shithub: puzzles

Download patch

ref: 69410c7961e901b03ae694e80e39918e30e316c9
parent: bb63d0d399128bb8d1ca7633a87b76b251b807b2
author: Simon Tatham <anakin@pobox.com>
date: Thu Jul 14 13:42:01 EDT 2005

New puzzle: Dominosa.

[originally from svn r6091]

--- a/Recipe
+++ b/Recipe
@@ -22,7 +22,7 @@
 PEGS     = pegs tree234
 
 ALL      = list NET NETSLIDE cube fifteen sixteen rect pattern solo twiddle
-         + MINES samegame FLIP guess PEGS
+         + MINES samegame FLIP guess PEGS dominosa
 
 net      : [X] gtk COMMON NET
 netslide : [X] gtk COMMON NETSLIDE
@@ -38,6 +38,7 @@
 flip     : [X] gtk COMMON FLIP
 guess    : [X] gtk COMMON guess
 pegs     : [X] gtk COMMON PEGS
+dominosa : [X] gtk COMMON dominosa
 
 # Auxiliary command-line programs.
 solosolver :    [U] solo[STANDALONE_SOLVER] malloc
@@ -64,6 +65,7 @@
 flip     : [G] WINDOWS COMMON FLIP
 guess    : [G] WINDOWS COMMON guess
 pegs     : [G] WINDOWS COMMON PEGS
+dominosa : [G] WINDOWS COMMON dominosa
 
 # Mac OS X unified application containing all the puzzles.
 Puzzles  : [MX] osx osx.icns osx-info.plist COMMON ALL
@@ -155,7 +157,7 @@
 install:
 	for i in cube net netslide fifteen sixteen twiddle \
 	         pattern rect solo mines samegame flip guess \
-		 pegs; do \
+		 pegs dominosa; do \
 		$(INSTALL_PROGRAM) -m 755 $$i $(DESTDIR)$(gamesdir)/$$i; \
 	done
 !end
--- /dev/null
+++ b/dominosa.c
@@ -1,0 +1,1623 @@
+/*
+ * dominosa.c: Domino jigsaw puzzle. Aim to place one of every
+ * possible domino within a rectangle in such a way that the number
+ * on each square matches the provided clue.
+ */
+
+/*
+ * TODO:
+ * 
+ *  - improve solver so as to use more interesting forms of
+ *    deduction
+ *     * odd area
+ *     * perhaps set analysis
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+#include <ctype.h>
+#include <math.h>
+
+#include "puzzles.h"
+
+/* nth triangular number */
+#define TRI(n) ( (n) * ((n) + 1) / 2 )
+/* number of dominoes for value n */
+#define DCOUNT(n) TRI((n)+1)
+/* map a pair of numbers to a unique domino index from 0 upwards. */
+#define DINDEX(n1,n2) ( TRI(max(n1,n2)) + min(n1,n2) )
+
+#define FLASH_TIME 0.13F
+
+enum {
+    COL_BACKGROUND,
+    COL_TEXT,
+    COL_DOMINO,
+    COL_DOMINOCLASH,
+    COL_DOMINOTEXT,
+    COL_EDGE,
+    NCOLOURS
+};
+
+struct game_params {
+    int n;
+    int unique;
+};
+
+struct game_numbers {
+    int refcount;
+    int *numbers;                      /* h x w */
+};
+
+#define EDGE_L 0x100
+#define EDGE_R 0x200
+#define EDGE_T 0x400
+#define EDGE_B 0x800
+
+struct game_state {
+    game_params params;
+    int w, h;
+    struct game_numbers *numbers;
+    int *grid;
+    unsigned short *edges;             /* h x w */
+    int completed, cheated;
+};
+
+static game_params *default_params(void)
+{
+    game_params *ret = snew(game_params);
+
+    ret->n = 6;
+    ret->unique = TRUE;
+
+    return ret;
+}
+
+static int game_fetch_preset(int i, char **name, game_params **params)
+{
+    game_params *ret;
+    int n;
+    char buf[80];
+
+    switch (i) {
+      case 0: n = 3; break;
+      case 1: n = 6; break;
+      case 2: n = 9; break;
+      default: return FALSE;
+    }
+
+    sprintf(buf, "Up to double-%d", n);
+    *name = dupstr(buf);
+
+    *params = ret = snew(game_params);
+    ret->n = n;
+    ret->unique = TRUE;
+
+    return TRUE;
+}
+
+static void free_params(game_params *params)
+{
+    sfree(params);
+}
+
+static game_params *dup_params(game_params *params)
+{
+    game_params *ret = snew(game_params);
+    *ret = *params;		       /* structure copy */
+    return ret;
+}
+
+static void decode_params(game_params *params, char const *string)
+{
+    params->n = atoi(string);
+    while (*string && isdigit((unsigned char)*string)) string++;
+    if (*string == 'a')
+        params->unique = FALSE;
+}
+
+static char *encode_params(game_params *params, int full)
+{
+    char buf[80];
+    sprintf(buf, "%d", params->n);
+    if (full && !params->unique)
+        strcat(buf, "a");
+    return dupstr(buf);
+}
+
+static config_item *game_configure(game_params *params)
+{
+    config_item *ret;
+    char buf[80];
+
+    ret = snewn(3, config_item);
+
+    ret[0].name = "Maximum number on dominoes";
+    ret[0].type = C_STRING;
+    sprintf(buf, "%d", params->n);
+    ret[0].sval = dupstr(buf);
+    ret[0].ival = 0;
+
+    ret[1].name = "Ensure unique solution";
+    ret[1].type = C_BOOLEAN;
+    ret[1].sval = NULL;
+    ret[1].ival = params->unique;
+
+    ret[2].name = NULL;
+    ret[2].type = C_END;
+    ret[2].sval = NULL;
+    ret[2].ival = 0;
+
+    return ret;
+}
+
+static game_params *custom_params(config_item *cfg)
+{
+    game_params *ret = snew(game_params);
+
+    ret->n = atoi(cfg[0].sval);
+    ret->unique = cfg[1].ival;
+
+    return ret;
+}
+
+static char *validate_params(game_params *params, int full)
+{
+    if (params->n < 1)
+        return "Maximum face number must be at least one";
+    return NULL;
+}
+
+/* ----------------------------------------------------------------------
+ * Solver.
+ */
+
+static int find_overlaps(int w, int h, int placement, int *set)
+{
+    int x, y, n;
+
+    n = 0;                             /* number of returned placements */
+
+    x = placement / 2;
+    y = x / w;
+    x %= w;
+
+    if (placement & 1) {
+        /*
+         * Horizontal domino, indexed by its left end.
+         */
+        if (x > 0)
+            set[n++] = placement-2;    /* horizontal domino to the left */
+        if (y > 0)
+            set[n++] = placement-2*w-1;/* vertical domino above left side */
+        if (y+1 < h)
+            set[n++] = placement-1;    /* vertical domino below left side */
+        if (x+2 < w)
+            set[n++] = placement+2;    /* horizontal domino to the right */
+        if (y > 0)
+            set[n++] = placement-2*w+2-1;/* vertical domino above right side */
+        if (y+1 < h)
+            set[n++] = placement+2-1;  /* vertical domino below right side */
+    } else {
+        /*
+         * Vertical domino, indexed by its top end.
+         */
+        if (y > 0)
+            set[n++] = placement-2*w;  /* vertical domino above */
+        if (x > 0)
+            set[n++] = placement-2+1;  /* horizontal domino left of top */
+        if (x+1 < w)
+            set[n++] = placement+1;    /* horizontal domino right of top */
+        if (y+2 < h)
+            set[n++] = placement+2*w;  /* vertical domino below */
+        if (x > 0)
+            set[n++] = placement-2+2*w+1;/* horizontal domino left of bottom */
+        if (x+1 < w)
+            set[n++] = placement+2*w+1;/* horizontal domino right of bottom */
+    }
+
+    return n;
+}
+
+/*
+ * Returns 0, 1 or 2 for number of solutions. 2 means `any number
+ * more than one', or more accurately `we were unable to prove
+ * there was only one'.
+ * 
+ * Outputs in a `placements' array, indexed the same way as the one
+ * within this function (see below); entries in there are <0 for a
+ * placement ruled out, 0 for an uncertain placement, and 1 for a
+ * definite one.
+ */
+static int solver(int w, int h, int n, int *grid, int *output)
+{
+    int wh = w*h, dc = DCOUNT(n);
+    int *placements, *heads;
+    int i, j, x, y, ret;
+
+    /*
+     * This array has one entry for every possible domino
+     * placement. Vertical placements are indexed by their top
+     * half, at (y*w+x)*2; horizontal placements are indexed by
+     * their left half at (y*w+x)*2+1.
+     * 
+     * This array is used to link domino placements together into
+     * linked lists, so that we can track all the possible
+     * placements of each different domino. It's also used as a
+     * quick means of looking up an individual placement to see
+     * whether we still think it's possible. Actual values stored
+     * in this array are -2 (placement not possible at all), -1
+     * (end of list), or the array index of the next item.
+     * 
+     * Oh, and -3 for `not even valid', used for array indices
+     * which don't even represent a plausible placement.
+     */
+    placements = snewn(2*wh, int);
+    for (i = 0; i < 2*wh; i++)
+        placements[i] = -3;            /* not even valid */
+
+    /*
+     * This array has one entry for every domino, and it is an
+     * index into `placements' denoting the head of the placement
+     * list for that domino.
+     */
+    heads = snewn(dc, int);
+    for (i = 0; i < dc; i++)
+        heads[i] = -1;
+
+    /*
+     * Set up the initial possibility lists by scanning the grid.
+     */
+    for (y = 0; y < h-1; y++)
+        for (x = 0; x < w; x++) {
+            int di = DINDEX(grid[y*w+x], grid[(y+1)*w+x]);
+            placements[(y*w+x)*2] = heads[di];
+            heads[di] = (y*w+x)*2;
+        }
+    for (y = 0; y < h; y++)
+        for (x = 0; x < w-1; x++) {
+            int di = DINDEX(grid[y*w+x], grid[y*w+(x+1)]);
+            placements[(y*w+x)*2+1] = heads[di];
+            heads[di] = (y*w+x)*2+1;
+        }
+
+#ifdef SOLVER_DIAGNOSTICS
+    printf("before solver:\n");
+    for (i = 0; i <= n; i++)
+        for (j = 0; j <= i; j++) {
+            int k, m;
+            m = 0;
+            printf("%2d [%d %d]:", DINDEX(i, j), i, j);
+            for (k = heads[DINDEX(i,j)]; k >= 0; k = placements[k])
+                printf(" %3d [%d,%d,%c]", k, k/2%w, k/2/w, k%2?'h':'v');
+            printf("\n");
+        }
+#endif
+
+    while (1) {
+        int done_something = FALSE;
+
+        /*
+         * For each domino, look at its possible placements, and
+         * for each placement consider the placements (of any
+         * domino) it overlaps. Any placement overlapped by all
+         * placements of this domino can be ruled out.
+         * 
+         * Each domino placement overlaps only six others, so we
+         * need not do serious set theory to work this out.
+         */
+        for (i = 0; i < dc; i++) {
+            int permset[6], permlen = 0, p;
+            
+
+            if (heads[i] == -1) {      /* no placement for this domino */
+                ret = 0;               /* therefore puzzle is impossible */
+                goto done;
+            }
+            for (j = heads[i]; j >= 0; j = placements[j]) {
+                assert(placements[j] != -2);
+
+                if (j == heads[i]) {
+                    permlen = find_overlaps(w, h, j, permset);
+                } else {
+                    int tempset[6], templen, m, n, k;
+
+                    templen = find_overlaps(w, h, j, tempset);
+
+                    /*
+                     * Pathetically primitive set intersection
+                     * algorithm, which I'm only getting away with
+                     * because I know my sets are bounded by a very
+                     * small size.
+                     */
+                    for (m = n = 0; m < permlen; m++) {
+                        for (k = 0; k < templen; k++)
+                            if (tempset[k] == permset[m])
+                                break;
+                        if (k < templen)
+                            permset[n++] = permset[m];
+                    }
+                    permlen = n;
+                }
+            }
+            for (p = 0; p < permlen; p++) {
+                j = permset[p];
+                if (placements[j] != -2) {
+                    int p1, p2, di;
+
+                    done_something = TRUE;
+
+                    /*
+                     * Rule out this placement. First find what
+                     * domino it is...
+                     */
+                    p1 = j / 2;
+                    p2 = (j & 1) ? p1 + 1 : p1 + w;
+                    di = DINDEX(grid[p1], grid[p2]);
+#ifdef SOLVER_DIAGNOSTICS
+                    printf("considering domino %d: ruling out placement %d"
+                           " for %d\n", i, j, di);
+#endif
+
+                    /*
+                     * ... then walk that domino's placement list,
+                     * removing this placement when we find it.
+                     */
+                    if (heads[di] == j)
+                        heads[di] = placements[j];
+                    else {
+                        int k = heads[di];
+                        while (placements[k] != -1 && placements[k] != j)
+                            k = placements[k];
+                        assert(placements[k] == j);
+                        placements[k] = placements[j];
+                    }
+                    placements[j] = -2;
+                }
+            }
+        }
+
+        /*
+         * For each square, look at the available placements
+         * involving that square. If all of them are for the same
+         * domino, then rule out any placements for that domino
+         * _not_ involving this square.
+         */
+        for (i = 0; i < wh; i++) {
+            int list[4], k, n, adi;
+
+            x = i % w;
+            y = i / w;
+
+            j = 0;
+            if (x > 0)
+                list[j++] = 2*(i-1)+1;
+            if (x+1 < w)
+                list[j++] = 2*i+1;
+            if (y > 0)
+                list[j++] = 2*(i-w);
+            if (y+1 < h)
+                list[j++] = 2*i;
+
+            for (n = k = 0; k < j; k++)
+                if (placements[list[k]] >= -1)
+                    list[n++] = list[k];
+
+            adi = -1;
+
+            for (j = 0; j < n; j++) {
+                int p1, p2, di;
+                k = list[j];
+
+                p1 = k / 2;
+                p2 = (k & 1) ? p1 + 1 : p1 + w;
+                di = DINDEX(grid[p1], grid[p2]);
+
+                if (adi == -1)
+                    adi = di;
+                if (adi != di)
+                    break;
+            }
+
+            if (j == n) {
+                int nn;
+
+                assert(adi >= 0);
+                /*
+                 * We've found something. All viable placements
+                 * involving this square are for domino `adi'. If
+                 * the current placement list for that domino is
+                 * longer than n, reduce it to precisely this
+                 * placement list and we've done something.
+                 */
+                nn = 0;
+                for (k = heads[adi]; k >= 0; k = placements[k])
+                    nn++;
+                if (nn > n) {
+                    done_something = TRUE;
+#ifdef SOLVER_DIAGNOSTICS
+                    printf("considering square %d,%d: reducing placements "
+                           "of domino %d\n", x, y, adi);
+#endif
+                    /*
+                     * Set all other placements on the list to
+                     * impossible.
+                     */
+                    k = heads[adi];
+                    while (k >= 0) {
+                        int tmp = placements[k];
+                        placements[k] = -2;
+                        k = tmp;
+                    }
+                    /*
+                     * Set up the new list.
+                     */
+                    heads[adi] = list[0];
+                    for (k = 0; k < n; k++)
+                        placements[list[k]] = (k+1 == n ? -1 : list[k+1]);
+                }
+            }
+        }
+
+        if (!done_something)
+            break;
+    }
+
+#ifdef SOLVER_DIAGNOSTICS
+    printf("after solver:\n");
+    for (i = 0; i <= n; i++)
+        for (j = 0; j <= i; j++) {
+            int k, m;
+            m = 0;
+            printf("%2d [%d %d]:", DINDEX(i, j), i, j);
+            for (k = heads[DINDEX(i,j)]; k >= 0; k = placements[k])
+                printf(" %3d [%d,%d,%c]", k, k/2%w, k/2/w, k%2?'h':'v');
+            printf("\n");
+        }
+#endif
+
+    ret = 1;
+    for (i = 0; i < wh*2; i++) {
+        if (placements[i] == -2) {
+            if (output)
+                output[i] = -1;        /* ruled out */
+        } else if (placements[i] != -3) {
+            int p1, p2, di;
+
+            p1 = i / 2;
+            p2 = (i & 1) ? p1 + 1 : p1 + w;
+            di = DINDEX(grid[p1], grid[p2]);
+
+            if (i == heads[di] && placements[i] == -1) {
+                if (output)
+                    output[i] = 1;     /* certain */
+            } else {
+                if (output)
+                    output[i] = 0;     /* uncertain */
+                ret = 2;
+            }
+        }
+    }
+
+    done:
+    /*
+     * Free working data.
+     */
+    sfree(placements);
+    sfree(heads);
+
+    return ret;
+}
+
+/* ----------------------------------------------------------------------
+ * End of solver code.
+ */
+
+static char *new_game_desc(game_params *params, random_state *rs,
+			   char **aux, int interactive)
+{
+    int n = params->n, w = n+2, h = n+1, wh = w*h;
+    int *grid, *grid2, *list;
+    int i, j, k, m, todo, done, len;
+    char *ret;
+
+    /*
+     * Allocate space in which to lay the grid out.
+     */
+    grid = snewn(wh, int);
+    grid2 = snewn(wh, int);
+    list = snewn(2*wh, int);
+
+    do {
+        /*
+         * To begin with, set grid[i] = i for all i to indicate
+         * that all squares are currently singletons. Later we'll
+         * set grid[i] to be the index of the other end of the
+         * domino on i.
+         */
+        for (i = 0; i < wh; i++)
+            grid[i] = i;
+
+        /*
+         * Now prepare a list of the possible domino locations. There
+         * are w*(h-1) possible vertical locations, and (w-1)*h
+         * horizontal ones, for a total of 2*wh - h - w.
+         *
+         * I'm going to denote the vertical domino placement with
+         * its top in square i as 2*i, and the horizontal one with
+         * its left half in square i as 2*i+1.
+         */
+        k = 0;
+        for (j = 0; j < h-1; j++)
+            for (i = 0; i < w; i++)
+                list[k++] = 2 * (j*w+i);   /* vertical positions */
+        for (j = 0; j < h; j++)
+            for (i = 0; i < w-1; i++)
+                list[k++] = 2 * (j*w+i) + 1;   /* horizontal positions */
+        assert(k == 2*wh - h - w);
+
+        /*
+         * Shuffle the list.
+         */
+        shuffle(list, k, sizeof(*list), rs);
+
+        /*
+         * Work down the shuffled list, placing a domino everywhere
+         * we can.
+         */
+        for (i = 0; i < k; i++) {
+            int horiz, xy, xy2;
+
+            horiz = list[i] % 2;
+            xy = list[i] / 2;
+            xy2 = xy + (horiz ? 1 : w);
+
+            if (grid[xy] == xy && grid[xy2] == xy2) {
+                /*
+                 * We can place this domino. Do so.
+                 */
+                grid[xy] = xy2;
+                grid[xy2] = xy;
+            }
+        }
+
+#ifdef GENERATION_DIAGNOSTICS
+        printf("generated initial layout\n");
+#endif
+
+        /*
+         * Now we've placed as many dominoes as we can immediately
+         * manage. There will be squares remaining, but they'll be
+         * singletons. So loop round and deal with the singletons
+         * two by two.
+         */
+        while (1) {
+#ifdef GENERATION_DIAGNOSTICS
+            for (j = 0; j < h; j++) {
+                for (i = 0; i < w; i++) {
+                    int xy = j*w+i;
+                    int v = grid[xy];
+                    int c = (v == xy+1 ? '[' : v == xy-1 ? ']' :
+                             v == xy+w ? 'n' : v == xy-w ? 'U' : '.');
+                    putchar(c);
+                }
+                putchar('\n');
+            }
+            putchar('\n');
+#endif
+
+            /*
+             * Our strategy is:
+             *
+             * First find a singleton square.
+             *
+             * Then breadth-first search out from the starting
+             * square. From that square (and any others we reach on
+             * the way), examine all four neighbours of the square.
+             * If one is an end of a domino, we move to the _other_
+             * end of that domino before looking at neighbours
+             * again. When we encounter another singleton on this
+             * search, stop.
+             *
+             * This will give us a path of adjacent squares such
+             * that all but the two ends are covered in dominoes.
+             * So we can now shuffle every domino on the path up by
+             * one.
+             *
+             * (Chessboard colours are mathematically important
+             * here: we always end up pairing each singleton with a
+             * singleton of the other colour. However, we never
+             * have to track this manually, since it's
+             * automatically taken care of by the fact that we
+             * always make an even number of orthogonal moves.)
+             */
+            for (i = 0; i < wh; i++)
+                if (grid[i] == i)
+                    break;
+            if (i == wh)
+                break;                 /* no more singletons; we're done. */
+
+#ifdef GENERATION_DIAGNOSTICS
+            printf("starting b.f.s. at singleton %d\n", i);
+#endif
+            /*
+             * Set grid2 to -1 everywhere. It will hold our
+             * distance-from-start values, and also our
+             * backtracking data, during the b.f.s.
+             */
+            for (j = 0; j < wh; j++)
+                grid2[j] = -1;
+            grid2[i] = 0;              /* starting square has distance zero */
+
+            /*
+             * Start our to-do list of squares. It'll live in
+             * `list'; since the b.f.s can cover every square at
+             * most once there is no need for it to be circular.
+             * We'll just have two counters tracking the end of the
+             * list and the squares we've already dealt with.
+             */
+            done = 0;
+            todo = 1;
+            list[0] = i;
+
+            /*
+             * Now begin the b.f.s. loop.
+             */
+            while (done < todo) {
+                int d[4], nd, x, y;
+
+                i = list[done++];
+
+#ifdef GENERATION_DIAGNOSTICS
+                printf("b.f.s. iteration from %d\n", i);
+#endif
+                x = i % w;
+                y = i / w;
+                nd = 0;
+                if (x > 0)
+                    d[nd++] = i - 1;
+                if (x+1 < w)
+                    d[nd++] = i + 1;
+                if (y > 0)
+                    d[nd++] = i - w;
+                if (y+1 < h)
+                    d[nd++] = i + w;
+                /*
+                 * To avoid directional bias, process the
+                 * neighbours of this square in a random order.
+                 */
+                shuffle(d, nd, sizeof(*d), rs);
+
+                for (j = 0; j < nd; j++) {
+                    k = d[j];
+                    if (grid[k] == k) {
+#ifdef GENERATION_DIAGNOSTICS
+                        printf("found neighbouring singleton %d\n", k);
+#endif
+                        grid2[k] = i;
+                        break;         /* found a target singleton! */
+                    }
+
+                    /*
+                     * We're moving through a domino here, so we
+                     * have two entries in grid2 to fill with
+                     * useful data. In grid[k] - the square
+                     * adjacent to where we came from - I'm going
+                     * to put the address _of_ the square we came
+                     * from. In the other end of the domino - the
+                     * square from which we will continue the
+                     * search - I'm going to put the distance.
+                     */
+                    m = grid[k];
+
+                    if (grid2[m] < 0 || grid2[m] > grid2[i]+1) {
+#ifdef GENERATION_DIAGNOSTICS
+                        printf("found neighbouring domino %d/%d\n", k, m);
+#endif
+                        grid2[m] = grid2[i]+1;
+                        grid2[k] = i;
+                        /*
+                         * And since we've now visited a new
+                         * domino, add m to the to-do list.
+                         */
+                        assert(todo < wh);
+                        list[todo++] = m;
+                    }
+                }
+
+                if (j < nd) {
+                    i = k;
+#ifdef GENERATION_DIAGNOSTICS
+                    printf("terminating b.f.s. loop, i = %d\n", i);
+#endif
+                    break;
+                }
+
+                i = -1;                /* just in case the loop terminates */
+            }
+
+            /*
+             * We expect this b.f.s. to have found us a target
+             * square.
+             */
+            assert(i >= 0);
+
+            /*
+             * Now we can follow the trail back to our starting
+             * singleton, re-laying dominoes as we go.
+             */
+            while (1) {
+                j = grid2[i];
+                assert(j >= 0 && j < wh);
+                k = grid[j];
+
+                grid[i] = j;
+                grid[j] = i;
+#ifdef GENERATION_DIAGNOSTICS
+                printf("filling in domino %d/%d (next %d)\n", i, j, k);
+#endif
+                if (j == k)
+                    break;             /* we've reached the other singleton */
+                i = k;
+            }
+#ifdef GENERATION_DIAGNOSTICS
+            printf("fixup path completed\n");
+#endif
+        }
+
+        /*
+         * Now we have a complete layout covering the whole
+         * rectangle with dominoes. So shuffle the actual domino
+         * values and fill the rectangle with numbers.
+         */
+        k = 0;
+        for (i = 0; i <= params->n; i++)
+            for (j = 0; j <= i; j++) {
+                list[k++] = i;
+                list[k++] = j;
+            }
+        shuffle(list, k/2, 2*sizeof(*list), rs);
+        j = 0;
+        for (i = 0; i < wh; i++)
+            if (grid[i] > i) {
+                /* Optionally flip the domino round. */
+                int flip = random_upto(rs, 2);
+                grid2[i] = list[j + flip];
+                grid2[grid[i]] = list[j + 1 - flip];
+                j += 2;
+            }
+        assert(j == k);
+    } while (params->unique && solver(w, h, n, grid2, NULL) > 1);
+
+#ifdef GENERATION_DIAGNOSTICS
+    for (j = 0; j < h; j++) {
+        for (i = 0; i < w; i++) {
+            putchar('0' + grid2[j*w+i]);
+        }
+        putchar('\n');
+    }
+    putchar('\n');
+#endif
+
+    /*
+     * Encode the resulting game state.
+     * 
+     * Our encoding is a string of digits. Any number greater than
+     * 9 is represented by a decimal integer within square
+     * brackets. We know there are n+2 of every number (it's paired
+     * with each number from 0 to n inclusive, and one of those is
+     * itself so that adds another occurrence), so we can work out
+     * the string length in advance.
+     */
+
+    /*
+     * To work out the total length of the decimal encodings of all
+     * the numbers from 0 to n inclusive:
+     *  - every number has a units digit; total is n+1.
+     *  - all numbers above 9 have a tens digit; total is max(n+1-10,0).
+     *  - all numbers above 99 have a hundreds digit; total is max(n+1-100,0).
+     *  - and so on.
+     */
+    len = n+1;
+    for (i = 10; i <= n; i *= 10)
+	len += max(n + 1 - i, 0);
+    /* Now add two square brackets for each number above 9. */
+    len += 2 * max(n + 1 - 10, 0);
+    /* And multiply by n+2 for the repeated occurrences of each number. */
+    len *= n+2;
+
+    /*
+     * Now actually encode the string.
+     */
+    ret = snewn(len+1, char);
+    j = 0;
+    for (i = 0; i < wh; i++) {
+        k = grid2[i];
+        if (k < 10)
+            ret[j++] = '0' + k;
+        else
+            j += sprintf(ret+j, "[%d]", k);
+        assert(j <= len);
+    }
+    assert(j == len);
+    ret[j] = '\0';
+
+    /*
+     * Encode the solved state as an aux_info.
+     */
+    {
+	char *auxinfo = snewn(wh+1, char);
+
+	for (i = 0; i < wh; i++) {
+	    int v = grid[i];
+	    auxinfo[i] = (v == i+1 ? 'L' : v == i-1 ? 'R' :
+			  v == i+w ? 'T' : v == i-w ? 'B' : '.');
+	}
+	auxinfo[wh] = '\0';
+
+	*aux = auxinfo;
+    }
+
+    sfree(list);
+    sfree(grid2);
+    sfree(grid);
+
+    return ret;
+}
+
+static char *validate_desc(game_params *params, char *desc)
+{
+    int n = params->n, w = n+2, h = n+1, wh = w*h;
+    int *occurrences;
+    int i, j;
+    char *ret;
+
+    ret = NULL;
+    occurrences = snewn(n+1, int);
+    for (i = 0; i <= n; i++)
+        occurrences[i] = 0;
+
+    for (i = 0; i < wh; i++) {
+        if (!*desc) {
+            ret = ret ? ret : "Game description is too short";
+        } else {
+            if (*desc >= '0' && *desc <= '9')
+                j = *desc++ - '0';
+            else if (*desc == '[') {
+                desc++;
+                j = atoi(desc);
+                while (*desc && isdigit((unsigned char)*desc)) desc++;
+                if (*desc != ']')
+                    ret = ret ? ret : "Missing ']' in game description";
+                else
+                    desc++;
+            } else {
+                j = -1;
+                ret = ret ? ret : "Invalid syntax in game description";
+            }
+            if (j < 0 || j > n)
+                ret = ret ? ret : "Number out of range in game description";
+            else
+                occurrences[j]++;
+        }
+    }
+
+    if (*desc)
+        ret = ret ? ret : "Game description is too long";
+
+    if (!ret) {
+        for (i = 0; i <= n; i++)
+            if (occurrences[i] != n+2)
+                ret = "Incorrect number balance in game description";
+    }
+
+    sfree(occurrences);
+
+    return ret;
+}
+
+static game_state *new_game(midend_data *me, game_params *params, char *desc)
+{
+    int n = params->n, w = n+2, h = n+1, wh = w*h;
+    game_state *state = snew(game_state);
+    int i, j;
+
+    state->params = *params;
+    state->w = w;
+    state->h = h;
+
+    state->grid = snewn(wh, int);
+    for (i = 0; i < wh; i++)
+        state->grid[i] = i;
+
+    state->edges = snewn(wh, unsigned short);
+    for (i = 0; i < wh; i++)
+        state->edges[i] = 0;
+
+    state->numbers = snew(struct game_numbers);
+    state->numbers->refcount = 1;
+    state->numbers->numbers = snewn(wh, int);
+
+    for (i = 0; i < wh; i++) {
+        assert(*desc);
+        if (*desc >= '0' && *desc <= '9')
+            j = *desc++ - '0';
+        else {
+            assert(*desc == '[');
+            desc++;
+            j = atoi(desc);
+            while (*desc && isdigit((unsigned char)*desc)) desc++;
+            assert(*desc == ']');
+            desc++;
+        }
+        assert(j >= 0 && j <= n);
+        state->numbers->numbers[i] = j;
+    }
+
+    state->completed = state->cheated = FALSE;
+
+    return state;
+}
+
+static game_state *dup_game(game_state *state)
+{
+    int n = state->params.n, w = n+2, h = n+1, wh = w*h;
+    game_state *ret = snew(game_state);
+
+    ret->params = state->params;
+    ret->w = state->w;
+    ret->h = state->h;
+    ret->grid = snewn(wh, int);
+    memcpy(ret->grid, state->grid, wh * sizeof(int));
+    ret->edges = snewn(wh, unsigned short);
+    memcpy(ret->edges, state->edges, wh * sizeof(unsigned short));
+    ret->numbers = state->numbers;
+    ret->numbers->refcount++;
+    ret->completed = state->completed;
+    ret->cheated = state->cheated;
+
+    return ret;
+}
+
+static void free_game(game_state *state)
+{
+    sfree(state->grid);
+    if (--state->numbers->refcount <= 0) {
+        sfree(state->numbers->numbers);
+        sfree(state->numbers);
+    }
+    sfree(state);
+}
+
+static char *solve_game(game_state *state, game_state *currstate,
+			char *aux, char **error)
+{
+    int n = state->params.n, w = n+2, h = n+1, wh = w*h;
+    int *placements;
+    char *ret;
+    int retlen, retsize;
+    int i, v;
+    char buf[80];
+    int extra;
+
+    if (aux) {
+	retsize = 256;
+	ret = snewn(retsize, char);
+	retlen = sprintf(ret, "S");
+
+	for (i = 0; i < wh; i++) {
+	    if (aux[i] == 'L')
+		extra = sprintf(buf, ";D%d,%d", i, i+1);
+	    else if (aux[i] == 'T')
+		extra = sprintf(buf, ";D%d,%d", i, i+w);
+	    else
+		continue;
+
+	    if (retlen + extra + 1 >= retsize) {
+		retsize = retlen + extra + 256;
+		ret = sresize(ret, retsize, char);
+	    }
+	    strcpy(ret + retlen, buf);
+	    retlen += extra;
+	}
+
+    } else {
+
+	placements = snewn(wh*2, int);
+	for (i = 0; i < wh*2; i++)
+	    placements[i] = -3;
+	solver(w, h, n, state->numbers->numbers, placements);
+
+	/*
+	 * First make a pass putting in edges for -1, then make a pass
+	 * putting in dominoes for +1.
+	 */
+	retsize = 256;
+	ret = snewn(retsize, char);
+	retlen = sprintf(ret, "S");
+
+	for (v = -1; v <= +1; v += 2)
+	    for (i = 0; i < wh*2; i++)
+		if (placements[i] == v) {
+		    int p1 = i / 2;
+		    int p2 = (i & 1) ? p1+1 : p1+w;
+
+		    extra = sprintf(buf, ";%c%d,%d",
+				    v==-1 ? 'E' : 'D', p1, p2);
+
+		    if (retlen + extra + 1 >= retsize) {
+			retsize = retlen + extra + 256;
+			ret = sresize(ret, retsize, char);
+		    }
+		    strcpy(ret + retlen, buf);
+		    retlen += extra;
+		}
+
+	sfree(placements);
+    }
+
+    return ret;
+}
+
+static char *game_text_format(game_state *state)
+{
+    return NULL;
+}
+
+static game_ui *new_ui(game_state *state)
+{
+    return NULL;
+}
+
+static void free_ui(game_ui *ui)
+{
+}
+
+static char *encode_ui(game_ui *ui)
+{
+    return NULL;
+}
+
+static void decode_ui(game_ui *ui, char *encoding)
+{
+}
+
+static void game_changed_state(game_ui *ui, game_state *oldstate,
+                               game_state *newstate)
+{
+}
+
+#define PREFERRED_TILESIZE 32
+#define TILESIZE (ds->tilesize)
+#define BORDER (TILESIZE * 3 / 4)
+#define DOMINO_GUTTER (TILESIZE / 16)
+#define DOMINO_RADIUS (TILESIZE / 8)
+#define DOMINO_COFFSET (DOMINO_GUTTER + DOMINO_RADIUS)
+
+#define COORD(x) ( (x) * TILESIZE + BORDER )
+#define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
+
+struct game_drawstate {
+    int started;
+    int w, h, tilesize;
+    unsigned long *visible;
+};
+
+static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
+			    int x, int y, int button)
+{
+    int w = state->w, h = state->h;
+    char buf[80];
+
+    /*
+     * A left-click between two numbers toggles a domino covering
+     * them. A right-click toggles an edge.
+     */
+    if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
+        int tx = FROMCOORD(x), ty = FROMCOORD(y), t = ty*w+tx;
+        int dx, dy;
+        int d1, d2;
+
+        if (tx < 0 || tx >= w || ty < 0 || ty >= h)
+            return NULL;
+
+        /*
+         * Now we know which square the click was in, decide which
+         * edge of the square it was closest to.
+         */
+        dx = 2 * (x - COORD(tx)) - TILESIZE;
+        dy = 2 * (y - COORD(ty)) - TILESIZE;
+
+        if (abs(dx) > abs(dy) && dx < 0 && tx > 0)
+            d1 = t - 1, d2 = t;        /* clicked in right side of domino */
+        else if (abs(dx) > abs(dy) && dx > 0 && tx+1 < w)
+            d1 = t, d2 = t + 1;        /* clicked in left side of domino */
+        else if (abs(dy) > abs(dx) && dy < 0 && ty > 0)
+            d1 = t - w, d2 = t;        /* clicked in bottom half of domino */
+        else if (abs(dy) > abs(dx) && dy > 0 && ty+1 < h)
+            d1 = t, d2 = t + w;        /* clicked in top half of domino */
+        else
+            return NULL;
+
+        /*
+         * We can't mark an edge next to any domino.
+         */
+        if (button == RIGHT_BUTTON &&
+            (state->grid[d1] != d1 || state->grid[d2] != d2))
+            return NULL;
+
+        sprintf(buf, "%c%d,%d", button == RIGHT_BUTTON ? 'E' : 'D', d1, d2);
+        return dupstr(buf);
+    }
+
+    return NULL;
+}
+
+static game_state *execute_move(game_state *state, char *move)
+{
+    int n = state->params.n, w = n+2, h = n+1, wh = w*h;
+    int d1, d2, d3, p;
+    game_state *ret = dup_game(state);
+
+    while (*move) {
+        if (move[0] == 'S') {
+            int i;
+
+            ret->cheated = TRUE;
+
+            /*
+             * Clear the existing edges and domino placements. We
+             * expect the S to be followed by other commands.
+             */
+            for (i = 0; i < wh; i++) {
+                ret->grid[i] = i;
+                ret->edges[i] = 0;
+            }
+            move++;
+        } else if (move[0] == 'D' &&
+                   sscanf(move+1, "%d,%d%n", &d1, &d2, &p) == 2 &&
+                   d1 >= 0 && d1 < wh && d2 >= 0 && d2 < wh && d1 < d2) {
+
+            /*
+             * Toggle domino presence between d1 and d2.
+             */
+            if (ret->grid[d1] == d2) {
+                assert(ret->grid[d2] == d1);
+                ret->grid[d1] = d1;
+                ret->grid[d2] = d2;
+            } else {
+                /*
+                 * Erase any dominoes that might overlap the new one.
+                 */
+                d3 = ret->grid[d1];
+                if (d3 != d1)
+                    ret->grid[d3] = d3;
+                d3 = ret->grid[d2];
+                if (d3 != d2)
+                    ret->grid[d3] = d3;
+                /*
+                 * Place the new one.
+                 */
+                ret->grid[d1] = d2;
+                ret->grid[d2] = d1;
+
+                /*
+                 * Destroy any edges lurking around it.
+                 */
+                if (ret->edges[d1] & EDGE_L) {
+                    assert(d1 - 1 >= 0);
+                    ret->edges[d1 - 1] &= ~EDGE_R;
+                }
+                if (ret->edges[d1] & EDGE_R) {
+                    assert(d1 + 1 < wh);
+                    ret->edges[d1 + 1] &= ~EDGE_L;
+                }
+                if (ret->edges[d1] & EDGE_T) {
+                    assert(d1 - w >= 0);
+                    ret->edges[d1 - w] &= ~EDGE_B;
+                }
+                if (ret->edges[d1] & EDGE_B) {
+                    assert(d1 + 1 < wh);
+                    ret->edges[d1 + w] &= ~EDGE_T;
+                }
+                ret->edges[d1] = 0;
+                if (ret->edges[d2] & EDGE_L) {
+                    assert(d2 - 1 >= 0);
+                    ret->edges[d2 - 1] &= ~EDGE_R;
+                }
+                if (ret->edges[d2] & EDGE_R) {
+                    assert(d2 + 1 < wh);
+                    ret->edges[d2 + 1] &= ~EDGE_L;
+                }
+                if (ret->edges[d2] & EDGE_T) {
+                    assert(d2 - w >= 0);
+                    ret->edges[d2 - w] &= ~EDGE_B;
+                }
+                if (ret->edges[d2] & EDGE_B) {
+                    assert(d2 + 1 < wh);
+                    ret->edges[d2 + w] &= ~EDGE_T;
+                }
+                ret->edges[d2] = 0;
+            }
+
+            move += p+1;
+        } else if (move[0] == 'E' &&
+                   sscanf(move+1, "%d,%d%n", &d1, &d2, &p) == 2 &&
+                   d1 >= 0 && d1 < wh && d2 >= 0 && d2 < wh && d1 < d2 &&
+                   ret->grid[d1] == d1 && ret->grid[d2] == d2) {
+
+            /*
+             * Toggle edge presence between d1 and d2.
+             */
+            if (d2 == d1 + 1) {
+                ret->edges[d1] ^= EDGE_R;
+                ret->edges[d2] ^= EDGE_L;
+            } else {
+                ret->edges[d1] ^= EDGE_B;
+                ret->edges[d2] ^= EDGE_T;
+            }
+
+            move += p+1;
+        } else {
+            free_game(ret);
+            return NULL;
+        }
+
+        if (*move) {
+            if (*move != ';') {
+                free_game(ret);
+                return NULL;
+            }
+            move++;
+        }
+    }
+
+    /*
+     * After modifying the grid, check completion.
+     */
+    if (!ret->completed) {
+        int i, ok = 0;
+        unsigned char *used = snewn(TRI(n+1), unsigned char);
+
+        memset(used, 0, TRI(n+1));
+        for (i = 0; i < wh; i++)
+            if (ret->grid[i] > i) {
+                int n1, n2, di;
+
+                n1 = ret->numbers->numbers[i];
+                n2 = ret->numbers->numbers[ret->grid[i]];
+
+                di = DINDEX(n1, n2);
+                assert(di >= 0 && di < TRI(n+1));
+
+                if (!used[di]) {
+                    used[di] = 1;
+                    ok++;
+                }
+            }
+
+        sfree(used);
+        if (ok == DCOUNT(n))
+            ret->completed = TRUE;
+    }
+
+    return ret;
+}
+
+/* ----------------------------------------------------------------------
+ * Drawing routines.
+ */
+
+static void game_compute_size(game_params *params, int tilesize,
+			      int *x, int *y)
+{
+    int n = params->n, w = n+2, h = n+1;
+
+    /* Ick: fake up `ds->tilesize' for macro expansion purposes */
+    struct { int tilesize; } ads, *ds = &ads;
+    ads.tilesize = tilesize;
+
+    *x = w * TILESIZE + 2*BORDER;
+    *y = h * TILESIZE + 2*BORDER;
+}
+
+static void game_set_size(game_drawstate *ds, game_params *params,
+			  int tilesize)
+{
+    ds->tilesize = tilesize;
+}
+
+static float *game_colours(frontend *fe, game_state *state, int *ncolours)
+{
+    float *ret = snewn(3 * NCOLOURS, float);
+
+    frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
+
+    ret[COL_TEXT * 3 + 0] = 0.0F;
+    ret[COL_TEXT * 3 + 1] = 0.0F;
+    ret[COL_TEXT * 3 + 2] = 0.0F;
+
+    ret[COL_DOMINO * 3 + 0] = 0.0F;
+    ret[COL_DOMINO * 3 + 1] = 0.0F;
+    ret[COL_DOMINO * 3 + 2] = 0.0F;
+
+    ret[COL_DOMINOCLASH * 3 + 0] = 0.5F;
+    ret[COL_DOMINOCLASH * 3 + 1] = 0.0F;
+    ret[COL_DOMINOCLASH * 3 + 2] = 0.0F;
+
+    ret[COL_DOMINOTEXT * 3 + 0] = 1.0F;
+    ret[COL_DOMINOTEXT * 3 + 1] = 1.0F;
+    ret[COL_DOMINOTEXT * 3 + 2] = 1.0F;
+
+    ret[COL_EDGE * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 2 / 3; 
+    ret[COL_EDGE * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 2 / 3;
+    ret[COL_EDGE * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 2 / 3;
+
+    *ncolours = NCOLOURS;
+    return ret;
+}
+
+static game_drawstate *game_new_drawstate(game_state *state)
+{
+    struct game_drawstate *ds = snew(struct game_drawstate);
+    int i;
+
+    ds->started = FALSE;
+    ds->w = state->w;
+    ds->h = state->h;
+    ds->visible = snewn(ds->w * ds->h, unsigned long);
+    ds->tilesize = 0;                  /* not decided yet */
+    for (i = 0; i < ds->w * ds->h; i++)
+        ds->visible[i] = 0xFFFF;
+
+    return ds;
+}
+
+static void game_free_drawstate(game_drawstate *ds)
+{
+    sfree(ds->visible);
+    sfree(ds);
+}
+
+enum {
+    TYPE_L,
+    TYPE_R,
+    TYPE_T,
+    TYPE_B,
+    TYPE_BLANK,
+    TYPE_MASK = 0x0F
+};
+
+static void draw_tile(frontend *fe, game_drawstate *ds, game_state *state,
+                      int x, int y, int type)
+{
+    int w = state->w /*, h = state->h */;
+    int cx = COORD(x), cy = COORD(y);
+    int nc;
+    char str[80];
+    int flags;
+
+    draw_rect(fe, cx, cy, TILESIZE, TILESIZE, COL_BACKGROUND);
+
+    flags = type &~ TYPE_MASK;
+    type &= TYPE_MASK;
+
+    if (type != TYPE_BLANK) {
+        int i, bg;
+
+        /*
+         * Draw one end of a domino. This is composed of:
+         * 
+         *  - two filled circles (rounded corners)
+         *  - two rectangles
+         *  - a slight shift in the number
+         */
+
+        if (flags & 0x80)
+            bg = COL_DOMINOCLASH;
+        else
+            bg = COL_DOMINO;
+        nc = COL_DOMINOTEXT;
+
+        if (flags & 0x40) {
+            int tmp = nc;
+            nc = bg;
+            bg = tmp;
+        }
+
+        if (type == TYPE_L || type == TYPE_T)
+            draw_circle(fe, cx+DOMINO_COFFSET, cy+DOMINO_COFFSET,
+                        DOMINO_RADIUS, bg, bg);
+        if (type == TYPE_R || type == TYPE_T)
+            draw_circle(fe, cx+TILESIZE-1-DOMINO_COFFSET, cy+DOMINO_COFFSET,
+                        DOMINO_RADIUS, bg, bg);
+        if (type == TYPE_L || type == TYPE_B)
+            draw_circle(fe, cx+DOMINO_COFFSET, cy+TILESIZE-1-DOMINO_COFFSET,
+                        DOMINO_RADIUS, bg, bg);
+        if (type == TYPE_R || type == TYPE_B)
+            draw_circle(fe, cx+TILESIZE-1-DOMINO_COFFSET,
+                        cy+TILESIZE-1-DOMINO_COFFSET,
+                        DOMINO_RADIUS, bg, bg);
+
+        for (i = 0; i < 2; i++) {
+            int x1, y1, x2, y2;
+
+            x1 = cx + (i ? DOMINO_GUTTER : DOMINO_COFFSET);
+            y1 = cy + (i ? DOMINO_COFFSET : DOMINO_GUTTER);
+            x2 = cx + TILESIZE-1 - (i ? DOMINO_GUTTER : DOMINO_COFFSET);
+            y2 = cy + TILESIZE-1 - (i ? DOMINO_COFFSET : DOMINO_GUTTER);
+            if (type == TYPE_L)
+                x2 = cx + TILESIZE-1;
+            else if (type == TYPE_R)
+                x1 = cx;
+            else if (type == TYPE_T)
+                y2 = cy + TILESIZE-1;
+            else if (type == TYPE_B)
+                y1 = cy;
+
+            draw_rect(fe, x1, y1, x2-x1+1, y2-y1+1, bg);
+        }
+    } else {
+        if (flags & EDGE_T)
+            draw_rect(fe, cx+DOMINO_GUTTER, cy,
+                      TILESIZE-2*DOMINO_GUTTER, 1, COL_EDGE);
+        if (flags & EDGE_B)
+            draw_rect(fe, cx+DOMINO_GUTTER, cy+TILESIZE-1,
+                      TILESIZE-2*DOMINO_GUTTER, 1, COL_EDGE);
+        if (flags & EDGE_L)
+            draw_rect(fe, cx, cy+DOMINO_GUTTER,
+                      1, TILESIZE-2*DOMINO_GUTTER, COL_EDGE);
+        if (flags & EDGE_R)
+            draw_rect(fe, cx+TILESIZE-1, cy+DOMINO_GUTTER,
+                      1, TILESIZE-2*DOMINO_GUTTER, COL_EDGE);
+        nc = COL_TEXT;
+    }
+
+    sprintf(str, "%d", state->numbers->numbers[y*w+x]);
+    draw_text(fe, cx+TILESIZE/2, cy+TILESIZE/2, FONT_VARIABLE, TILESIZE/2,
+              ALIGN_HCENTRE | ALIGN_VCENTRE, nc, str);
+
+    draw_update(fe, cx, cy, TILESIZE, TILESIZE);
+}
+
+static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
+                 game_state *state, int dir, game_ui *ui,
+                 float animtime, float flashtime)
+{
+    int n = state->params.n, w = state->w, h = state->h, wh = w*h;
+    int x, y, i;
+    unsigned char *used;
+
+    if (!ds->started) {
+        int pw, ph;
+        game_compute_size(&state->params, TILESIZE, &pw, &ph);
+	draw_rect(fe, 0, 0, pw, ph, COL_BACKGROUND);
+	draw_update(fe, 0, 0, pw, ph);
+	ds->started = TRUE;
+    }
+
+    /*
+     * See how many dominoes of each type there are, so we can
+     * highlight clashes in red.
+     */
+    used = snewn(TRI(n+1), unsigned char);
+    memset(used, 0, TRI(n+1));
+    for (i = 0; i < wh; i++)
+        if (state->grid[i] > i) {
+            int n1, n2, di;
+
+            n1 = state->numbers->numbers[i];
+            n2 = state->numbers->numbers[state->grid[i]];
+
+            di = DINDEX(n1, n2);
+            assert(di >= 0 && di < TRI(n+1));
+
+            if (used[di] < 2)
+                used[di]++;
+        }
+
+    for (y = 0; y < h; y++)
+        for (x = 0; x < w; x++) {
+            int n = y*w+x;
+            int n1, n2, di;
+	    unsigned long c;
+
+            if (state->grid[n] == n-1)
+                c = TYPE_R;
+            else if (state->grid[n] == n+1)
+                c = TYPE_L;
+            else if (state->grid[n] == n-w)
+                c = TYPE_B;
+            else if (state->grid[n] == n+w)
+                c = TYPE_T;
+            else
+                c = TYPE_BLANK;
+
+            if (c != TYPE_BLANK) {
+                n1 = state->numbers->numbers[n];
+                n2 = state->numbers->numbers[state->grid[n]];
+                di = DINDEX(n1, n2);
+                if (used[di] > 1)
+                    c |= 0x80;         /* highlight a clash */
+            } else {
+                c |= state->edges[n];
+            }
+
+            if (flashtime != 0)
+                c |= 0x40;             /* we're flashing */
+
+	    if (ds->visible[n] != c) {
+		draw_tile(fe, ds, state, x, y, c);
+                ds->visible[n] = c;
+	    }
+	}
+
+    sfree(used);
+}
+
+static float game_anim_length(game_state *oldstate, game_state *newstate,
+			      int dir, game_ui *ui)
+{
+    return 0.0F;
+}
+
+static float game_flash_length(game_state *oldstate, game_state *newstate,
+			       int dir, game_ui *ui)
+{
+    if (!oldstate->completed && newstate->completed &&
+	!oldstate->cheated && !newstate->cheated)
+        return FLASH_TIME;
+    return 0.0F;
+}
+
+static int game_wants_statusbar(void)
+{
+    return FALSE;
+}
+
+static int game_timing_state(game_state *state, game_ui *ui)
+{
+    return TRUE;
+}
+
+#ifdef COMBINED
+#define thegame dominosa
+#endif
+
+const struct game thegame = {
+    "Dominosa", "games.dominosa",
+    default_params,
+    game_fetch_preset,
+    decode_params,
+    encode_params,
+    free_params,
+    dup_params,
+    TRUE, game_configure, custom_params,
+    validate_params,
+    new_game_desc,
+    validate_desc,
+    new_game,
+    dup_game,
+    free_game,
+    TRUE, solve_game,
+    FALSE, game_text_format,
+    new_ui,
+    free_ui,
+    encode_ui,
+    decode_ui,
+    game_changed_state,
+    interpret_move,
+    execute_move,
+    PREFERRED_TILESIZE, game_compute_size, game_set_size,
+    game_colours,
+    game_new_drawstate,
+    game_free_drawstate,
+    game_redraw,
+    game_anim_length,
+    game_flash_length,
+    game_wants_statusbar,
+    FALSE, game_timing_state,
+    0,				       /* mouse_priorities */
+};
--- a/list.c
+++ b/list.c
@@ -18,6 +18,7 @@
  */
 
 extern const game cube;
+extern const game dominosa;
 extern const game fifteen;
 extern const game flip;
 extern const game guess;
@@ -34,6 +35,7 @@
 
 const game *gamelist[] = {
     &cube,
+    &dominosa,
     &fifteen,
     &flip,
     &guess,
--- a/puzzles.but
+++ b/puzzles.but
@@ -1193,6 +1193,56 @@
 time (but always one that is known to have a solution).
 
 
+\C{dominosa} \i{Dominosa}
+
+\cfg{winhelp-topic}{games.dominosa}
+
+A normal set of dominoes has been arranged irregularly into a
+rectangle; then the number in each square has been written down and
+the dominoes themselves removed. Your task is to reconstruct the
+pattern by arranging the set of dominoes to match the provided array
+of numbers.
+
+This puzzle is widely credited to O. S. Adler, and takes part of its
+name from those initials.
+
+\H{dominosa-controls} \i{Dominosa controls}
+
+\IM{Dominosa controls} controls, for Dominosa
+
+Left-clicking between any two adjacent numbers places a domino
+covering them, or removes one if it is already present. Trying to
+place a domino which overlaps existing dominoes will remove the ones
+it overlaps.
+
+Right-clicking between two adjacent numbers draws a line between
+them, which you can use to remind yourself that you know those two
+numbers are \e{not} covered by a single domino. Right-clicking again
+removes the line.
+
+
+\H{dominosa-parameters} \I{parameters, for Dominosa}Dominosa parameters
+
+These parameters are available from the \q{Custom...} option on the
+\q{Type} menu.
+
+\dt \e{Maximum number on dominoes}
+
+\dd Controls the size of the puzzle, by controlling the size of the
+set of dominoes used to make it. Dominoes with numbers going up to N
+will give rise to an (N+2) \by (N+1) rectangle; so, in particular,
+the default value of 6 gives an 8\by\.7 grid.
+
+\dt \e{Ensure unique solution}
+
+\dd Normally, Dominosa will make sure that the puzzles it presents
+have only one solution. Puzzles with ambiguous sections can be more
+difficult and sometimes more subtle, so if you like you can turn off
+this feature. Also, finding \e{all} the possible solutions can be an
+additional challenge for an advanced player. Turning off this option
+can also speed up puzzle generation.
+
+
 \A{licence} \I{MIT licence}\ii{Licence}
 
 This software is \i{copyright} 2004-2005 Simon Tatham.