ref: 79a77d53e1723f06527486dd4f36857e89944eaa
parent: d55d0b53f3f14e34246987af38263ba88470875a
author: Simon Tatham <anakin@pobox.com>
date: Fri Apr 29 13:07:19 EDT 2005
Added a `--generate' command-line option in the GTK port of every puzzle, to make it construcct puzzle IDs and output them on stdout. Also checked in print.py, a script which reads puzzle IDs on stdin and produces PostScript output. With these, you can generate pages of Pattern, Rectangles and Solo puzzles to take on trains with you. [originally from svn r5707]
--- a/gtk.c
+++ b/gtk.c
@@ -1031,14 +1031,70 @@
char *pname = argv[0];
char *error;
- gtk_init(&argc, &argv);
+ /*
+ * Special standalone mode for generating puzzle IDs on the
+ * command line. Useful for generating puzzles to be printed
+ * out and solved offline (for puzzles where that even makes
+ * sense - Solo, for example, is a lot more pencil-and-paper
+ * friendly than Net!)
+ *
+ * Usage:
+ *
+ * <puzzle-name> --generate [<n> [<params>]]
+ *
+ * <n>, if present, is the number of puzzle IDs to generate.
+ * <params>, if present, is the same type of parameter string
+ * you would pass to the puzzle when running it in GUI mode,
+ * including optional extras such as the expansion factor in
+ * Rectangles and the difficulty level in Solo.
+ *
+ * If you specify <params>, you must also specify <n> (although
+ * you may specify it to be 1). Sorry; that was the
+ * simplest-to-parse command-line syntax I came up with.
+ */
+ if (argc > 1 && !strcmp(argv[1], "--generate")) {
+ int n = 1;
+ char *params = NULL;
+ game_params *par;
+ random_state *rs;
+ char *parstr;
- if (!new_window(argc > 1 ? argv[1] : NULL, &error)) {
- fprintf(stderr, "%s: %s\n", pname, error);
- return 1;
- }
+ {
+ void *seed;
+ int seedlen;
+ get_random_seed(&seed, &seedlen);
+ rs = random_init(seed, seedlen);
+ }
- gtk_main();
+ if (argc > 2)
+ n = atoi(argv[2]);
+ if (argc > 3)
+ params = argv[3];
+
+ if (params)
+ par = thegame.decode_params(params);
+ else
+ par = thegame.default_params();
+ parstr = thegame.encode_params(par);
+
+ while (n-- > 0) {
+ char *seed = thegame.new_seed(par, rs);
+ printf("%s:%s\n", parstr, seed);
+ sfree(seed);
+ }
+
+ return 0;
+ } else {
+
+ gtk_init(&argc, &argv);
+
+ if (!new_window(argc > 1 ? argv[1] : NULL, &error)) {
+ fprintf(stderr, "%s: %s\n", pname, error);
+ return 1;
+ }
+
+ gtk_main();
+ }
return 0;
}
--- /dev/null
+++ b/print.py
@@ -1,0 +1,343 @@
+#!/usr/bin/env python
+
+# This program accepts a series of newline-separated game IDs on
+# stdin and formats them into PostScript to be printed out. You
+# specify using command-line options which game the IDs are for,
+# and how many you want per page.
+
+# Supported games are those which are sensibly solvable using
+# pencil and paper: Rectangles, Pattern and Solo.
+
+# Command-line syntax is
+#
+# print.py <game-name> <format>
+#
+# <game-name> is one of `rect', `rectangles', `pattern', `solo'.
+# <format> is two numbers separated by an x: `2x3', for example,
+# means two columns by three rows.
+#
+# The program will then read game IDs from stdin until it sees EOF,
+# and generate as many PostScript pages on stdout as it needs.
+#
+# The resulting PostScript will automatically adapt itself to the
+# size of the clip rectangle, so that the puzzles are sensibly
+# distributed across whatever paper size you decide to use.
+
+import sys
+import string
+import re
+
+class Holder:
+ pass
+
+def psvprint(h, a):
+ for i in xrange(len(a)):
+ h.s = h.s + str(a[i])
+ if i < len(a)-1:
+ h.s = h.s + " "
+ else:
+ h.s = h.s + "\n"
+
+def psprint(h, *a):
+ psvprint(h, a)
+
+def rect_format(s):
+ # Parse the game ID.
+ ret = Holder()
+ ret.s = ""
+ params, seed = string.split(s, ":")
+ w, h = map(string.atoi, string.split(params, "x"))
+ grid = []
+ while len(seed) > 0:
+ if seed[0] in '_'+string.lowercase:
+ if seed[0] in string.lowercase:
+ grid.extend([-1] * (ord(seed[0]) - ord('a') + 1))
+ seed = seed[1:]
+ elif seed[0] in string.digits:
+ ns = ""
+ while len(seed) > 0 and seed[0] in string.digits:
+ ns = ns + seed[0]
+ seed = seed[1:]
+ grid.append(string.atoi(ns))
+ assert w * h == len(grid)
+ # I'm going to arbitrarily choose to use 7pt text for the
+ # numbers, and a 14pt grid pitch.
+ textht = 7
+ gridpitch = 14
+ # Set up coordinate system.
+ pw = gridpitch * w
+ ph = gridpitch * h
+ ret.coords = (pw/2, pw/2, ph/2, ph/2)
+ psprint(ret, "%g %g translate" % (-ret.coords[0], -ret.coords[2]))
+ # Draw the internal grid lines, _very_ thin (the player will
+ # need to draw over them visibly).
+ psprint(ret, "newpath 0.01 setlinewidth")
+ for x in xrange(1,w):
+ psprint(ret, "%g 0 moveto 0 %g rlineto" % (x * gridpitch, h * gridpitch))
+ for y in xrange(1,h):
+ psprint(ret, "0 %g moveto %g 0 rlineto" % (y * gridpitch, w * gridpitch))
+ psprint(ret, "stroke")
+ # Draw round the grid exterior, much thicker.
+ psprint(ret, "newpath 1.5 setlinewidth")
+ psprint(ret, "0 0 moveto 0 %g rlineto %g 0 rlineto 0 %g rlineto" % \
+ (h * gridpitch, w * gridpitch, -h * gridpitch))
+ psprint(ret, "closepath stroke")
+ # And draw the numbers.
+ psprint(ret, "/Helvetica findfont %g scalefont setfont" % textht)
+ for y in xrange(h):
+ for x in xrange(w):
+ n = grid[y*w+x]
+ if n > 0:
+ psprint(ret, "%g %g (%d) ctshow" % \
+ ((x+0.5)*gridpitch, (h-y-0.5)*gridpitch, n))
+ return ret.coords, ret.s
+
+def pattern_format(s):
+ ret = Holder()
+ ret.s = ""
+ # Parse the game ID.
+ params, seed = string.split(s, ":")
+ w, h = map(string.atoi, string.split(params, "x"))
+ rowdata = map(lambda s: string.split(s, "."), string.split(seed, "/"))
+ assert len(rowdata) == w+h
+ # I'm going to arbitrarily choose to use 7pt text for the
+ # numbers, and a 14pt grid pitch.
+ textht = 7
+ gridpitch = 14
+ gutter = 8 # between the numbers and the grid
+ # Find the maximum number of numbers in each dimension, to
+ # determine the border size required.
+ xborder = reduce(max, map(len, rowdata[w:]))
+ yborder = reduce(max, map(len, rowdata[:w]))
+ # Set up coordinate system. I'm going to put the origin at the
+ # _top left_ of the grid, so that both sets of numbers get
+ # drawn the same way.
+ pw = (w + xborder) * gridpitch + gutter
+ ph = (h + yborder) * gridpitch + gutter
+ ret.coords = (xborder * gridpitch + gutter, w * gridpitch, \
+ yborder * gridpitch + gutter, h * gridpitch)
+ # Draw the internal grid lines. Every fifth one is thicker, as
+ # a visual aid.
+ psprint(ret, "newpath 0.1 setlinewidth")
+ for x in xrange(1,w):
+ if x % 5 != 0:
+ psprint(ret, "%g 0 moveto 0 %g rlineto" % (x * gridpitch, -h * gridpitch))
+ for y in xrange(1,h):
+ if y % 5 != 0:
+ psprint(ret, "0 %g moveto %g 0 rlineto" % (-y * gridpitch, w * gridpitch))
+ psprint(ret, "stroke")
+ psprint(ret, "newpath 0.75 setlinewidth")
+ for x in xrange(5,w,5):
+ psprint(ret, "%g 0 moveto 0 %g rlineto" % (x * gridpitch, -h * gridpitch))
+ for y in xrange(5,h,5):
+ psprint(ret, "0 %g moveto %g 0 rlineto" % (-y * gridpitch, w * gridpitch))
+ psprint(ret, "stroke")
+ # Draw round the grid exterior.
+ psprint(ret, "newpath 1.5 setlinewidth")
+ psprint(ret, "0 0 moveto 0 %g rlineto %g 0 rlineto 0 %g rlineto" % \
+ (-h * gridpitch, w * gridpitch, h * gridpitch))
+ psprint(ret, "closepath stroke")
+ # And draw the numbers.
+ psprint(ret, "/Helvetica findfont %g scalefont setfont" % textht)
+ for i in range(w+h):
+ ns = rowdata[i]
+ if i < w:
+ xo = (i + 0.5) * gridpitch
+ yo = (gutter + 0.5 * gridpitch)
+ else:
+ xo = -(gutter + 0.5 * gridpitch)
+ yo = ((i-w) + 0.5) * -gridpitch
+ for j in range(len(ns)-1, -1, -1):
+ psprint(ret, "%g %g (%s) ctshow" % (xo, yo, ns[j]))
+ if i < w:
+ yo = yo + gridpitch
+ else:
+ xo = xo - gridpitch
+ return ret.coords, ret.s
+
+def solo_format(s):
+ ret = Holder()
+ ret.s = ""
+ # Parse the game ID.
+ params, seed = string.split(s, ":")
+ c, r = map(string.atoi, string.split(params, "x"))
+ cr = c*r
+ grid = []
+ while len(seed) > 0:
+ if seed[0] in '_'+string.lowercase:
+ if seed[0] in string.lowercase:
+ grid.extend([-1] * (ord(seed[0]) - ord('a') + 1))
+ seed = seed[1:]
+ elif seed[0] in string.digits:
+ ns = ""
+ while len(seed) > 0 and seed[0] in string.digits:
+ ns = ns + seed[0]
+ seed = seed[1:]
+ grid.append(string.atoi(ns))
+ assert cr * cr == len(grid)
+ # I'm going to arbitrarily choose to use 9pt text for the
+ # numbers, and a 16pt grid pitch.
+ textht = 9
+ gridpitch = 16
+ # Set up coordinate system.
+ pw = ph = gridpitch * cr
+ ret.coords = (pw/2, pw/2, ph/2, ph/2)
+ psprint(ret, "%g %g translate" % (-ret.coords[0], -ret.coords[2]))
+ # Draw the thin internal grid lines.
+ psprint(ret, "newpath 0.1 setlinewidth")
+ for x in xrange(1,cr):
+ if x % r != 0:
+ psprint(ret, "%g 0 moveto 0 %g rlineto" % (x * gridpitch, cr * gridpitch))
+ for y in xrange(1,cr):
+ if y % c != 0:
+ psprint(ret, "0 %g moveto %g 0 rlineto" % (y * gridpitch, cr * gridpitch))
+ psprint(ret, "stroke")
+ # Draw the thicker internal grid lines.
+ psprint(ret, "newpath 1 setlinewidth")
+ for x in xrange(r,cr,r):
+ psprint(ret, "%g 0 moveto 0 %g rlineto" % (x * gridpitch, cr * gridpitch))
+ for y in xrange(c,cr,c):
+ psprint(ret, "0 %g moveto %g 0 rlineto" % (y * gridpitch, cr * gridpitch))
+ psprint(ret, "stroke")
+ # Draw round the grid exterior, thicker still.
+ psprint(ret, "newpath 1.5 setlinewidth")
+ psprint(ret, "0 0 moveto 0 %g rlineto %g 0 rlineto 0 %g rlineto" % \
+ (cr * gridpitch, cr * gridpitch, -cr * gridpitch))
+ psprint(ret, "closepath stroke")
+ # And draw the numbers.
+ psprint(ret, "/Helvetica findfont %g scalefont setfont" % textht)
+ for y in xrange(cr):
+ for x in xrange(cr):
+ n = grid[y*cr+x]
+ if n > 0:
+ if n > 9:
+ s = chr(ord('a') + n - 10)
+ else:
+ s = chr(ord('0') + n)
+ psprint(ret, "%g %g (%s) ctshow" % \
+ ((x+0.5)*gridpitch, (cr-y-0.5)*gridpitch, s))
+ return ret.coords, ret.s
+
+formatters = {
+"rect": rect_format,
+"rectangles": rect_format,
+"pattern": pattern_format,
+"solo": solo_format
+}
+
+if len(sys.argv) < 3:
+ sys.stderr.write("print.py: expected two arguments (game and format)\n")
+ sys.exit(1)
+
+formatter = formatters.get(sys.argv[1], None)
+if formatter == None:
+ sys.stderr.write("print.py: unrecognised game name `%s'\n" % sys.argv[1])
+ sys.exit(1)
+
+try:
+ format = map(string.atoi, string.split(sys.argv[2], "x"))
+except ValueError, e:
+ format = []
+if len(format) != 2:
+ sys.stderr.write("print.py: expected format such as `2x3' as second" \
+ + " argument\n")
+ sys.exit(1)
+
+xx, yy = format
+ppp = xx * yy # puzzles per page
+
+ids = []
+while 1:
+ s = sys.stdin.readline()
+ if s == "": break
+ if s[-1:] == "\n": s = s[:-1]
+ ids.append(s)
+
+pages = int((len(ids) + ppp - 1) / ppp)
+
+# Output initial DSC stuff.
+print "%!PS-Adobe-3.0"
+print "%%Creator: print.py from Simon Tatham's Puzzle Collection"
+print "%%DocumentData: Clean7Bit"
+print "%%LanguageLevel: 1"
+print "%%Pages:", pages
+print "%%DocumentNeededResources:"
+print "%%+ font Helvetica"
+print "%%DocumentSuppliedResources: procset Puzzles 0 0"
+print "%%EndComments"
+print "%%BeginProlog"
+print "%%BeginResource: procset Puzzles 0 0"
+print "/ctshow {"
+print " 3 1 roll"
+print " newpath 0 0 moveto (X) true charpath flattenpath pathbbox"
+print " 3 -1 roll add 2 div 3 1 roll pop pop sub moveto"
+print " dup stringwidth pop 0.5 mul neg 0 rmoveto show"
+print "} bind def"
+print "%%EndResource"
+print "%%EndProlog"
+print "%%BeginSetup"
+print "%%IncludeResource: font Helvetica"
+print "%%EndSetup"
+
+# Now do each page.
+puzzle_index = 0;
+
+for i in xrange(1, pages+1):
+ print "%%Page:", i, i
+ print "save"
+
+ # Do the drawing for each puzzle, giving a set of PS fragments
+ # and bounding boxes.
+ fragments = [['' for i in xrange(xx)] for i in xrange(yy)]
+ lrbound = [(0,0) for i in xrange(xx)]
+ tbbound = [(0,0) for i in xrange(yy)]
+
+ for y in xrange(yy):
+ for x in xrange(xx):
+ if puzzle_index >= len(ids):
+ break
+ coords, frag = formatter(ids[puzzle_index])
+ fragments[y][x] = frag
+ lb, rb = lrbound[x]
+ lrbound[x] = (max(lb, coords[0]), max(rb, coords[1]))
+ tb, bb = tbbound[y]
+ tbbound[y] = (max(tb, coords[2]), max(bb, coords[3]))
+ puzzle_index = puzzle_index + 1
+
+ # Now we know the sizes of everything, do the drawing in such a
+ # way that we provide equal gutter space at the page edges and
+ # between puzzle rows/columns.
+ for y in xrange(yy):
+ for x in xrange(xx):
+ if len(fragments[y][x]) > 0:
+ print "gsave"
+ print "clippath flattenpath pathbbox pop pop translate"
+ print "clippath flattenpath pathbbox 4 2 roll pop pop"
+ # Compute the total height of all puzzles, which
+ # we'll use it to work out the amount of gutter
+ # space below this puzzle.
+ htotal = reduce(lambda a,b:a+b, map(lambda (a,b):a+b, tbbound), 0)
+ # Now compute the total height of all puzzles
+ # _below_ this one, plus the height-below-origin of
+ # this one.
+ hbelow = reduce(lambda a,b:a+b, map(lambda (a,b):a+b, tbbound[y+1:]), 0)
+ hbelow = hbelow + tbbound[y][1]
+ print "%g sub %d mul %d div %g add exch" % (htotal, yy-y, yy+1, hbelow)
+ # Now do all the same computations for width,
+ # except we need the total width of everything
+ # _before_ this one since the coordinates work the
+ # other way round.
+ wtotal = reduce(lambda a,b:a+b, map(lambda (a,b):a+b, lrbound), 0)
+ # Now compute the total height of all puzzles
+ # _below_ this one, plus the height-below-origin of
+ # this one.
+ wleft = reduce(lambda a,b:a+b, map(lambda (a,b):a+b, lrbound[:x]), 0)
+ wleft = wleft + lrbound[x][0]
+ print "%g sub %d mul %d div %g add exch" % (wtotal, x+1, xx+1, wleft)
+ print "translate"
+ sys.stdout.write(fragments[y][x])
+ print "grestore"
+
+ print "restore showpage"
+
+print "%%EOF"