state->width * state->height;
+	for (i = a = 0; i < n; i++)
+	    if (active[i])
+		a++;
+
+	sprintf(statusbuf, "%sMoves: %d Active: %d/%d",
+		(state->completed ? "COMPLETED! " : ""),
+                (state->completed ? state->completed : state->move_count),
+                a, n);
+
+	status_bar(fe, statusbuf);
+    }
+
+    sfree(active);
+}
+
+float game_anim_length(game_state *oldstate, game_state *newstate)
+{
+    return ANIM_TIME;
+}
+
+float game_flash_length(game_state *oldstate, game_state *newstate)
+{
+    /*
+     * If the game has just been completed, we display a completion
+     * flash.
+     */
+    if (!oldstate->completed && newstate->completed) {
+        int size;
+        size = 0;
+        if (size < newstate->cx+1)
+            size = newstate->cx+1;
+        if (size < newstate->cy+1)
+            size = newstate->cy+1;
+        if (size < newstate->width - newstate->cx)
+            size = newstate->width - newstate->cx;
+        if (size < newstate->height - newstate->cy)
+            size = newstate->height - newstate->cy;
+        return FLASH_FRAME * (size+4);
+    }
+
+    return 0.0F;
+}
+
+int game_wants_statusbar(void)
+{
+    return TRUE;
+}