ref: 6f75879e9fe7cb5dc72c9229d1772e31e4f5c77b
parent: 2b1167d82ad7d7f6617c812f61c6b62dd8553e7e
author: Simon Tatham <anakin@pobox.com>
date: Tue Mar 28 16:27:27 EDT 2023
Hats tiling: more uniform parent selection. This tweak improves the uniformity of the generated patches of hat tiling, by selecting from (the closest 32-bit approximation I can get to) the limiting probability distribution of finite patches in the whole plane. This shouldn't invalidate any grid description that contains enough coordinates to uniquely specify a piece of tiling - in particular, any generated by the game itself. But if anyone's been brave enough to hand-type a grid description in the last two days and left off some of the coordinates, then those might be invalidated.
--- a/auxiliary/hatgen.c
+++ b/auxiliary/hatgen.c
@@ -1476,10 +1476,6 @@
printf(" };\n\n");
{
- struct Parent {
- MetatileType t;
- unsigned index;
- } parents[4][4*MT_MAXEXPAND];
size_t psizes[4] = {0, 0, 0, 0};
size_t csizes[4] = {0, 0, 0, 0};
@@ -1492,8 +1488,6 @@
" ", HTPF[i]);
for (j = 0; j < nt; j++) {
MetatileType c = t[j].type;
- parents[c][psizes[c]].t = i;
- parents[c][psizes[c]].index = j;
psizes[c]++;
csizes[i]++;
printf(" TT_%c,", HTPF[c]);
@@ -1508,26 +1502,6 @@
printf("static const size_t nchildren[] = {\n");
for (i = 0; i < 4; i++)
printf(" %u,\n", (unsigned)csizes[i]);
- printf("};\n\n");
-
- for (i = 0; i < 4; i++) {
- printf("static const MetatilePossibleParent "
- "permitted_parents_%c[] = {\n", HTPF[i]);
- for (j = 0; j < psizes[i]; j++)
- printf(" { TT_%c, %u },\n", HTPF[parents[i][j].t],
- parents[i][j].index);
- printf("};\n");
- }
-
- printf("static const MetatilePossibleParent *const "
- "permitted_parents[] = {\n");
- for (i = 0; i < 4; i++)
- printf(" permitted_parents_%c,\n", HTPF[i]);
- printf("};\n");
-
- printf("static const size_t n_permitted_parents[] = {\n");
- for (i = 0; i < 4; i++)
- printf(" %u,\n", (unsigned)psizes[i]);
printf("};\n\n");
}
--- a/hat-tables.h
+++ b/hat-tables.h
@@ -31,69 +31,6 @@
11,
};
-static const MetatilePossibleParent permitted_parents_H[] = {
- { TT_H, 0 },
- { TT_H, 1 },
- { TT_H, 2 },
- { TT_T, 0 },
- { TT_P, 0 },
- { TT_P, 1 },
- { TT_F, 0 },
- { TT_F, 1 },
-};
-static const MetatilePossibleParent permitted_parents_T[] = {
- { TT_H, 3 },
-};
-static const MetatilePossibleParent permitted_parents_P[] = {
- { TT_H, 4 },
- { TT_H, 5 },
- { TT_H, 6 },
- { TT_T, 1 },
- { TT_T, 2 },
- { TT_T, 3 },
- { TT_P, 2 },
- { TT_P, 3 },
- { TT_P, 4 },
- { TT_F, 2 },
- { TT_F, 3 },
-};
-static const MetatilePossibleParent permitted_parents_F[] = {
- { TT_H, 7 },
- { TT_H, 8 },
- { TT_H, 9 },
- { TT_H, 10 },
- { TT_H, 11 },
- { TT_H, 12 },
- { TT_T, 4 },
- { TT_T, 5 },
- { TT_T, 6 },
- { TT_P, 5 },
- { TT_P, 6 },
- { TT_P, 7 },
- { TT_P, 8 },
- { TT_P, 9 },
- { TT_P, 10 },
- { TT_F, 4 },
- { TT_F, 5 },
- { TT_F, 6 },
- { TT_F, 7 },
- { TT_F, 8 },
- { TT_F, 9 },
- { TT_F, 10 },
-};
-static const MetatilePossibleParent *const permitted_parents[] = {
- permitted_parents_H,
- permitted_parents_T,
- permitted_parents_P,
- permitted_parents_F,
-};
-static const size_t n_permitted_parents[] = {
- 8,
- 1,
- 11,
- 22,
-};
-
static const KitemapEntry kitemap_H[] = {
/* hat #0 in metatile #0 (type H) */
{1,0,0}, {7,3,0}, {3,0,4}, {4,0,4},
--- a/hat.c
+++ b/hat.c
@@ -318,11 +318,6 @@
* Definitions for the autogenerated hat-tables.h header file that
* defines all the lookup tables.
*/
-typedef struct MetatilePossibleParent {
- TileType type;
- unsigned index;
-} MetatilePossibleParent;
-
typedef struct KitemapEntry {
int kite, hat, meta; /* all -1 if impossible */
} KitemapEntry;
@@ -505,15 +500,189 @@
*/
static void ensure_coords(HatCoordContext *ctx, HatCoords *hc, size_t n)
{
+ /*
+ * One table that we write by hand: the permitted ways to extend
+ * the coordinate system outwards from a given metatile.
+ *
+ * One obvious approach would be to make a table of all the places
+ * each metatile can appear in the expansion of another (e.g. H
+ * can be subtile 0, 1 or 2 of another H, subtile 0 of a T, or 0
+ * or 1 of a P or an F), and when we need to decide what our
+ * current topmost tile turns out to be a subtile of, choose
+ * equiprobably at random from those options.
+ *
+ * That's what I did originally, but a better approach is to skew
+ * the probabilities. We'd like to generate our patch of actual
+ * tiling uniformly at random, in the sense that if you selected
+ * uniformly from a very large region of the plane, the
+ * distribution of possible finite patches of tiling would
+ * converge to some limit as that region tended to infinity, and
+ * we'd be picking from that limiting distribution on finite
+ * patches.
+ *
+ * For this we have to refer back to the original paper, which
+ * indicates the subset of each metatile's expansion that can be
+ * considered to 'belong' to that metatile, such that every
+ * subtile belongs to exactly one parent metatile, and the
+ * overlaps are eliminated. Reading out the diagrams from their
+ * Figure 2.8:
+ *
+ * - H: we discard three of the outer F subtiles, in the symmetric
+ * positions index by our coordinates as 7, 10, 11. So we keep
+ * the remaining subtiles {0,1,2,3,4,5,6,8,9,12}, which consist
+ * of three H, one T, three P and three F.
+ *
+ * - T: only the central H expanded from a T is considered to
+ * belong to it, so we just keep {0}, a single H.
+ *
+ * - P: we discard everything intersected by a long edge of the
+ * parallelogram, leaving the central three tiles and the
+ * endmost pair of F. That is, we keep {0,1,4,5,10}, consisting
+ * of two H, one P and two F.
+ *
+ * - F: looks like P at one end, and we retain the corresponding
+ * set of tiles there, but at the other end we keep the two F on
+ * either side of the endmost one. So we keep {0,1,3,6,8,10},
+ * consisting of two H, one P and _three_ F.
+ *
+ * Adding up the tile numbers gives us this matrix system:
+ *
+ * (H_1) (3 1 2 2)(H_0)
+ * (T_1) = (1 0 0 0)(T_0)
+ * (P_1) (3 0 1 1)(P_0)
+ * (F_1) (3 0 2 3)(F_0)
+ *
+ * which says that if you have a patch of metatiling consisting of
+ * H_0 H tiles, T_0 T tiles etc, then this matrix shows the number
+ * H_1 of smaller H tiles, etc, expanded from it.
+ *
+ * If you expand _many_ times, that's equivalent to raising the
+ * matrix to a power:
+ *
+ * n
+ * (H_n) (3 1 2 2) (H_0)
+ * (T_n) = (1 0 0 0) (T_0)
+ * (P_n) (3 0 1 1) (P_0)
+ * (F_n) (3 0 2 3) (F_0)
+ *
+ * The limiting distribution of metatiles is obtained by looking
+ * at the four-way ratio between H_n, T_n, P_n and F_n as n tends
+ * to infinity. To calculate this, we find the eigenvalues and
+ * eigenvectors of the matrix, and extract the eigenvector
+ * corresponding to the eigenvalue of largest magnitude. (Things
+ * get more complicated in cases where that's not unique, but
+ * here, it is.)
+ *
+ * That eigenvector is
+ *
+ * [ 1 ] [ 1 ]
+ * [ (7 - 3 sqrt(5)) / 2 ] ~= [ 0.14589803375031545538 ]
+ * [ 3 sqrt(5) - 6 ] [ 0.70820393249936908922 ]
+ * [ (9 - 3 sqrt(5)) / 2 ] [ 1.14589803375031545538 ]
+ *
+ * So those are the limiting relative proportions of metatiles.
+ *
+ * So if we have a particular metatile, how likely is it for its
+ * parent to be one of those? We have to adjust by the number of
+ * metatiles of each type that each tile has as its children. For
+ * example, the P and F tiles have one P child each, but the H has
+ * three P children. So if we have a P, the proportion of H in its
+ * potential ancestry is three times what's shown here. (And T
+ * can't occur at all as a parent.)
+ *
+ * In other words, we should choose _each coordinate_ with
+ * probability corresponding to one of those numbers (scaled down
+ * so they all sum to 1). Continuing to use P as an example, it
+ * will be:
+ *
+ * - child 4 of H with relative probability 1
+ * - child 5 of H with relative probability 1
+ * - child 6 of H with relative probability 1
+ * - child 4 of P with relative probability 0.70820393249936908922
+ * - child 3 of F with relative probability 1.14589803375031545538
+ *
+ * and then we obtain the true probabilities by scaling those
+ * values down so that they sum to 1.
+ *
+ * The tables below give a reasonable approximation in 32-bit
+ * integers to these proportions.
+ */
+
+ typedef struct MetatilePossibleParent {
+ TileType type;
+ unsigned index;
+ unsigned long probability;
+ } MetatilePossibleParent;
+
+ /* The above probabilities scaled up by 10000000 */
+ #define PROB_H 10000000
+ #define PROB_T 1458980
+ #define PROB_P 7082039
+ #define PROB_F 11458980
+
+ static const MetatilePossibleParent parents_H[] = {
+ { TT_H, 0, PROB_H },
+ { TT_H, 1, PROB_H },
+ { TT_H, 2, PROB_H },
+ { TT_T, 0, PROB_T },
+ { TT_P, 0, PROB_P },
+ { TT_P, 1, PROB_P },
+ { TT_F, 0, PROB_F },
+ { TT_F, 1, PROB_F },
+ };
+ static const MetatilePossibleParent parents_T[] = {
+ { TT_H, 3, PROB_H },
+ };
+ static const MetatilePossibleParent parents_P[] = {
+ { TT_H, 4, PROB_H },
+ { TT_H, 5, PROB_H },
+ { TT_H, 6, PROB_H },
+ { TT_P, 4, PROB_P },
+ { TT_F, 3, PROB_F },
+ };
+ static const MetatilePossibleParent parents_F[] = {
+ { TT_H, 8, PROB_H },
+ { TT_H, 9, PROB_H },
+ { TT_H, 12, PROB_H },
+ { TT_P, 5, PROB_P },
+ { TT_P, 10, PROB_P },
+ { TT_F, 6, PROB_F },
+ { TT_F, 8, PROB_F },
+ { TT_F, 10, PROB_F },
+ };
+
+ #undef PROB_H
+ #undef PROB_T
+ #undef PROB_P
+ #undef PROB_F
+
+ static const MetatilePossibleParent *const possible_parents[] = {
+ parents_H, parents_T, parents_P, parents_F,
+ };
+ static const size_t n_possible_parents[] = {
+ lenof(parents_H), lenof(parents_T), lenof(parents_P), lenof(parents_F),
+ };
+
if (ctx->prototype->nc < n) {
hc_make_space(ctx->prototype, n);
while (ctx->prototype->nc < n) {
TileType type = ctx->prototype->c[ctx->prototype->nc - 1].type;
assert(ctx->prototype->c[ctx->prototype->nc - 1].index == -1);
- const MetatilePossibleParent *parents = permitted_parents[type];
+ const MetatilePossibleParent *parents = possible_parents[type];
size_t parent_index;
if (ctx->rs) {
- parent_index = random_upto(ctx->rs, n_permitted_parents[type]);
+ unsigned long limit = 0, value;
+ size_t nparents = n_possible_parents[type], i;
+ for (i = 0; i < nparents; i++)
+ limit += parents[i].probability;
+ value = random_upto(ctx->rs, limit);
+ for (i = 0; i < nparents; i++) {
+ if (value < parents[i].probability)
+ break;
+ value -= parents[i].probability;
+ }
+ assert(i < nparents);
+ parent_index = i;
} else {
parent_index = 0;
}