shithub: puzzles

Download patch

ref: 6ada3841a176fcdb12b953af23c0aac40532d417
parent: 12def7ede2c9cee4f7a5ac37a60ee1a61cd5c24a
author: Simon Tatham <anakin@pobox.com>
date: Sat Aug 13 06:43:26 EDT 2005

New puzzle: `Map'. Vaguely original, for a change.

(This puzzle is theoretically printable, but I haven't added it in
print.py since there's rather a lot of painful processing required
to get from the game ID to the puzzle's visual appearance. It
probably won't become printable unless I get round to implementing a
more integrated printing architecture.)

[originally from svn r6186]

--- a/Recipe
+++ b/Recipe
@@ -22,10 +22,11 @@
 PEGS     = pegs tree234
 UNTANGLE = untangle tree234
 SLANT    = slant dsf
+MAP      = map dsf
 
 ALL      = list NET NETSLIDE cube fifteen sixteen rect pattern solo twiddle
          + MINES samegame FLIP guess PEGS dominosa UNTANGLE blackbox SLANT
-         + lightup
+         + lightup MAP
 
 net      : [X] gtk COMMON NET
 netslide : [X] gtk COMMON NETSLIDE
@@ -46,6 +47,7 @@
 blackbox : [X] gtk COMMON blackbox
 slant    : [X] gtk COMMON SLANT
 lightup  : [X] gtk COMMON lightup
+map      : [X] gtk COMMON MAP
 
 # Auxiliary command-line programs.
 solosolver :    [U] solo[STANDALONE_SOLVER] malloc
@@ -79,6 +81,7 @@
 blackbox : [G] WINDOWS COMMON blackbox
 slant    : [G] WINDOWS COMMON SLANT
 lightup  : [G] WINDOWS COMMON lightup
+map      : [G] WINDOWS COMMON MAP
 
 # Mac OS X unified application containing all the puzzles.
 Puzzles  : [MX] osx osx.icns osx-info.plist COMMON ALL
@@ -170,7 +173,8 @@
 install:
 	for i in cube net netslide fifteen sixteen twiddle \
 	         pattern rect solo mines samegame flip guess \
-		 pegs dominosa untangle blackbox slant lightup; do \
+		 pegs dominosa untangle blackbox slant lightup \
+		 map; do \
 		$(INSTALL_PROGRAM) -m 755 $$i $(DESTDIR)$(gamesdir)/$$i; \
 	done
 !end
--- a/list.c
+++ b/list.c
@@ -24,6 +24,7 @@
 extern const game flip;
 extern const game guess;
 extern const game lightup;
+extern const game map;
 extern const game mines;
 extern const game net;
 extern const game netslide;
@@ -45,6 +46,7 @@
     &flip,
     &guess,
     &lightup,
+    &map,
     &mines,
     &net,
     &netslide,
--- /dev/null
+++ b/map.c
@@ -1,0 +1,2061 @@
+/*
+ * map.c: Game involving four-colouring a map.
+ */
+
+/*
+ * TODO:
+ * 
+ *  - error highlighting
+ *  - clue marking
+ *  - more solver brains?
+ *  - better four-colouring algorithm?
+ *  - pencil marks?
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+#include <ctype.h>
+#include <math.h>
+
+#include "puzzles.h"
+
+/*
+ * I don't seriously anticipate wanting to change the number of
+ * colours used in this game, but it doesn't cost much to use a
+ * #define just in case :-)
+ */
+#define FOUR 4
+#define THREE (FOUR-1)
+#define FIVE (FOUR+1)
+#define SIX (FOUR+2)
+
+/*
+ * Ghastly run-time configuration option, just for Gareth (again).
+ */
+static int flash_type = -1;
+static float flash_length;
+
+/*
+ * Difficulty levels. I do some macro ickery here to ensure that my
+ * enum and the various forms of my name list always match up.
+ */
+#define DIFFLIST(A) \
+    A(EASY,Easy,e) \
+    A(NORMAL,Normal,n)
+#define ENUM(upper,title,lower) DIFF_ ## upper,
+#define TITLE(upper,title,lower) #title,
+#define ENCODE(upper,title,lower) #lower
+#define CONFIG(upper,title,lower) ":" #title
+enum { DIFFLIST(ENUM) DIFFCOUNT };
+static char const *const map_diffnames[] = { DIFFLIST(TITLE) };
+static char const map_diffchars[] = DIFFLIST(ENCODE);
+#define DIFFCONFIG DIFFLIST(CONFIG)
+
+enum { TE, BE, LE, RE };               /* top/bottom/left/right edges */
+
+enum {
+    COL_BACKGROUND,
+    COL_GRID,
+    COL_0, COL_1, COL_2, COL_3,
+    NCOLOURS
+};
+
+struct game_params {
+    int w, h, n, diff;
+};
+
+struct map {
+    int refcount;
+    int *map;
+    int *graph;
+    int n;
+    int ngraph;
+    int *immutable;
+};
+
+struct game_state {
+    game_params p;
+    struct map *map;
+    int *colouring;
+    int completed, cheated;
+};
+
+static game_params *default_params(void)
+{
+    game_params *ret = snew(game_params);
+
+    ret->w = 20;
+    ret->h = 15;
+    ret->n = 30;
+    ret->diff = DIFF_NORMAL;
+
+    return ret;
+}
+
+static const struct game_params map_presets[] = {
+    {20, 15, 30, DIFF_EASY},
+    {20, 15, 30, DIFF_NORMAL},
+    {30, 25, 75, DIFF_NORMAL},
+};
+
+static int game_fetch_preset(int i, char **name, game_params **params)
+{
+    game_params *ret;
+    char str[80];
+
+    if (i < 0 || i >= lenof(map_presets))
+        return FALSE;
+
+    ret = snew(game_params);
+    *ret = map_presets[i];
+
+    sprintf(str, "%dx%d, %d regions, %s", ret->w, ret->h, ret->n,
+	    map_diffnames[ret->diff]);
+
+    *name = dupstr(str);
+    *params = ret;
+    return TRUE;
+}
+
+static void free_params(game_params *params)
+{
+    sfree(params);
+}
+
+static game_params *dup_params(game_params *params)
+{
+    game_params *ret = snew(game_params);
+    *ret = *params;		       /* structure copy */
+    return ret;
+}
+
+static void decode_params(game_params *params, char const *string)
+{
+    char const *p = string;
+
+    params->w = atoi(p);
+    while (*p && isdigit((unsigned char)*p)) p++;
+    if (*p == 'x') {
+        p++;
+        params->h = atoi(p);
+        while (*p && isdigit((unsigned char)*p)) p++;
+    } else {
+        params->h = params->w;
+    }
+    if (*p == 'n') {
+	p++;
+	params->n = atoi(p);
+	while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++;
+    } else {
+	params->n = params->w * params->h / 8;
+    }
+    if (*p == 'd') {
+	int i;
+	p++;
+	for (i = 0; i < DIFFCOUNT; i++)
+	    if (*p == map_diffchars[i])
+		params->diff = i;
+	if (*p) p++;
+    }
+}
+
+static char *encode_params(game_params *params, int full)
+{
+    char ret[400];
+
+    sprintf(ret, "%dx%dn%d", params->w, params->h, params->n);
+    if (full)
+	sprintf(ret + strlen(ret), "d%c", map_diffchars[params->diff]);
+
+    return dupstr(ret);
+}
+
+static config_item *game_configure(game_params *params)
+{
+    config_item *ret;
+    char buf[80];
+
+    ret = snewn(5, config_item);
+
+    ret[0].name = "Width";
+    ret[0].type = C_STRING;
+    sprintf(buf, "%d", params->w);
+    ret[0].sval = dupstr(buf);
+    ret[0].ival = 0;
+
+    ret[1].name = "Height";
+    ret[1].type = C_STRING;
+    sprintf(buf, "%d", params->h);
+    ret[1].sval = dupstr(buf);
+    ret[1].ival = 0;
+
+    ret[2].name = "Regions";
+    ret[2].type = C_STRING;
+    sprintf(buf, "%d", params->n);
+    ret[2].sval = dupstr(buf);
+    ret[2].ival = 0;
+
+    ret[3].name = "Difficulty";
+    ret[3].type = C_CHOICES;
+    ret[3].sval = DIFFCONFIG;
+    ret[3].ival = params->diff;
+
+    ret[4].name = NULL;
+    ret[4].type = C_END;
+    ret[4].sval = NULL;
+    ret[4].ival = 0;
+
+    return ret;
+}
+
+static game_params *custom_params(config_item *cfg)
+{
+    game_params *ret = snew(game_params);
+
+    ret->w = atoi(cfg[0].sval);
+    ret->h = atoi(cfg[1].sval);
+    ret->n = atoi(cfg[2].sval);
+    ret->diff = cfg[3].ival;
+
+    return ret;
+}
+
+static char *validate_params(game_params *params, int full)
+{
+    if (params->w < 2 || params->h < 2)
+	return "Width and height must be at least two";
+    if (params->n < 5)
+	return "Must have at least five regions";
+    if (params->n > params->w * params->h)
+	return "Too many regions to fit in grid";
+    return NULL;
+}
+
+/* ----------------------------------------------------------------------
+ * Cumulative frequency table functions.
+ */
+
+/*
+ * Initialise a cumulative frequency table. (Hardly worth writing
+ * this function; all it does is to initialise everything in the
+ * array to zero.)
+ */
+static void cf_init(int *table, int n)
+{
+    int i;
+
+    for (i = 0; i < n; i++)
+	table[i] = 0;
+}
+
+/*
+ * Increment the count of symbol `sym' by `count'.
+ */
+static void cf_add(int *table, int n, int sym, int count)
+{
+    int bit;
+
+    bit = 1;
+    while (sym != 0) {
+	if (sym & bit) {
+	    table[sym] += count;
+	    sym &= ~bit;
+	}
+	bit <<= 1;
+    }
+
+    table[0] += count;
+}
+
+/*
+ * Cumulative frequency lookup: return the total count of symbols
+ * with value less than `sym'.
+ */
+static int cf_clookup(int *table, int n, int sym)
+{
+    int bit, index, limit, count;
+
+    if (sym == 0)
+	return 0;
+
+    assert(0 < sym && sym <= n);
+
+    count = table[0];		       /* start with the whole table size */
+
+    bit = 1;
+    while (bit < n)
+	bit <<= 1;
+
+    limit = n;
+
+    while (bit > 0) {
+	/*
+	 * Find the least number with its lowest set bit in this
+	 * position which is greater than or equal to sym.
+	 */
+	index = ((sym + bit - 1) &~ (bit * 2 - 1)) + bit;
+
+	if (index < limit) {
+	    count -= table[index];
+	    limit = index;
+	}
+
+	bit >>= 1;
+    }
+
+    return count;
+}
+
+/*
+ * Single frequency lookup: return the count of symbol `sym'.
+ */
+static int cf_slookup(int *table, int n, int sym)
+{
+    int count, bit;
+
+    assert(0 <= sym && sym < n);
+
+    count = table[sym];
+
+    for (bit = 1; sym+bit < n && !(sym & bit); bit <<= 1)
+	count -= table[sym+bit];
+
+    return count;
+}
+
+/*
+ * Return the largest symbol index such that the cumulative
+ * frequency up to that symbol is less than _or equal to_ count.
+ */
+static int cf_whichsym(int *table, int n, int count) {
+    int bit, sym, top;
+
+    assert(count >= 0 && count < table[0]);
+
+    bit = 1;
+    while (bit < n)
+	bit <<= 1;
+
+    sym = 0;
+    top = table[0];
+
+    while (bit > 0) {
+	if (sym+bit < n) {
+	    if (count >= top - table[sym+bit])
+		sym += bit;
+	    else
+		top -= table[sym+bit];
+	}
+
+	bit >>= 1;
+    }
+
+    return sym;
+}
+
+/* ----------------------------------------------------------------------
+ * Map generation.
+ * 
+ * FIXME: this isn't entirely optimal at present, because it
+ * inherently prioritises growing the largest region since there
+ * are more squares adjacent to it. This acts as a destabilising
+ * influence leading to a few large regions and mostly small ones.
+ * It might be better to do it some other way.
+ */
+
+#define WEIGHT_INCREASED 2             /* for increased perimeter */
+#define WEIGHT_DECREASED 4             /* for decreased perimeter */
+#define WEIGHT_UNCHANGED 3             /* for unchanged perimeter */
+
+/*
+ * Look at a square and decide which colours can be extended into
+ * it.
+ * 
+ * If called with index < 0, it adds together one of
+ * WEIGHT_INCREASED, WEIGHT_DECREASED or WEIGHT_UNCHANGED for each
+ * colour that has a valid extension (according to the effect that
+ * it would have on the perimeter of the region being extended) and
+ * returns the overall total.
+ * 
+ * If called with index >= 0, it returns one of the possible
+ * colours depending on the value of index, in such a way that the
+ * number of possible inputs which would give rise to a given
+ * return value correspond to the weight of that value.
+ */
+static int extend_options(int w, int h, int n, int *map,
+                          int x, int y, int index)
+{
+    int c, i, dx, dy;
+    int col[8];
+    int total = 0;
+
+    if (map[y*w+x] >= 0) {
+        assert(index < 0);
+        return 0;                      /* can't do this square at all */
+    }
+
+    /*
+     * Fetch the eight neighbours of this square, in order around
+     * the square.
+     */
+    for (dy = -1; dy <= +1; dy++)
+        for (dx = -1; dx <= +1; dx++) {
+            int index = (dy < 0 ? 6-dx : dy > 0 ? 2+dx : 2*(1+dx));
+            if (x+dx >= 0 && x+dx < w && y+dy >= 0 && y+dy < h)
+                col[index] = map[(y+dy)*w+(x+dx)];
+            else
+                col[index] = -1;
+        }
+
+    /*
+     * Iterate over each colour that might be feasible.
+     * 
+     * FIXME: this routine currently has O(n) running time. We
+     * could turn it into O(FOUR) by only bothering to iterate over
+     * the colours mentioned in the four neighbouring squares.
+     */
+
+    for (c = 0; c < n; c++) {
+        int count, neighbours, runs;
+
+        /*
+         * One of the even indices of col (representing the
+         * orthogonal neighbours of this square) must be equal to
+         * c, or else this square is not adjacent to region c and
+         * obviously cannot become an extension of it at this time.
+         */
+        neighbours = 0;
+        for (i = 0; i < 8; i += 2)
+            if (col[i] == c)
+                neighbours++;
+        if (!neighbours)
+            continue;
+
+        /*
+         * Now we know this square is adjacent to region c. The
+         * next question is, would extending it cause the region to
+         * become non-simply-connected? If so, we mustn't do it.
+         * 
+         * We determine this by looking around col to see if we can
+         * find more than one separate run of colour c.
+         */
+        runs = 0;
+        for (i = 0; i < 8; i++)
+            if (col[i] == c && col[(i+1) & 7] != c)
+                runs++;
+        if (runs > 1)
+            continue;
+
+        assert(runs == 1);
+
+        /*
+         * This square is a possibility. Determine its effect on
+         * the region's perimeter (computed from the number of
+         * orthogonal neighbours - 1 means a perimeter increase, 3
+         * a decrease, 2 no change; 4 is impossible because the
+         * region would already not be simply connected) and we're
+         * done.
+         */
+        assert(neighbours > 0 && neighbours < 4);
+        count = (neighbours == 1 ? WEIGHT_INCREASED :
+                 neighbours == 2 ? WEIGHT_UNCHANGED : WEIGHT_DECREASED);
+
+        total += count;
+        if (index >= 0 && index < count)
+            return c;
+        else
+            index -= count;
+    }
+
+    assert(index < 0);
+
+    return total;
+}
+
+static void genmap(int w, int h, int n, int *map, random_state *rs)
+{
+    int wh = w*h;
+    int x, y, i, k;
+    int *tmp;
+
+    assert(n <= wh);
+    tmp = snewn(wh, int);
+
+    /*
+     * Clear the map, and set up `tmp' as a list of grid indices.
+     */
+    for (i = 0; i < wh; i++) {
+        map[i] = -1;
+        tmp[i] = i;
+    }
+
+    /*
+     * Place the region seeds by selecting n members from `tmp'.
+     */
+    k = wh;
+    for (i = 0; i < n; i++) {
+        int j = random_upto(rs, k);
+        map[tmp[j]] = i;
+        tmp[j] = tmp[--k];
+    }
+
+    /*
+     * Re-initialise `tmp' as a cumulative frequency table. This
+     * will store the number of possible region colours we can
+     * extend into each square.
+     */
+    cf_init(tmp, wh);
+
+    /*
+     * Go through the grid and set up the initial cumulative
+     * frequencies.
+     */
+    for (y = 0; y < h; y++)
+        for (x = 0; x < w; x++)
+            cf_add(tmp, wh, y*w+x,
+                   extend_options(w, h, n, map, x, y, -1));
+
+    /*
+     * Now repeatedly choose a square we can extend a region into,
+     * and do so.
+     */
+    while (tmp[0] > 0) {
+        int k = random_upto(rs, tmp[0]);
+        int sq;
+        int colour;
+        int xx, yy;
+
+        sq = cf_whichsym(tmp, wh, k);
+        k -= cf_clookup(tmp, wh, sq);
+        x = sq % w;
+        y = sq / w;
+        colour = extend_options(w, h, n, map, x, y, k);
+
+        map[sq] = colour;
+
+        /*
+         * Re-scan the nine cells around the one we've just
+         * modified.
+         */
+        for (yy = max(y-1, 0); yy < min(y+2, h); yy++)
+            for (xx = max(x-1, 0); xx < min(x+2, w); xx++) {
+                cf_add(tmp, wh, yy*w+xx,
+                       -cf_slookup(tmp, wh, yy*w+xx) +
+                       extend_options(w, h, n, map, xx, yy, -1));
+            }
+    }
+
+    /*
+     * Finally, go through and normalise the region labels into
+     * order, meaning that indistinguishable maps are actually
+     * identical.
+     */
+    for (i = 0; i < n; i++)
+        tmp[i] = -1;
+    k = 0;
+    for (i = 0; i < wh; i++) {
+        assert(map[i] >= 0);
+        if (tmp[map[i]] < 0)
+            tmp[map[i]] = k++;
+        map[i] = tmp[map[i]];
+    }
+
+    sfree(tmp);
+}
+
+/* ----------------------------------------------------------------------
+ * Functions to handle graphs.
+ */
+
+/*
+ * Having got a map in a square grid, convert it into a graph
+ * representation.
+ */
+static int gengraph(int w, int h, int n, int *map, int *graph)
+{
+    int i, j, x, y;
+
+    /*
+     * Start by setting the graph up as an adjacency matrix. We'll
+     * turn it into a list later.
+     */
+    for (i = 0; i < n*n; i++)
+	graph[i] = 0;
+
+    /*
+     * Iterate over the map looking for all adjacencies.
+     */
+    for (y = 0; y < h; y++)
+        for (x = 0; x < w; x++) {
+	    int v, vx, vy;
+	    v = map[y*w+x];
+	    if (x+1 < w && (vx = map[y*w+(x+1)]) != v)
+		graph[v*n+vx] = graph[vx*n+v] = 1;
+	    if (y+1 < h && (vy = map[(y+1)*w+x]) != v)
+		graph[v*n+vy] = graph[vy*n+v] = 1;
+	}
+
+    /*
+     * Turn the matrix into a list.
+     */
+    for (i = j = 0; i < n*n; i++)
+	if (graph[i])
+	    graph[j++] = i;
+
+    return j;
+}
+
+static int graph_adjacent(int *graph, int n, int ngraph, int i, int j)
+{
+    int v = i*n+j;
+    int top, bot, mid;
+
+    bot = -1;
+    top = ngraph;
+    while (top - bot > 1) {
+	mid = (top + bot) / 2;
+	if (graph[mid] == v)
+	    return TRUE;
+	else if (graph[mid] < v)
+	    bot = mid;
+	else
+	    top = mid;
+    }
+    return FALSE;
+}
+
+static int graph_vertex_start(int *graph, int n, int ngraph, int i)
+{
+    int v = i*n;
+    int top, bot, mid;
+
+    bot = -1;
+    top = ngraph;
+    while (top - bot > 1) {
+	mid = (top + bot) / 2;
+	if (graph[mid] < v)
+	    bot = mid;
+	else
+	    top = mid;
+    }
+    return top;
+}
+
+/* ----------------------------------------------------------------------
+ * Generate a four-colouring of a graph.
+ *
+ * FIXME: it would be nice if we could convert this recursion into
+ * pseudo-recursion using some sort of explicit stack array, for
+ * the sake of the Palm port and its limited stack.
+ */
+
+static int fourcolour_recurse(int *graph, int n, int ngraph,
+			      int *colouring, int *scratch, random_state *rs)
+{
+    int nfree, nvert, start, i, j, k, c, ci;
+    int cs[FOUR];
+
+    /*
+     * Find the smallest number of free colours in any uncoloured
+     * vertex, and count the number of such vertices.
+     */
+
+    nfree = FIVE;		       /* start off bigger than FOUR! */
+    nvert = 0;
+    for (i = 0; i < n; i++)
+	if (colouring[i] < 0 && scratch[i*FIVE+FOUR] <= nfree) {
+	    if (nfree > scratch[i*FIVE+FOUR]) {
+		nfree = scratch[i*FIVE+FOUR];
+		nvert = 0;
+	    }
+	    nvert++;
+	}
+
+    /*
+     * If there aren't any uncoloured vertices at all, we're done.
+     */
+    if (nvert == 0)
+	return TRUE;		       /* we've got a colouring! */
+
+    /*
+     * Pick a random vertex in that set.
+     */
+    j = random_upto(rs, nvert);
+    for (i = 0; i < n; i++)
+	if (colouring[i] < 0 && scratch[i*FIVE+FOUR] == nfree)
+	    if (j-- == 0)
+		break;
+    assert(i < n);
+    start = graph_vertex_start(graph, n, ngraph, i);
+
+    /*
+     * Loop over the possible colours for i, and recurse for each
+     * one.
+     */
+    ci = 0;
+    for (c = 0; c < FOUR; c++)
+	if (scratch[i*FIVE+c] == 0)
+	    cs[ci++] = c;
+    shuffle(cs, ci, sizeof(*cs), rs);
+
+    while (ci-- > 0) {
+	c = cs[ci];
+
+	/*
+	 * Fill in this colour.
+	 */
+	colouring[i] = c;
+
+	/*
+	 * Update the scratch space to reflect a new neighbour
+	 * of this colour for each neighbour of vertex i.
+	 */
+	for (j = start; j < ngraph && graph[j] < n*(i+1); j++) {
+	    k = graph[j] - i*n;
+	    if (scratch[k*FIVE+c] == 0)
+		scratch[k*FIVE+FOUR]--;
+	    scratch[k*FIVE+c]++;
+	}
+
+	/*
+	 * Recurse.
+	 */
+	if (fourcolour_recurse(graph, n, ngraph, colouring, scratch, rs))
+	    return TRUE;	       /* got one! */
+
+	/*
+	 * If that didn't work, clean up and try again with a
+	 * different colour.
+	 */
+	for (j = start; j < ngraph && graph[j] < n*(i+1); j++) {
+	    k = graph[j] - i*n;
+	    scratch[k*FIVE+c]--;
+	    if (scratch[k*FIVE+c] == 0)
+		scratch[k*FIVE+FOUR]++;
+	}
+	colouring[i] = -1;
+    }
+
+    /*
+     * If we reach here, we were unable to find a colouring at all.
+     * (This doesn't necessarily mean the Four Colour Theorem is
+     * violated; it might just mean we've gone down a dead end and
+     * need to back up and look somewhere else. It's only an FCT
+     * violation if we get all the way back up to the top level and
+     * still fail.)
+     */
+    return FALSE;
+}
+
+static void fourcolour(int *graph, int n, int ngraph, int *colouring,
+		       random_state *rs)
+{
+    int *scratch;
+    int i;
+
+    /*
+     * For each vertex and each colour, we store the number of
+     * neighbours that have that colour. Also, we store the number
+     * of free colours for the vertex.
+     */
+    scratch = snewn(n * FIVE, int);
+    for (i = 0; i < n * FIVE; i++)
+	scratch[i] = (i % FIVE == FOUR ? FOUR : 0);
+
+    /*
+     * Clear the colouring to start with.
+     */
+    for (i = 0; i < n; i++)
+	colouring[i] = -1;
+
+    i = fourcolour_recurse(graph, n, ngraph, colouring, scratch, rs);
+    assert(i);			       /* by the Four Colour Theorem :-) */
+
+    sfree(scratch);
+}
+
+/* ----------------------------------------------------------------------
+ * Non-recursive solver.
+ */
+
+struct solver_scratch {
+    unsigned char *possible;	       /* bitmap of colours for each region */
+    int *graph;
+    int n;
+    int ngraph;
+};
+
+static struct solver_scratch *new_scratch(int *graph, int n, int ngraph)
+{
+    struct solver_scratch *sc;
+
+    sc = snew(struct solver_scratch);
+    sc->graph = graph;
+    sc->n = n;
+    sc->ngraph = ngraph;
+    sc->possible = snewn(n, unsigned char);
+
+    return sc;
+}
+
+static void free_scratch(struct solver_scratch *sc)
+{
+    sfree(sc->possible);
+    sfree(sc);
+}
+
+static int place_colour(struct solver_scratch *sc,
+			int *colouring, int index, int colour)
+{
+    int *graph = sc->graph, n = sc->n, ngraph = sc->ngraph;
+    int j, k;
+
+    if (!(sc->possible[index] & (1 << colour)))
+	return FALSE;		       /* can't do it */
+
+    sc->possible[index] = 1 << colour;
+    colouring[index] = colour;
+
+    /*
+     * Rule out this colour from all the region's neighbours.
+     */
+    for (j = graph_vertex_start(graph, n, ngraph, index);
+	 j < ngraph && graph[j] < n*(index+1); j++) {
+	k = graph[j] - index*n;
+	sc->possible[k] &= ~(1 << colour);
+    }
+
+    return TRUE;
+}
+
+/*
+ * Returns 0 for impossible, 1 for success, 2 for failure to
+ * converge (i.e. puzzle is either ambiguous or just too
+ * difficult).
+ */
+static int map_solver(struct solver_scratch *sc,
+		      int *graph, int n, int ngraph, int *colouring,
+                      int difficulty)
+{
+    int i;
+
+    /*
+     * Initialise scratch space.
+     */
+    for (i = 0; i < n; i++)
+	sc->possible[i] = (1 << FOUR) - 1;
+
+    /*
+     * Place clues.
+     */
+    for (i = 0; i < n; i++)
+	if (colouring[i] >= 0) {
+	    if (!place_colour(sc, colouring, i, colouring[i]))
+		return 0;	       /* the clues aren't even consistent! */
+	}
+
+    /*
+     * Now repeatedly loop until we find nothing further to do.
+     */
+    while (1) {
+	int done_something = FALSE;
+
+        if (difficulty < DIFF_EASY)
+            break;                     /* can't do anything at all! */
+
+	/*
+	 * Simplest possible deduction: find a region with only one
+	 * possible colour.
+	 */
+	for (i = 0; i < n; i++) if (colouring[i] < 0) {
+	    int p = sc->possible[i];
+
+	    if (p == 0)
+		return 0;	       /* puzzle is inconsistent */
+
+	    if ((p & (p-1)) == 0) {    /* p is a power of two */
+		int c;
+		for (c = 0; c < FOUR; c++)
+		    if (p == (1 << c))
+			break;
+		assert(c < FOUR);
+		if (!place_colour(sc, colouring, i, c))
+		    return 0;	       /* found puzzle to be inconsistent */
+		done_something = TRUE;
+	    }
+	}
+
+        if (done_something)
+            continue;
+
+        if (difficulty < DIFF_NORMAL)
+            break;                     /* can't do anything harder */
+
+        /*
+         * Failing that, go up one level. Look for pairs of regions
+         * which (a) both have the same pair of possible colours,
+         * (b) are adjacent to one another, (c) are adjacent to the
+         * same region, and (d) that region still thinks it has one
+         * or both of those possible colours.
+         * 
+         * Simplest way to do this is by going through the graph
+         * edge by edge, so that we start with property (b) and
+         * then look for (a) and finally (c) and (d).
+         */
+        for (i = 0; i < ngraph; i++) {
+            int j1 = graph[i] / n, j2 = graph[i] % n;
+            int j, k, v, v2;
+
+            if (j1 > j2)
+                continue;              /* done it already, other way round */
+
+            if (colouring[j1] >= 0 || colouring[j2] >= 0)
+                continue;              /* they're not undecided */
+
+            if (sc->possible[j1] != sc->possible[j2])
+                continue;              /* they don't have the same possibles */
+
+            v = sc->possible[j1];
+            /*
+             * See if v contains exactly two set bits.
+             */
+            v2 = v & -v;           /* find lowest set bit */
+            v2 = v & ~v2;          /* clear it */
+            if (v2 == 0 || (v2 & (v2-1)) != 0)   /* not power of 2 */
+                continue;
+
+            /*
+             * We've found regions j1 and j2 satisfying properties
+             * (a) and (b): they have two possible colours between
+             * them, and since they're adjacent to one another they
+             * must use _both_ those colours between them.
+             * Therefore, if they are both adjacent to any other
+             * region then that region cannot be either colour.
+             * 
+             * Go through the neighbours of j1 and see if any are
+             * shared with j2.
+             */
+            for (j = graph_vertex_start(graph, n, ngraph, j1);
+                 j < ngraph && graph[j] < n*(j1+1); j++) {
+                k = graph[j] - j1*n;
+                if (graph_adjacent(graph, n, ngraph, k, j2) &&
+                    (sc->possible[k] & v)) {
+                    sc->possible[k] &= ~v;
+                    done_something = TRUE;
+                }
+            }
+        }
+
+	if (!done_something)
+	    break;
+    }
+
+    /*
+     * We've run out of things to deduce. See if we've got the lot.
+     */
+    for (i = 0; i < n; i++)
+	if (colouring[i] < 0)
+	    return 2;
+
+    return 1;			       /* success! */
+}
+
+/* ----------------------------------------------------------------------
+ * Game generation main function.
+ */
+
+static char *new_game_desc(game_params *params, random_state *rs,
+			   char **aux, int interactive)
+{
+    struct solver_scratch *sc;
+    int *map, *graph, ngraph, *colouring, *colouring2, *regions;
+    int i, j, w, h, n, solveret, cfreq[FOUR];
+    int wh;
+    int mindiff, tries;
+#ifdef GENERATION_DIAGNOSTICS
+    int x, y;
+#endif
+    char *ret, buf[80];
+    int retlen, retsize;
+
+    w = params->w;
+    h = params->h;
+    n = params->n;
+    wh = w*h;
+
+    *aux = NULL;
+
+    map = snewn(wh, int);
+    graph = snewn(n*n, int);
+    colouring = snewn(n, int);
+    colouring2 = snewn(n, int);
+    regions = snewn(n, int);
+
+    /*
+     * This is the minimum difficulty below which we'll completely
+     * reject a map design. Normally we set this to one below the
+     * requested difficulty, ensuring that we have the right
+     * result. However, for particularly dense maps or maps with
+     * particularly few regions it might not be possible to get the
+     * desired difficulty, so we will eventually drop this down to
+     * -1 to indicate that any old map will do.
+     */
+    mindiff = params->diff;
+    tries = 50;
+
+    while (1) {
+
+        /*
+         * Create the map.
+         */
+        genmap(w, h, n, map, rs);
+
+#ifdef GENERATION_DIAGNOSTICS
+        for (y = 0; y < h; y++) {
+            for (x = 0; x < w; x++) {
+                int v = map[y*w+x];
+                if (v >= 62)
+                    putchar('!');
+                else if (v >= 36)
+                    putchar('a' + v-36);
+                else if (v >= 10)
+                    putchar('A' + v-10);
+                else
+                    putchar('0' + v);
+            }
+            putchar('\n');
+        }
+#endif
+
+        /*
+         * Convert the map into a graph.
+         */
+        ngraph = gengraph(w, h, n, map, graph);
+
+#ifdef GENERATION_DIAGNOSTICS
+        for (i = 0; i < ngraph; i++)
+            printf("%d-%d\n", graph[i]/n, graph[i]%n);
+#endif
+
+        /*
+         * Colour the map.
+         */
+        fourcolour(graph, n, ngraph, colouring, rs);
+
+#ifdef GENERATION_DIAGNOSTICS
+        for (i = 0; i < n; i++)
+            printf("%d: %d\n", i, colouring[i]);
+
+        for (y = 0; y < h; y++) {
+            for (x = 0; x < w; x++) {
+                int v = colouring[map[y*w+x]];
+                if (v >= 36)
+                    putchar('a' + v-36);
+                else if (v >= 10)
+                    putchar('A' + v-10);
+                else
+                    putchar('0' + v);
+            }
+            putchar('\n');
+        }
+#endif
+
+        /*
+         * Encode the solution as an aux string.
+         */
+        if (*aux)                      /* in case we've come round again */
+            sfree(*aux);
+        retlen = retsize = 0;
+        ret = NULL;
+        for (i = 0; i < n; i++) {
+            int len;
+
+            if (colouring[i] < 0)
+                continue;
+
+            len = sprintf(buf, "%s%d:%d", i ? ";" : "S;", colouring[i], i);
+            if (retlen + len >= retsize) {
+                retsize = retlen + len + 256;
+                ret = sresize(ret, retsize, char);
+            }
+            strcpy(ret + retlen, buf);
+            retlen += len;
+        }
+        *aux = ret;
+
+        /*
+         * Remove the region colours one by one, keeping
+         * solubility. Also ensure that there always remains at
+         * least one region of every colour, so that the user can
+         * drag from somewhere.
+         */
+        for (i = 0; i < FOUR; i++)
+            cfreq[i] = 0;
+        for (i = 0; i < n; i++) {
+            regions[i] = i;
+            cfreq[colouring[i]]++;
+        }
+        for (i = 0; i < FOUR; i++)
+            if (cfreq[i] == 0)
+                continue;
+
+        shuffle(regions, n, sizeof(*regions), rs);
+
+        sc = new_scratch(graph, n, ngraph);
+
+        for (i = 0; i < n; i++) {
+            j = regions[i];
+
+            if (cfreq[colouring[j]] == 1)
+                continue;              /* can't remove last region of colour */
+
+            memcpy(colouring2, colouring, n*sizeof(int));
+            colouring2[j] = -1;
+            solveret = map_solver(sc, graph, n, ngraph, colouring2,
+				  params->diff);
+            assert(solveret >= 0);	       /* mustn't be impossible! */
+            if (solveret == 1) {
+                cfreq[colouring[j]]--;
+                colouring[j] = -1;
+            }
+        }
+
+#ifdef GENERATION_DIAGNOSTICS
+        for (i = 0; i < n; i++)
+            if (colouring[i] >= 0) {
+                if (i >= 62)
+                    putchar('!');
+                else if (i >= 36)
+                    putchar('a' + i-36);
+                else if (i >= 10)
+                    putchar('A' + i-10);
+                else
+                    putchar('0' + i);
+                printf(": %d\n", colouring[i]);
+            }
+#endif
+
+        /*
+         * Finally, check that the puzzle is _at least_ as hard as
+         * required, and indeed that it isn't already solved.
+         * (Calling map_solver with negative difficulty ensures the
+         * latter - if a solver which _does nothing_ can't solve
+         * it, it's too easy!)
+         */
+        memcpy(colouring2, colouring, n*sizeof(int));
+        if (map_solver(sc, graph, n, ngraph, colouring2,
+                       mindiff - 1) == 1) {
+	    /*
+	     * Drop minimum difficulty if necessary.
+	     */
+	    if (mindiff > 0 && (n < 9 || n > 3*wh/2)) {
+		if (tries-- <= 0)
+		    mindiff = 0;       /* give up and go for Easy */
+	    }
+            continue;
+	}
+
+        break;
+    }
+
+    /*
+     * Encode as a game ID. We do this by:
+     * 
+     * 	- first going along the horizontal edges row by row, and
+     * 	  then the vertical edges column by column
+     * 	- encoding the lengths of runs of edges and runs of
+     * 	  non-edges
+     * 	- the decoder will reconstitute the region boundaries from
+     * 	  this and automatically number them the same way we did
+     * 	- then we encode the initial region colours in a Slant-like
+     * 	  fashion (digits 0-3 interspersed with letters giving
+     * 	  lengths of runs of empty spaces).
+     */
+    retlen = retsize = 0;
+    ret = NULL;
+
+    {
+	int run, pv;
+
+	/*
+	 * Start with a notional non-edge, so that there'll be an
+	 * explicit `a' to distinguish the case where we start with
+	 * an edge.
+	 */
+	run = 1;
+	pv = 0;
+
+	for (i = 0; i < w*(h-1) + (w-1)*h; i++) {
+	    int x, y, dx, dy, v;
+
+	    if (i < w*(h-1)) {
+		/* Horizontal edge. */
+		y = i / w;
+		x = i % w;
+		dx = 0;
+		dy = 1;
+	    } else {
+		/* Vertical edge. */
+		x = (i - w*(h-1)) / h;
+		y = (i - w*(h-1)) % h;
+		dx = 1;
+		dy = 0;
+	    }
+
+	    if (retlen + 10 >= retsize) {
+		retsize = retlen + 256;
+		ret = sresize(ret, retsize, char);
+	    }
+
+	    v = (map[y*w+x] != map[(y+dy)*w+(x+dx)]);
+
+	    if (pv != v) {
+		ret[retlen++] = 'a'-1 + run;
+		run = 1;
+		pv = v;
+	    } else {
+		/*
+		 * 'z' is a special case in this encoding. Rather
+		 * than meaning a run of 26 and a state switch, it
+		 * means a run of 25 and _no_ state switch, because
+		 * otherwise there'd be no way to encode runs of
+		 * more than 26.
+		 */
+		if (run == 25) {
+		    ret[retlen++] = 'z';
+		    run = 0;
+		}
+		run++;
+	    }
+	}
+
+	ret[retlen++] = 'a'-1 + run;
+	ret[retlen++] = ',';
+
+	run = 0;
+	for (i = 0; i < n; i++) {
+	    if (retlen + 10 >= retsize) {
+		retsize = retlen + 256;
+		ret = sresize(ret, retsize, char);
+	    }
+
+	    if (colouring[i] < 0) {
+		/*
+		 * In _this_ encoding, 'z' is a run of 26, since
+		 * there's no implicit state switch after each run.
+		 * Confusingly different, but more compact.
+		 */
+		if (run == 26) {
+		    ret[retlen++] = 'z';
+		    run = 0;
+		}
+		run++;
+	    } else {
+		if (run > 0)
+		    ret[retlen++] = 'a'-1 + run;
+		ret[retlen++] = '0' + colouring[i];
+		run = 0;
+	    }
+	}
+	if (run > 0)
+	    ret[retlen++] = 'a'-1 + run;
+	ret[retlen] = '\0';
+
+	assert(retlen < retsize);
+    }
+
+    free_scratch(sc);
+    sfree(regions);
+    sfree(colouring2);
+    sfree(colouring);
+    sfree(graph);
+    sfree(map);
+
+    return ret;
+}
+
+static char *parse_edge_list(game_params *params, char **desc, int *map)
+{
+    int w = params->w, h = params->h, wh = w*h, n = params->n;
+    int i, k, pos, state;
+    char *p = *desc;
+
+    for (i = 0; i < wh; i++)
+	map[wh+i] = i;
+
+    pos = -1;
+    state = 0;
+
+    /*
+     * Parse the game description to get the list of edges, and
+     * build up a disjoint set forest as we go (by identifying
+     * pairs of squares whenever the edge list shows a non-edge).
+     */
+    while (*p && *p != ',') {
+	if (*p < 'a' || *p > 'z')
+	    return "Unexpected character in edge list";
+	if (*p == 'z')
+	    k = 25;
+	else
+	    k = *p - 'a' + 1;
+	while (k-- > 0) {
+	    int x, y, dx, dy;
+
+	    if (pos < 0) {
+		pos++;
+		continue;
+	    } else if (pos < w*(h-1)) {
+		/* Horizontal edge. */
+		y = pos / w;
+		x = pos % w;
+		dx = 0;
+		dy = 1;
+	    } else if (pos < 2*wh-w-h) {
+		/* Vertical edge. */
+		x = (pos - w*(h-1)) / h;
+		y = (pos - w*(h-1)) % h;
+		dx = 1;
+		dy = 0;
+	    } else
+		return "Too much data in edge list";
+	    if (!state)
+		dsf_merge(map+wh, y*w+x, (y+dy)*w+(x+dx));
+
+	    pos++;
+	}
+	if (*p != 'z')
+	    state = !state;
+	p++;
+    }
+    assert(pos <= 2*wh-w-h);
+    if (pos < 2*wh-w-h)
+	return "Too little data in edge list";
+
+    /*
+     * Now go through again and allocate region numbers.
+     */
+    pos = 0;
+    for (i = 0; i < wh; i++)
+	map[i] = -1;
+    for (i = 0; i < wh; i++) {
+	k = dsf_canonify(map+wh, i);
+	if (map[k] < 0)
+	    map[k] = pos++;
+	map[i] = map[k];
+    }
+    if (pos != n)
+	return "Edge list defines the wrong number of regions";
+
+    *desc = p;
+
+    return NULL;
+}
+
+static char *validate_desc(game_params *params, char *desc)
+{
+    int w = params->w, h = params->h, wh = w*h, n = params->n;
+    int area;
+    int *map;
+    char *ret;
+
+    map = snewn(2*wh, int);
+    ret = parse_edge_list(params, &desc, map);
+    if (ret)
+	return ret;
+    sfree(map);
+
+    if (*desc != ',')
+	return "Expected comma before clue list";
+    desc++;			       /* eat comma */
+
+    area = 0;
+    while (*desc) {
+	if (*desc >= '0' && *desc < '0'+FOUR)
+	    area++;
+	else if (*desc >= 'a' && *desc <= 'z')
+	    area += *desc - 'a' + 1;
+	else
+	    return "Unexpected character in clue list";
+	desc++;
+    }
+    if (area < n)
+	return "Too little data in clue list";
+    else if (area > n)
+	return "Too much data in clue list";
+
+    return NULL;
+}
+
+static game_state *new_game(midend_data *me, game_params *params, char *desc)
+{
+    int w = params->w, h = params->h, wh = w*h, n = params->n;
+    int i, pos;
+    char *p;
+    game_state *state = snew(game_state);
+
+    state->p = *params;
+    state->colouring = snewn(n, int);
+    for (i = 0; i < n; i++)
+	state->colouring[i] = -1;
+
+    state->completed = state->cheated = FALSE;
+
+    state->map = snew(struct map);
+    state->map->refcount = 1;
+    state->map->map = snewn(wh*4, int);
+    state->map->graph = snewn(n*n, int);
+    state->map->n = n;
+    state->map->immutable = snewn(n, int);
+    for (i = 0; i < n; i++)
+	state->map->immutable[i] = FALSE;
+
+    p = desc;
+
+    {
+	char *ret;
+	ret = parse_edge_list(params, &p, state->map->map);
+	assert(!ret);
+    }
+
+    /*
+     * Set up the other three quadrants in `map'.
+     */
+    for (i = wh; i < 4*wh; i++)
+	state->map->map[i] = state->map->map[i % wh];
+
+    assert(*p == ',');
+    p++;
+
+    /*
+     * Now process the clue list.
+     */
+    pos = 0;
+    while (*p) {
+	if (*p >= '0' && *p < '0'+FOUR) {
+	    state->colouring[pos] = *p - '0';
+	    state->map->immutable[pos] = TRUE;
+	    pos++;
+	} else {
+	    assert(*p >= 'a' && *p <= 'z');
+	    pos += *p - 'a' + 1;
+	}
+	p++;
+    }
+    assert(pos == n);
+
+    state->map->ngraph = gengraph(w, h, n, state->map->map, state->map->graph);
+
+    /*
+     * Attempt to smooth out some of the more jagged region
+     * outlines by the judicious use of diagonally divided squares.
+     */
+    {
+        random_state *rs = random_init(desc, strlen(desc));
+        int *squares = snewn(wh, int);
+        int done_something;
+
+        for (i = 0; i < wh; i++)
+            squares[i] = i;
+        shuffle(squares, wh, sizeof(*squares), rs);
+
+        do {
+            done_something = FALSE;
+            for (i = 0; i < wh; i++) {
+                int y = squares[i] / w, x = squares[i] % w;
+                int c = state->map->map[y*w+x];
+                int tc, bc, lc, rc;
+
+                if (x == 0 || x == w-1 || y == 0 || y == h-1)
+                    continue;
+
+                if (state->map->map[TE * wh + y*w+x] !=
+                    state->map->map[BE * wh + y*w+x])
+                    continue;
+
+                tc = state->map->map[BE * wh + (y-1)*w+x];
+                bc = state->map->map[TE * wh + (y+1)*w+x];
+                lc = state->map->map[RE * wh + y*w+(x-1)];
+                rc = state->map->map[LE * wh + y*w+(x+1)];
+
+                /*
+                 * If this square is adjacent on two sides to one
+                 * region and on the other two sides to the other
+                 * region, and is itself one of the two regions, we can
+                 * adjust it so that it's a diagonal.
+                 */
+                if (tc != bc && (tc == c || bc == c)) {
+                    if ((lc == tc && rc == bc) ||
+                        (lc == bc && rc == tc)) {
+                        state->map->map[TE * wh + y*w+x] = tc;
+                        state->map->map[BE * wh + y*w+x] = bc;
+                        state->map->map[LE * wh + y*w+x] = lc;
+                        state->map->map[RE * wh + y*w+x] = rc;
+                        done_something = TRUE;
+                    }
+                }
+            }
+        } while (done_something);
+        sfree(squares);
+        random_free(rs);
+    }
+
+    return state;
+}
+
+static game_state *dup_game(game_state *state)
+{
+    game_state *ret = snew(game_state);
+
+    ret->p = state->p;
+    ret->colouring = snewn(state->p.n, int);
+    memcpy(ret->colouring, state->colouring, state->p.n * sizeof(int));
+    ret->map = state->map;
+    ret->map->refcount++;
+    ret->completed = state->completed;
+    ret->cheated = state->cheated;
+
+    return ret;
+}
+
+static void free_game(game_state *state)
+{
+    if (--state->map->refcount <= 0) {
+	sfree(state->map->map);
+	sfree(state->map->graph);
+	sfree(state->map->immutable);
+	sfree(state->map);
+    }
+    sfree(state->colouring);
+    sfree(state);
+}
+
+static char *solve_game(game_state *state, game_state *currstate,
+			char *aux, char **error)
+{
+    if (!aux) {
+	/*
+	 * Use the solver.
+	 */
+	int *colouring;
+	struct solver_scratch *sc;
+	int sret;
+	int i;
+	char *ret, buf[80];
+	int retlen, retsize;
+
+	colouring = snewn(state->map->n, int);
+	memcpy(colouring, state->colouring, state->map->n * sizeof(int));
+
+	sc = new_scratch(state->map->graph, state->map->n, state->map->ngraph);
+	sret = map_solver(sc, state->map->graph, state->map->n,
+			 state->map->ngraph, colouring, DIFFCOUNT-1);
+	free_scratch(sc);
+
+	if (sret != 1) {
+	    sfree(colouring);
+	    if (sret == 0)
+		*error = "Puzzle is inconsistent";
+	    else
+		*error = "Unable to find a unique solution for this puzzle";
+	    return NULL;
+	}
+
+	retlen = retsize = 0;
+	ret = NULL;
+
+	for (i = 0; i < state->map->n; i++) {
+            int len;
+
+	    assert(colouring[i] >= 0);
+            if (colouring[i] == currstate->colouring[i])
+                continue;
+	    assert(!state->map->immutable[i]);
+
+            len = sprintf(buf, "%s%d:%d", retlen ? ";" : "S;",
+			  colouring[i], i);
+            if (retlen + len >= retsize) {
+                retsize = retlen + len + 256;
+                ret = sresize(ret, retsize, char);
+            }
+            strcpy(ret + retlen, buf);
+            retlen += len;
+        }
+
+	sfree(colouring);
+
+	return ret;
+    }
+    return dupstr(aux);
+}
+
+static char *game_text_format(game_state *state)
+{
+    return NULL;
+}
+
+struct game_ui {
+    int drag_colour;                   /* -1 means no drag active */
+    int dragx, dragy;
+};
+
+static game_ui *new_ui(game_state *state)
+{
+    game_ui *ui = snew(game_ui);
+    ui->dragx = ui->dragy = -1;
+    ui->drag_colour = -2;
+    return ui;
+}
+
+static void free_ui(game_ui *ui)
+{
+    sfree(ui);
+}
+
+static char *encode_ui(game_ui *ui)
+{
+    return NULL;
+}
+
+static void decode_ui(game_ui *ui, char *encoding)
+{
+}
+
+static void game_changed_state(game_ui *ui, game_state *oldstate,
+                               game_state *newstate)
+{
+}
+
+struct game_drawstate {
+    int tilesize;
+    unsigned char *drawn;
+    int started;
+    int dragx, dragy, drag_visible;
+    blitter *bl;
+};
+
+#define TILESIZE (ds->tilesize)
+#define BORDER (TILESIZE)
+#define COORD(x)  ( (x) * TILESIZE + BORDER )
+#define FROMCOORD(x)  ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
+
+static int region_from_coords(game_state *state, game_drawstate *ds,
+                              int x, int y)
+{
+    int w = state->p.w, h = state->p.h, wh = w*h /*, n = state->p.n */;
+    int tx = FROMCOORD(x), ty = FROMCOORD(y);
+    int dx = x - COORD(tx), dy = y - COORD(ty);
+    int quadrant;
+
+    if (tx < 0 || tx >= w || ty < 0 || ty >= h)
+        return -1;                     /* border */
+
+    quadrant = 2 * (dx > dy) + (TILESIZE - dx > dy);
+    quadrant = (quadrant == 0 ? BE :
+                quadrant == 1 ? LE :
+                quadrant == 2 ? RE : TE);
+
+    return state->map->map[quadrant * wh + ty*w+tx];
+}
+
+static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
+			    int x, int y, int button)
+{
+    char buf[80];
+
+    if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
+	int r = region_from_coords(state, ds, x, y);
+
+        if (r >= 0)
+            ui->drag_colour = state->colouring[r];
+        else
+            ui->drag_colour = -1;
+        ui->dragx = x;
+        ui->dragy = y;
+        return "";
+    }
+
+    if ((button == LEFT_DRAG || button == RIGHT_DRAG) &&
+        ui->drag_colour > -2) {
+        ui->dragx = x;
+        ui->dragy = y;
+        return "";
+    }
+
+    if ((button == LEFT_RELEASE || button == RIGHT_RELEASE) &&
+        ui->drag_colour > -2) {
+	int r = region_from_coords(state, ds, x, y);
+        int c = ui->drag_colour;
+
+        /*
+         * Cancel the drag, whatever happens.
+         */
+        ui->drag_colour = -2;
+        ui->dragx = ui->dragy = -1;
+
+	if (r < 0)
+            return "";                 /* drag into border; do nothing else */
+
+	if (state->map->immutable[r])
+	    return "";                 /* can't change this region */
+
+        if (state->colouring[r] == c)
+            return "";                 /* don't _need_ to change this region */
+
+	sprintf(buf, "%c:%d", (c < 0 ? 'C' : '0' + c), r);
+	return dupstr(buf);
+    }
+
+    return NULL;
+}
+
+static game_state *execute_move(game_state *state, char *move)
+{
+    int n = state->p.n;
+    game_state *ret = dup_game(state);
+    int c, k, adv, i;
+
+    while (*move) {
+	c = *move;
+	if ((c == 'C' || (c >= '0' && c < '0'+FOUR)) &&
+	    sscanf(move+1, ":%d%n", &k, &adv) == 1 &&
+	    k >= 0 && k < state->p.n) {
+	    move += 1 + adv;
+	    ret->colouring[k] = (c == 'C' ? -1 : c - '0');
+	} else if (*move == 'S') {
+	    move++;
+	    ret->cheated = TRUE;
+	} else {
+	    free_game(ret);
+	    return NULL;
+	}
+
+	if (*move && *move != ';') {
+	    free_game(ret);
+	    return NULL;
+	}
+	if (*move)
+	    move++;
+    }
+
+    /*
+     * Check for completion.
+     */
+    if (!ret->completed) {
+	int ok = TRUE;
+
+	for (i = 0; i < n; i++)
+	    if (ret->colouring[i] < 0) {
+		ok = FALSE;
+		break;
+	    }
+
+	if (ok) {
+	    for (i = 0; i < ret->map->ngraph; i++) {
+		int j = ret->map->graph[i] / n;
+		int k = ret->map->graph[i] % n;
+		if (ret->colouring[j] == ret->colouring[k]) {
+		    ok = FALSE;
+		    break;
+		}
+	    }
+	}
+
+	if (ok)
+	    ret->completed = TRUE;
+    }
+
+    return ret;
+}
+
+/* ----------------------------------------------------------------------
+ * Drawing routines.
+ */
+
+static void game_compute_size(game_params *params, int tilesize,
+			      int *x, int *y)
+{
+    /* Ick: fake up `ds->tilesize' for macro expansion purposes */
+    struct { int tilesize; } ads, *ds = &ads;
+    ads.tilesize = tilesize;
+
+    *x = params->w * TILESIZE + 2 * BORDER + 1;
+    *y = params->h * TILESIZE + 2 * BORDER + 1;
+}
+
+static void game_set_size(game_drawstate *ds, game_params *params,
+			  int tilesize)
+{
+    ds->tilesize = tilesize;
+
+    if (ds->bl)
+        blitter_free(ds->bl);
+    ds->bl = blitter_new(TILESIZE+3, TILESIZE+3);
+}
+
+static float *game_colours(frontend *fe, game_state *state, int *ncolours)
+{
+    float *ret = snewn(3 * NCOLOURS, float);
+
+    frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
+
+    ret[COL_GRID * 3 + 0] = 0.0F;
+    ret[COL_GRID * 3 + 1] = 0.0F;
+    ret[COL_GRID * 3 + 2] = 0.0F;
+
+    ret[COL_0 * 3 + 0] = 0.7F;
+    ret[COL_0 * 3 + 1] = 0.5F;
+    ret[COL_0 * 3 + 2] = 0.4F;
+
+    ret[COL_1 * 3 + 0] = 0.8F;
+    ret[COL_1 * 3 + 1] = 0.7F;
+    ret[COL_1 * 3 + 2] = 0.4F;
+
+    ret[COL_2 * 3 + 0] = 0.5F;
+    ret[COL_2 * 3 + 1] = 0.6F;
+    ret[COL_2 * 3 + 2] = 0.4F;
+
+    ret[COL_3 * 3 + 0] = 0.55F;
+    ret[COL_3 * 3 + 1] = 0.45F;
+    ret[COL_3 * 3 + 2] = 0.35F;
+
+    *ncolours = NCOLOURS;
+    return ret;
+}
+
+static game_drawstate *game_new_drawstate(game_state *state)
+{
+    struct game_drawstate *ds = snew(struct game_drawstate);
+
+    ds->tilesize = 0;
+    ds->drawn = snewn(state->p.w * state->p.h, unsigned char);
+    memset(ds->drawn, 0xFF, state->p.w * state->p.h);
+    ds->started = FALSE;
+    ds->bl = NULL;
+    ds->drag_visible = FALSE;
+    ds->dragx = ds->dragy = -1;
+
+    return ds;
+}
+
+static void game_free_drawstate(game_drawstate *ds)
+{
+    if (ds->bl)
+        blitter_free(ds->bl);
+    sfree(ds);
+}
+
+static void draw_square(frontend *fe, game_drawstate *ds,
+			game_params *params, struct map *map,
+			int x, int y, int v)
+{
+    int w = params->w, h = params->h, wh = w*h;
+    int tv = v / FIVE, bv = v % FIVE;
+
+    clip(fe, COORD(x), COORD(y), TILESIZE, TILESIZE);
+
+    /*
+     * Draw the region colour.
+     */
+    draw_rect(fe, COORD(x), COORD(y), TILESIZE, TILESIZE,
+	      (tv == FOUR ? COL_BACKGROUND : COL_0 + tv));
+    /*
+     * Draw the second region colour, if this is a diagonally
+     * divided square.
+     */
+    if (map->map[TE * wh + y*w+x] != map->map[BE * wh + y*w+x]) {
+        int coords[6];
+        coords[0] = COORD(x)-1;
+        coords[1] = COORD(y+1)+1;
+        if (map->map[LE * wh + y*w+x] == map->map[TE * wh + y*w+x])
+            coords[2] = COORD(x+1)+1;
+        else
+            coords[2] = COORD(x)-1;
+        coords[3] = COORD(y)-1;
+        coords[4] = COORD(x+1)+1;
+        coords[5] = COORD(y+1)+1;
+        draw_polygon(fe, coords, 3,
+                     (bv == FOUR ? COL_BACKGROUND : COL_0 + bv), COL_GRID);
+    }
+
+    /*
+     * Draw the grid lines, if required.
+     */
+    if (x <= 0 || map->map[RE*wh+y*w+(x-1)] != map->map[LE*wh+y*w+x])
+	draw_rect(fe, COORD(x), COORD(y), 1, TILESIZE, COL_GRID);
+    if (y <= 0 || map->map[BE*wh+(y-1)*w+x] != map->map[TE*wh+y*w+x])
+	draw_rect(fe, COORD(x), COORD(y), TILESIZE, 1, COL_GRID);
+    if (x <= 0 || y <= 0 ||
+        map->map[RE*wh+(y-1)*w+(x-1)] != map->map[TE*wh+y*w+x] ||
+        map->map[BE*wh+(y-1)*w+(x-1)] != map->map[LE*wh+y*w+x])
+	draw_rect(fe, COORD(x), COORD(y), 1, 1, COL_GRID);
+
+    unclip(fe);
+    draw_update(fe, COORD(x), COORD(y), TILESIZE, TILESIZE);
+}
+
+static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
+			game_state *state, int dir, game_ui *ui,
+			float animtime, float flashtime)
+{
+    int w = state->p.w, h = state->p.h, wh = w*h /*, n = state->p.n */;
+    int x, y;
+    int flash;
+
+    if (ds->drag_visible) {
+        blitter_load(fe, ds->bl, ds->dragx, ds->dragy);
+        draw_update(fe, ds->dragx, ds->dragy, TILESIZE + 3, TILESIZE + 3);
+        ds->drag_visible = FALSE;
+    }
+
+    /*
+     * The initial contents of the window are not guaranteed and
+     * can vary with front ends. To be on the safe side, all games
+     * should start by drawing a big background-colour rectangle
+     * covering the whole window.
+     */
+    if (!ds->started) {
+	int ww, wh;
+
+	game_compute_size(&state->p, TILESIZE, &ww, &wh);
+	draw_rect(fe, 0, 0, ww, wh, COL_BACKGROUND);
+	draw_rect(fe, COORD(0), COORD(0), w*TILESIZE+1, h*TILESIZE+1,
+		  COL_GRID);
+
+	draw_update(fe, 0, 0, ww, wh);
+	ds->started = TRUE;
+    }
+
+    if (flashtime) {
+	if (flash_type == 1)
+	    flash = (int)(flashtime * FOUR / flash_length);
+	else
+	    flash = 1 + (int)(flashtime * THREE / flash_length);
+    } else
+	flash = -1;
+
+    for (y = 0; y < h; y++)
+	for (x = 0; x < w; x++) {
+	    int tv = state->colouring[state->map->map[TE * wh + y*w+x]];
+	    int bv = state->colouring[state->map->map[BE * wh + y*w+x]];
+            int v;
+
+	    if (tv < 0)
+		tv = FOUR;
+	    if (bv < 0)
+		bv = FOUR;
+
+	    if (flash >= 0) {
+		if (flash_type == 1) {
+		    if (tv == flash)
+			tv = FOUR;
+		    if (bv == flash)
+			bv = FOUR;
+		} else if (flash_type == 2) {
+		    if (flash % 2)
+			tv = bv = FOUR;
+		} else {
+		    if (tv != FOUR)
+			tv = (tv + flash) % FOUR;
+		    if (bv != FOUR)
+			bv = (bv + flash) % FOUR;
+		}
+	    }
+
+            v = tv * FIVE + bv;
+
+	    if (ds->drawn[y*w+x] != v) {
+		draw_square(fe, ds, &state->p, state->map, x, y, v);
+		ds->drawn[y*w+x] = v;
+	    }
+	}
+
+    /*
+     * Draw the dragged colour blob if any.
+     */
+    if (ui->drag_colour > -2) {
+        ds->dragx = ui->dragx - TILESIZE/2 - 2;
+        ds->dragy = ui->dragy - TILESIZE/2 - 2;
+        blitter_save(fe, ds->bl, ds->dragx, ds->dragy);
+        draw_circle(fe, ui->dragx, ui->dragy, TILESIZE/2,
+                    (ui->drag_colour < 0 ? COL_BACKGROUND :
+                     COL_0 + ui->drag_colour), COL_GRID);
+        draw_update(fe, ds->dragx, ds->dragy, TILESIZE + 3, TILESIZE + 3);
+        ds->drag_visible = TRUE;
+    }
+}
+
+static float game_anim_length(game_state *oldstate, game_state *newstate,
+			      int dir, game_ui *ui)
+{
+    return 0.0F;
+}
+
+static float game_flash_length(game_state *oldstate, game_state *newstate,
+			       int dir, game_ui *ui)
+{
+    if (!oldstate->completed && newstate->completed &&
+	!oldstate->cheated && !newstate->cheated) {
+	if (flash_type < 0) {
+	    char *env = getenv("MAP_ALTERNATIVE_FLASH");
+	    if (env)
+		flash_type = atoi(env);
+	    else
+		flash_type = 0;
+	    flash_length = (flash_type == 1 ? 0.50 : 0.30);
+	}
+	return flash_length;
+    } else
+	return 0.0F;
+}
+
+static int game_wants_statusbar(void)
+{
+    return FALSE;
+}
+
+static int game_timing_state(game_state *state, game_ui *ui)
+{
+    return TRUE;
+}
+
+#ifdef COMBINED
+#define thegame map
+#endif
+
+const struct game thegame = {
+    "Map", "games.map",
+    default_params,
+    game_fetch_preset,
+    decode_params,
+    encode_params,
+    free_params,
+    dup_params,
+    TRUE, game_configure, custom_params,
+    validate_params,
+    new_game_desc,
+    validate_desc,
+    new_game,
+    dup_game,
+    free_game,
+    TRUE, solve_game,
+    FALSE, game_text_format,
+    new_ui,
+    free_ui,
+    encode_ui,
+    decode_ui,
+    game_changed_state,
+    interpret_move,
+    execute_move,
+    20, game_compute_size, game_set_size,
+    game_colours,
+    game_new_drawstate,
+    game_free_drawstate,
+    game_redraw,
+    game_anim_length,
+    game_flash_length,
+    game_wants_statusbar,
+    FALSE, game_timing_state,
+    0,				       /* mouse_priorities */
+};
--- a/puzzles.but
+++ b/puzzles.but
@@ -1582,6 +1582,66 @@
 probably be necessary.
 
 
+\C{map} \i{Map}
+
+\cfg{winhelp-topic}{games.map}
+
+You are given a map consisting of a number of regions. Your task is
+to colour each region with one of four colours, in such a way that
+no two regions sharing a boundary have the same colour. You are
+provided with some regions already coloured, sufficient to make the
+remainder of the solution unique.
+
+Only regions which share a length of border are required to be
+different colours. Two regions which meet at only one \e{point}
+(i.e. are diagonally separated) may be the same colour.
+
+I believe this puzzle is original; I've never seen an implementation
+of it anywhere else. The concept of a four-colouring puzzle was
+suggested by Owen Dunn; credit must also go to Nikoli and to Verity
+Allan for inspiring the train of thought that led to me realising
+Owen's suggestion was a viable puzzle. Thanks also to Gareth Taylor
+for many detailed suggestions.
+
+
+\H{map-controls} \i{Map controls}
+
+\IM{Map controls} controls, for Map
+\IM{Map controls} keys, for Map
+\IM{Map controls} shortcuts (keyboard), for Map
+
+To colour a region, click on an existing region of the desired
+colour and drag that colour into the new region.
+
+(The program will always ensure the starting puzzle has at least one
+region of each colour, so that this is always possible!)
+
+If you need to clear a region, you can drag from an empty region, or
+from the puzzle boundary if there are no empty regions left.
+
+
+\H{map-parameters} \I{parameters, for Map}Map parameters
+
+These parameters are available from the \q{Custom...} option on the
+\q{Type} menu.
+
+\dt \e{Width}, \e{Height}
+
+\dd Size of grid in squares.
+
+\dt \e{Regions}
+
+\dd Number of regions in the generated map.
+
+\dt \e{Difficulty}
+
+\dd In \q{Easy} mode, there should always be at least one region
+whose colour can be determined trivially. In \q{Normal} mode, you
+will have to use more complex logic to deduce the colour of some
+regions. However, it will always be possible without having to
+guess or backtrack.
+
+
 \A{licence} \I{MIT licence}\ii{Licence}
 
 This software is \i{copyright} 2004-2005 Simon Tatham.