ref: 69410c7961e901b03ae694e80e39918e30e316c9
parent: bb63d0d399128bb8d1ca7633a87b76b251b807b2
author: Simon Tatham <anakin@pobox.com>
date: Thu Jul 14 13:42:01 EDT 2005
New puzzle: Dominosa. [originally from svn r6091]
--- a/Recipe
+++ b/Recipe
@@ -22,7 +22,7 @@
PEGS = pegs tree234
ALL = list NET NETSLIDE cube fifteen sixteen rect pattern solo twiddle
- + MINES samegame FLIP guess PEGS
+ + MINES samegame FLIP guess PEGS dominosa
net : [X] gtk COMMON NET
netslide : [X] gtk COMMON NETSLIDE
@@ -38,6 +38,7 @@
flip : [X] gtk COMMON FLIP
guess : [X] gtk COMMON guess
pegs : [X] gtk COMMON PEGS
+dominosa : [X] gtk COMMON dominosa
# Auxiliary command-line programs.
solosolver : [U] solo[STANDALONE_SOLVER] malloc
@@ -64,6 +65,7 @@
flip : [G] WINDOWS COMMON FLIP
guess : [G] WINDOWS COMMON guess
pegs : [G] WINDOWS COMMON PEGS
+dominosa : [G] WINDOWS COMMON dominosa
# Mac OS X unified application containing all the puzzles.
Puzzles : [MX] osx osx.icns osx-info.plist COMMON ALL
@@ -155,7 +157,7 @@
install:
for i in cube net netslide fifteen sixteen twiddle \
pattern rect solo mines samegame flip guess \
- pegs; do \
+ pegs dominosa; do \
$(INSTALL_PROGRAM) -m 755 $$i $(DESTDIR)$(gamesdir)/$$i; \
done
!end
--- /dev/null
+++ b/dominosa.c
@@ -1,0 +1,1623 @@
+/*
+ * dominosa.c: Domino jigsaw puzzle. Aim to place one of every
+ * possible domino within a rectangle in such a way that the number
+ * on each square matches the provided clue.
+ */
+
+/*
+ * TODO:
+ *
+ * - improve solver so as to use more interesting forms of
+ * deduction
+ * * odd area
+ * * perhaps set analysis
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+#include <ctype.h>
+#include <math.h>
+
+#include "puzzles.h"
+
+/* nth triangular number */
+#define TRI(n) ( (n) * ((n) + 1) / 2 )
+/* number of dominoes for value n */
+#define DCOUNT(n) TRI((n)+1)
+/* map a pair of numbers to a unique domino index from 0 upwards. */
+#define DINDEX(n1,n2) ( TRI(max(n1,n2)) + min(n1,n2) )
+
+#define FLASH_TIME 0.13F
+
+enum {
+ COL_BACKGROUND,
+ COL_TEXT,
+ COL_DOMINO,
+ COL_DOMINOCLASH,
+ COL_DOMINOTEXT,
+ COL_EDGE,
+ NCOLOURS
+};
+
+struct game_params {
+ int n;
+ int unique;
+};
+
+struct game_numbers {
+ int refcount;
+ int *numbers; /* h x w */
+};
+
+#define EDGE_L 0x100
+#define EDGE_R 0x200
+#define EDGE_T 0x400
+#define EDGE_B 0x800
+
+struct game_state {
+ game_params params;
+ int w, h;
+ struct game_numbers *numbers;
+ int *grid;
+ unsigned short *edges; /* h x w */
+ int completed, cheated;
+};
+
+static game_params *default_params(void)
+{
+ game_params *ret = snew(game_params);
+
+ ret->n = 6;
+ ret->unique = TRUE;
+
+ return ret;
+}
+
+static int game_fetch_preset(int i, char **name, game_params **params)
+{
+ game_params *ret;
+ int n;
+ char buf[80];
+
+ switch (i) {
+ case 0: n = 3; break;
+ case 1: n = 6; break;
+ case 2: n = 9; break;
+ default: return FALSE;
+ }
+
+ sprintf(buf, "Up to double-%d", n);
+ *name = dupstr(buf);
+
+ *params = ret = snew(game_params);
+ ret->n = n;
+ ret->unique = TRUE;
+
+ return TRUE;
+}
+
+static void free_params(game_params *params)
+{
+ sfree(params);
+}
+
+static game_params *dup_params(game_params *params)
+{
+ game_params *ret = snew(game_params);
+ *ret = *params; /* structure copy */
+ return ret;
+}
+
+static void decode_params(game_params *params, char const *string)
+{
+ params->n = atoi(string);
+ while (*string && isdigit((unsigned char)*string)) string++;
+ if (*string == 'a')
+ params->unique = FALSE;
+}
+
+static char *encode_params(game_params *params, int full)
+{
+ char buf[80];
+ sprintf(buf, "%d", params->n);
+ if (full && !params->unique)
+ strcat(buf, "a");
+ return dupstr(buf);
+}
+
+static config_item *game_configure(game_params *params)
+{
+ config_item *ret;
+ char buf[80];
+
+ ret = snewn(3, config_item);
+
+ ret[0].name = "Maximum number on dominoes";
+ ret[0].type = C_STRING;
+ sprintf(buf, "%d", params->n);
+ ret[0].sval = dupstr(buf);
+ ret[0].ival = 0;
+
+ ret[1].name = "Ensure unique solution";
+ ret[1].type = C_BOOLEAN;
+ ret[1].sval = NULL;
+ ret[1].ival = params->unique;
+
+ ret[2].name = NULL;
+ ret[2].type = C_END;
+ ret[2].sval = NULL;
+ ret[2].ival = 0;
+
+ return ret;
+}
+
+static game_params *custom_params(config_item *cfg)
+{
+ game_params *ret = snew(game_params);
+
+ ret->n = atoi(cfg[0].sval);
+ ret->unique = cfg[1].ival;
+
+ return ret;
+}
+
+static char *validate_params(game_params *params, int full)
+{
+ if (params->n < 1)
+ return "Maximum face number must be at least one";
+ return NULL;
+}
+
+/* ----------------------------------------------------------------------
+ * Solver.
+ */
+
+static int find_overlaps(int w, int h, int placement, int *set)
+{
+ int x, y, n;
+
+ n = 0; /* number of returned placements */
+
+ x = placement / 2;
+ y = x / w;
+ x %= w;
+
+ if (placement & 1) {
+ /*
+ * Horizontal domino, indexed by its left end.
+ */
+ if (x > 0)
+ set[n++] = placement-2; /* horizontal domino to the left */
+ if (y > 0)
+ set[n++] = placement-2*w-1;/* vertical domino above left side */
+ if (y+1 < h)
+ set[n++] = placement-1; /* vertical domino below left side */
+ if (x+2 < w)
+ set[n++] = placement+2; /* horizontal domino to the right */
+ if (y > 0)
+ set[n++] = placement-2*w+2-1;/* vertical domino above right side */
+ if (y+1 < h)
+ set[n++] = placement+2-1; /* vertical domino below right side */
+ } else {
+ /*
+ * Vertical domino, indexed by its top end.
+ */
+ if (y > 0)
+ set[n++] = placement-2*w; /* vertical domino above */
+ if (x > 0)
+ set[n++] = placement-2+1; /* horizontal domino left of top */
+ if (x+1 < w)
+ set[n++] = placement+1; /* horizontal domino right of top */
+ if (y+2 < h)
+ set[n++] = placement+2*w; /* vertical domino below */
+ if (x > 0)
+ set[n++] = placement-2+2*w+1;/* horizontal domino left of bottom */
+ if (x+1 < w)
+ set[n++] = placement+2*w+1;/* horizontal domino right of bottom */
+ }
+
+ return n;
+}
+
+/*
+ * Returns 0, 1 or 2 for number of solutions. 2 means `any number
+ * more than one', or more accurately `we were unable to prove
+ * there was only one'.
+ *
+ * Outputs in a `placements' array, indexed the same way as the one
+ * within this function (see below); entries in there are <0 for a
+ * placement ruled out, 0 for an uncertain placement, and 1 for a
+ * definite one.
+ */
+static int solver(int w, int h, int n, int *grid, int *output)
+{
+ int wh = w*h, dc = DCOUNT(n);
+ int *placements, *heads;
+ int i, j, x, y, ret;
+
+ /*
+ * This array has one entry for every possible domino
+ * placement. Vertical placements are indexed by their top
+ * half, at (y*w+x)*2; horizontal placements are indexed by
+ * their left half at (y*w+x)*2+1.
+ *
+ * This array is used to link domino placements together into
+ * linked lists, so that we can track all the possible
+ * placements of each different domino. It's also used as a
+ * quick means of looking up an individual placement to see
+ * whether we still think it's possible. Actual values stored
+ * in this array are -2 (placement not possible at all), -1
+ * (end of list), or the array index of the next item.
+ *
+ * Oh, and -3 for `not even valid', used for array indices
+ * which don't even represent a plausible placement.
+ */
+ placements = snewn(2*wh, int);
+ for (i = 0; i < 2*wh; i++)
+ placements[i] = -3; /* not even valid */
+
+ /*
+ * This array has one entry for every domino, and it is an
+ * index into `placements' denoting the head of the placement
+ * list for that domino.
+ */
+ heads = snewn(dc, int);
+ for (i = 0; i < dc; i++)
+ heads[i] = -1;
+
+ /*
+ * Set up the initial possibility lists by scanning the grid.
+ */
+ for (y = 0; y < h-1; y++)
+ for (x = 0; x < w; x++) {
+ int di = DINDEX(grid[y*w+x], grid[(y+1)*w+x]);
+ placements[(y*w+x)*2] = heads[di];
+ heads[di] = (y*w+x)*2;
+ }
+ for (y = 0; y < h; y++)
+ for (x = 0; x < w-1; x++) {
+ int di = DINDEX(grid[y*w+x], grid[y*w+(x+1)]);
+ placements[(y*w+x)*2+1] = heads[di];
+ heads[di] = (y*w+x)*2+1;
+ }
+
+#ifdef SOLVER_DIAGNOSTICS
+ printf("before solver:\n");
+ for (i = 0; i <= n; i++)
+ for (j = 0; j <= i; j++) {
+ int k, m;
+ m = 0;
+ printf("%2d [%d %d]:", DINDEX(i, j), i, j);
+ for (k = heads[DINDEX(i,j)]; k >= 0; k = placements[k])
+ printf(" %3d [%d,%d,%c]", k, k/2%w, k/2/w, k%2?'h':'v');
+ printf("\n");
+ }
+#endif
+
+ while (1) {
+ int done_something = FALSE;
+
+ /*
+ * For each domino, look at its possible placements, and
+ * for each placement consider the placements (of any
+ * domino) it overlaps. Any placement overlapped by all
+ * placements of this domino can be ruled out.
+ *
+ * Each domino placement overlaps only six others, so we
+ * need not do serious set theory to work this out.
+ */
+ for (i = 0; i < dc; i++) {
+ int permset[6], permlen = 0, p;
+
+
+ if (heads[i] == -1) { /* no placement for this domino */
+ ret = 0; /* therefore puzzle is impossible */
+ goto done;
+ }
+ for (j = heads[i]; j >= 0; j = placements[j]) {
+ assert(placements[j] != -2);
+
+ if (j == heads[i]) {
+ permlen = find_overlaps(w, h, j, permset);
+ } else {
+ int tempset[6], templen, m, n, k;
+
+ templen = find_overlaps(w, h, j, tempset);
+
+ /*
+ * Pathetically primitive set intersection
+ * algorithm, which I'm only getting away with
+ * because I know my sets are bounded by a very
+ * small size.
+ */
+ for (m = n = 0; m < permlen; m++) {
+ for (k = 0; k < templen; k++)
+ if (tempset[k] == permset[m])
+ break;
+ if (k < templen)
+ permset[n++] = permset[m];
+ }
+ permlen = n;
+ }
+ }
+ for (p = 0; p < permlen; p++) {
+ j = permset[p];
+ if (placements[j] != -2) {
+ int p1, p2, di;
+
+ done_something = TRUE;
+
+ /*
+ * Rule out this placement. First find what
+ * domino it is...
+ */
+ p1 = j / 2;
+ p2 = (j & 1) ? p1 + 1 : p1 + w;
+ di = DINDEX(grid[p1], grid[p2]);
+#ifdef SOLVER_DIAGNOSTICS
+ printf("considering domino %d: ruling out placement %d"
+ " for %d\n", i, j, di);
+#endif
+
+ /*
+ * ... then walk that domino's placement list,
+ * removing this placement when we find it.
+ */
+ if (heads[di] == j)
+ heads[di] = placements[j];
+ else {
+ int k = heads[di];
+ while (placements[k] != -1 && placements[k] != j)
+ k = placements[k];
+ assert(placements[k] == j);
+ placements[k] = placements[j];
+ }
+ placements[j] = -2;
+ }
+ }
+ }
+
+ /*
+ * For each square, look at the available placements
+ * involving that square. If all of them are for the same
+ * domino, then rule out any placements for that domino
+ * _not_ involving this square.
+ */
+ for (i = 0; i < wh; i++) {
+ int list[4], k, n, adi;
+
+ x = i % w;
+ y = i / w;
+
+ j = 0;
+ if (x > 0)
+ list[j++] = 2*(i-1)+1;
+ if (x+1 < w)
+ list[j++] = 2*i+1;
+ if (y > 0)
+ list[j++] = 2*(i-w);
+ if (y+1 < h)
+ list[j++] = 2*i;
+
+ for (n = k = 0; k < j; k++)
+ if (placements[list[k]] >= -1)
+ list[n++] = list[k];
+
+ adi = -1;
+
+ for (j = 0; j < n; j++) {
+ int p1, p2, di;
+ k = list[j];
+
+ p1 = k / 2;
+ p2 = (k & 1) ? p1 + 1 : p1 + w;
+ di = DINDEX(grid[p1], grid[p2]);
+
+ if (adi == -1)
+ adi = di;
+ if (adi != di)
+ break;
+ }
+
+ if (j == n) {
+ int nn;
+
+ assert(adi >= 0);
+ /*
+ * We've found something. All viable placements
+ * involving this square are for domino `adi'. If
+ * the current placement list for that domino is
+ * longer than n, reduce it to precisely this
+ * placement list and we've done something.
+ */
+ nn = 0;
+ for (k = heads[adi]; k >= 0; k = placements[k])
+ nn++;
+ if (nn > n) {
+ done_something = TRUE;
+#ifdef SOLVER_DIAGNOSTICS
+ printf("considering square %d,%d: reducing placements "
+ "of domino %d\n", x, y, adi);
+#endif
+ /*
+ * Set all other placements on the list to
+ * impossible.
+ */
+ k = heads[adi];
+ while (k >= 0) {
+ int tmp = placements[k];
+ placements[k] = -2;
+ k = tmp;
+ }
+ /*
+ * Set up the new list.
+ */
+ heads[adi] = list[0];
+ for (k = 0; k < n; k++)
+ placements[list[k]] = (k+1 == n ? -1 : list[k+1]);
+ }
+ }
+ }
+
+ if (!done_something)
+ break;
+ }
+
+#ifdef SOLVER_DIAGNOSTICS
+ printf("after solver:\n");
+ for (i = 0; i <= n; i++)
+ for (j = 0; j <= i; j++) {
+ int k, m;
+ m = 0;
+ printf("%2d [%d %d]:", DINDEX(i, j), i, j);
+ for (k = heads[DINDEX(i,j)]; k >= 0; k = placements[k])
+ printf(" %3d [%d,%d,%c]", k, k/2%w, k/2/w, k%2?'h':'v');
+ printf("\n");
+ }
+#endif
+
+ ret = 1;
+ for (i = 0; i < wh*2; i++) {
+ if (placements[i] == -2) {
+ if (output)
+ output[i] = -1; /* ruled out */
+ } else if (placements[i] != -3) {
+ int p1, p2, di;
+
+ p1 = i / 2;
+ p2 = (i & 1) ? p1 + 1 : p1 + w;
+ di = DINDEX(grid[p1], grid[p2]);
+
+ if (i == heads[di] && placements[i] == -1) {
+ if (output)
+ output[i] = 1; /* certain */
+ } else {
+ if (output)
+ output[i] = 0; /* uncertain */
+ ret = 2;
+ }
+ }
+ }
+
+ done:
+ /*
+ * Free working data.
+ */
+ sfree(placements);
+ sfree(heads);
+
+ return ret;
+}
+
+/* ----------------------------------------------------------------------
+ * End of solver code.
+ */
+
+static char *new_game_desc(game_params *params, random_state *rs,
+ char **aux, int interactive)
+{
+ int n = params->n, w = n+2, h = n+1, wh = w*h;
+ int *grid, *grid2, *list;
+ int i, j, k, m, todo, done, len;
+ char *ret;
+
+ /*
+ * Allocate space in which to lay the grid out.
+ */
+ grid = snewn(wh, int);
+ grid2 = snewn(wh, int);
+ list = snewn(2*wh, int);
+
+ do {
+ /*
+ * To begin with, set grid[i] = i for all i to indicate
+ * that all squares are currently singletons. Later we'll
+ * set grid[i] to be the index of the other end of the
+ * domino on i.
+ */
+ for (i = 0; i < wh; i++)
+ grid[i] = i;
+
+ /*
+ * Now prepare a list of the possible domino locations. There
+ * are w*(h-1) possible vertical locations, and (w-1)*h
+ * horizontal ones, for a total of 2*wh - h - w.
+ *
+ * I'm going to denote the vertical domino placement with
+ * its top in square i as 2*i, and the horizontal one with
+ * its left half in square i as 2*i+1.
+ */
+ k = 0;
+ for (j = 0; j < h-1; j++)
+ for (i = 0; i < w; i++)
+ list[k++] = 2 * (j*w+i); /* vertical positions */
+ for (j = 0; j < h; j++)
+ for (i = 0; i < w-1; i++)
+ list[k++] = 2 * (j*w+i) + 1; /* horizontal positions */
+ assert(k == 2*wh - h - w);
+
+ /*
+ * Shuffle the list.
+ */
+ shuffle(list, k, sizeof(*list), rs);
+
+ /*
+ * Work down the shuffled list, placing a domino everywhere
+ * we can.
+ */
+ for (i = 0; i < k; i++) {
+ int horiz, xy, xy2;
+
+ horiz = list[i] % 2;
+ xy = list[i] / 2;
+ xy2 = xy + (horiz ? 1 : w);
+
+ if (grid[xy] == xy && grid[xy2] == xy2) {
+ /*
+ * We can place this domino. Do so.
+ */
+ grid[xy] = xy2;
+ grid[xy2] = xy;
+ }
+ }
+
+#ifdef GENERATION_DIAGNOSTICS
+ printf("generated initial layout\n");
+#endif
+
+ /*
+ * Now we've placed as many dominoes as we can immediately
+ * manage. There will be squares remaining, but they'll be
+ * singletons. So loop round and deal with the singletons
+ * two by two.
+ */
+ while (1) {
+#ifdef GENERATION_DIAGNOSTICS
+ for (j = 0; j < h; j++) {
+ for (i = 0; i < w; i++) {
+ int xy = j*w+i;
+ int v = grid[xy];
+ int c = (v == xy+1 ? '[' : v == xy-1 ? ']' :
+ v == xy+w ? 'n' : v == xy-w ? 'U' : '.');
+ putchar(c);
+ }
+ putchar('\n');
+ }
+ putchar('\n');
+#endif
+
+ /*
+ * Our strategy is:
+ *
+ * First find a singleton square.
+ *
+ * Then breadth-first search out from the starting
+ * square. From that square (and any others we reach on
+ * the way), examine all four neighbours of the square.
+ * If one is an end of a domino, we move to the _other_
+ * end of that domino before looking at neighbours
+ * again. When we encounter another singleton on this
+ * search, stop.
+ *
+ * This will give us a path of adjacent squares such
+ * that all but the two ends are covered in dominoes.
+ * So we can now shuffle every domino on the path up by
+ * one.
+ *
+ * (Chessboard colours are mathematically important
+ * here: we always end up pairing each singleton with a
+ * singleton of the other colour. However, we never
+ * have to track this manually, since it's
+ * automatically taken care of by the fact that we
+ * always make an even number of orthogonal moves.)
+ */
+ for (i = 0; i < wh; i++)
+ if (grid[i] == i)
+ break;
+ if (i == wh)
+ break; /* no more singletons; we're done. */
+
+#ifdef GENERATION_DIAGNOSTICS
+ printf("starting b.f.s. at singleton %d\n", i);
+#endif
+ /*
+ * Set grid2 to -1 everywhere. It will hold our
+ * distance-from-start values, and also our
+ * backtracking data, during the b.f.s.
+ */
+ for (j = 0; j < wh; j++)
+ grid2[j] = -1;
+ grid2[i] = 0; /* starting square has distance zero */
+
+ /*
+ * Start our to-do list of squares. It'll live in
+ * `list'; since the b.f.s can cover every square at
+ * most once there is no need for it to be circular.
+ * We'll just have two counters tracking the end of the
+ * list and the squares we've already dealt with.
+ */
+ done = 0;
+ todo = 1;
+ list[0] = i;
+
+ /*
+ * Now begin the b.f.s. loop.
+ */
+ while (done < todo) {
+ int d[4], nd, x, y;
+
+ i = list[done++];
+
+#ifdef GENERATION_DIAGNOSTICS
+ printf("b.f.s. iteration from %d\n", i);
+#endif
+ x = i % w;
+ y = i / w;
+ nd = 0;
+ if (x > 0)
+ d[nd++] = i - 1;
+ if (x+1 < w)
+ d[nd++] = i + 1;
+ if (y > 0)
+ d[nd++] = i - w;
+ if (y+1 < h)
+ d[nd++] = i + w;
+ /*
+ * To avoid directional bias, process the
+ * neighbours of this square in a random order.
+ */
+ shuffle(d, nd, sizeof(*d), rs);
+
+ for (j = 0; j < nd; j++) {
+ k = d[j];
+ if (grid[k] == k) {
+#ifdef GENERATION_DIAGNOSTICS
+ printf("found neighbouring singleton %d\n", k);
+#endif
+ grid2[k] = i;
+ break; /* found a target singleton! */
+ }
+
+ /*
+ * We're moving through a domino here, so we
+ * have two entries in grid2 to fill with
+ * useful data. In grid[k] - the square
+ * adjacent to where we came from - I'm going
+ * to put the address _of_ the square we came
+ * from. In the other end of the domino - the
+ * square from which we will continue the
+ * search - I'm going to put the distance.
+ */
+ m = grid[k];
+
+ if (grid2[m] < 0 || grid2[m] > grid2[i]+1) {
+#ifdef GENERATION_DIAGNOSTICS
+ printf("found neighbouring domino %d/%d\n", k, m);
+#endif
+ grid2[m] = grid2[i]+1;
+ grid2[k] = i;
+ /*
+ * And since we've now visited a new
+ * domino, add m to the to-do list.
+ */
+ assert(todo < wh);
+ list[todo++] = m;
+ }
+ }
+
+ if (j < nd) {
+ i = k;
+#ifdef GENERATION_DIAGNOSTICS
+ printf("terminating b.f.s. loop, i = %d\n", i);
+#endif
+ break;
+ }
+
+ i = -1; /* just in case the loop terminates */
+ }
+
+ /*
+ * We expect this b.f.s. to have found us a target
+ * square.
+ */
+ assert(i >= 0);
+
+ /*
+ * Now we can follow the trail back to our starting
+ * singleton, re-laying dominoes as we go.
+ */
+ while (1) {
+ j = grid2[i];
+ assert(j >= 0 && j < wh);
+ k = grid[j];
+
+ grid[i] = j;
+ grid[j] = i;
+#ifdef GENERATION_DIAGNOSTICS
+ printf("filling in domino %d/%d (next %d)\n", i, j, k);
+#endif
+ if (j == k)
+ break; /* we've reached the other singleton */
+ i = k;
+ }
+#ifdef GENERATION_DIAGNOSTICS
+ printf("fixup path completed\n");
+#endif
+ }
+
+ /*
+ * Now we have a complete layout covering the whole
+ * rectangle with dominoes. So shuffle the actual domino
+ * values and fill the rectangle with numbers.
+ */
+ k = 0;
+ for (i = 0; i <= params->n; i++)
+ for (j = 0; j <= i; j++) {
+ list[k++] = i;
+ list[k++] = j;
+ }
+ shuffle(list, k/2, 2*sizeof(*list), rs);
+ j = 0;
+ for (i = 0; i < wh; i++)
+ if (grid[i] > i) {
+ /* Optionally flip the domino round. */
+ int flip = random_upto(rs, 2);
+ grid2[i] = list[j + flip];
+ grid2[grid[i]] = list[j + 1 - flip];
+ j += 2;
+ }
+ assert(j == k);
+ } while (params->unique && solver(w, h, n, grid2, NULL) > 1);
+
+#ifdef GENERATION_DIAGNOSTICS
+ for (j = 0; j < h; j++) {
+ for (i = 0; i < w; i++) {
+ putchar('0' + grid2[j*w+i]);
+ }
+ putchar('\n');
+ }
+ putchar('\n');
+#endif
+
+ /*
+ * Encode the resulting game state.
+ *
+ * Our encoding is a string of digits. Any number greater than
+ * 9 is represented by a decimal integer within square
+ * brackets. We know there are n+2 of every number (it's paired
+ * with each number from 0 to n inclusive, and one of those is
+ * itself so that adds another occurrence), so we can work out
+ * the string length in advance.
+ */
+
+ /*
+ * To work out the total length of the decimal encodings of all
+ * the numbers from 0 to n inclusive:
+ * - every number has a units digit; total is n+1.
+ * - all numbers above 9 have a tens digit; total is max(n+1-10,0).
+ * - all numbers above 99 have a hundreds digit; total is max(n+1-100,0).
+ * - and so on.
+ */
+ len = n+1;
+ for (i = 10; i <= n; i *= 10)
+ len += max(n + 1 - i, 0);
+ /* Now add two square brackets for each number above 9. */
+ len += 2 * max(n + 1 - 10, 0);
+ /* And multiply by n+2 for the repeated occurrences of each number. */
+ len *= n+2;
+
+ /*
+ * Now actually encode the string.
+ */
+ ret = snewn(len+1, char);
+ j = 0;
+ for (i = 0; i < wh; i++) {
+ k = grid2[i];
+ if (k < 10)
+ ret[j++] = '0' + k;
+ else
+ j += sprintf(ret+j, "[%d]", k);
+ assert(j <= len);
+ }
+ assert(j == len);
+ ret[j] = '\0';
+
+ /*
+ * Encode the solved state as an aux_info.
+ */
+ {
+ char *auxinfo = snewn(wh+1, char);
+
+ for (i = 0; i < wh; i++) {
+ int v = grid[i];
+ auxinfo[i] = (v == i+1 ? 'L' : v == i-1 ? 'R' :
+ v == i+w ? 'T' : v == i-w ? 'B' : '.');
+ }
+ auxinfo[wh] = '\0';
+
+ *aux = auxinfo;
+ }
+
+ sfree(list);
+ sfree(grid2);
+ sfree(grid);
+
+ return ret;
+}
+
+static char *validate_desc(game_params *params, char *desc)
+{
+ int n = params->n, w = n+2, h = n+1, wh = w*h;
+ int *occurrences;
+ int i, j;
+ char *ret;
+
+ ret = NULL;
+ occurrences = snewn(n+1, int);
+ for (i = 0; i <= n; i++)
+ occurrences[i] = 0;
+
+ for (i = 0; i < wh; i++) {
+ if (!*desc) {
+ ret = ret ? ret : "Game description is too short";
+ } else {
+ if (*desc >= '0' && *desc <= '9')
+ j = *desc++ - '0';
+ else if (*desc == '[') {
+ desc++;
+ j = atoi(desc);
+ while (*desc && isdigit((unsigned char)*desc)) desc++;
+ if (*desc != ']')
+ ret = ret ? ret : "Missing ']' in game description";
+ else
+ desc++;
+ } else {
+ j = -1;
+ ret = ret ? ret : "Invalid syntax in game description";
+ }
+ if (j < 0 || j > n)
+ ret = ret ? ret : "Number out of range in game description";
+ else
+ occurrences[j]++;
+ }
+ }
+
+ if (*desc)
+ ret = ret ? ret : "Game description is too long";
+
+ if (!ret) {
+ for (i = 0; i <= n; i++)
+ if (occurrences[i] != n+2)
+ ret = "Incorrect number balance in game description";
+ }
+
+ sfree(occurrences);
+
+ return ret;
+}
+
+static game_state *new_game(midend_data *me, game_params *params, char *desc)
+{
+ int n = params->n, w = n+2, h = n+1, wh = w*h;
+ game_state *state = snew(game_state);
+ int i, j;
+
+ state->params = *params;
+ state->w = w;
+ state->h = h;
+
+ state->grid = snewn(wh, int);
+ for (i = 0; i < wh; i++)
+ state->grid[i] = i;
+
+ state->edges = snewn(wh, unsigned short);
+ for (i = 0; i < wh; i++)
+ state->edges[i] = 0;
+
+ state->numbers = snew(struct game_numbers);
+ state->numbers->refcount = 1;
+ state->numbers->numbers = snewn(wh, int);
+
+ for (i = 0; i < wh; i++) {
+ assert(*desc);
+ if (*desc >= '0' && *desc <= '9')
+ j = *desc++ - '0';
+ else {
+ assert(*desc == '[');
+ desc++;
+ j = atoi(desc);
+ while (*desc && isdigit((unsigned char)*desc)) desc++;
+ assert(*desc == ']');
+ desc++;
+ }
+ assert(j >= 0 && j <= n);
+ state->numbers->numbers[i] = j;
+ }
+
+ state->completed = state->cheated = FALSE;
+
+ return state;
+}
+
+static game_state *dup_game(game_state *state)
+{
+ int n = state->params.n, w = n+2, h = n+1, wh = w*h;
+ game_state *ret = snew(game_state);
+
+ ret->params = state->params;
+ ret->w = state->w;
+ ret->h = state->h;
+ ret->grid = snewn(wh, int);
+ memcpy(ret->grid, state->grid, wh * sizeof(int));
+ ret->edges = snewn(wh, unsigned short);
+ memcpy(ret->edges, state->edges, wh * sizeof(unsigned short));
+ ret->numbers = state->numbers;
+ ret->numbers->refcount++;
+ ret->completed = state->completed;
+ ret->cheated = state->cheated;
+
+ return ret;
+}
+
+static void free_game(game_state *state)
+{
+ sfree(state->grid);
+ if (--state->numbers->refcount <= 0) {
+ sfree(state->numbers->numbers);
+ sfree(state->numbers);
+ }
+ sfree(state);
+}
+
+static char *solve_game(game_state *state, game_state *currstate,
+ char *aux, char **error)
+{
+ int n = state->params.n, w = n+2, h = n+1, wh = w*h;
+ int *placements;
+ char *ret;
+ int retlen, retsize;
+ int i, v;
+ char buf[80];
+ int extra;
+
+ if (aux) {
+ retsize = 256;
+ ret = snewn(retsize, char);
+ retlen = sprintf(ret, "S");
+
+ for (i = 0; i < wh; i++) {
+ if (aux[i] == 'L')
+ extra = sprintf(buf, ";D%d,%d", i, i+1);
+ else if (aux[i] == 'T')
+ extra = sprintf(buf, ";D%d,%d", i, i+w);
+ else
+ continue;
+
+ if (retlen + extra + 1 >= retsize) {
+ retsize = retlen + extra + 256;
+ ret = sresize(ret, retsize, char);
+ }
+ strcpy(ret + retlen, buf);
+ retlen += extra;
+ }
+
+ } else {
+
+ placements = snewn(wh*2, int);
+ for (i = 0; i < wh*2; i++)
+ placements[i] = -3;
+ solver(w, h, n, state->numbers->numbers, placements);
+
+ /*
+ * First make a pass putting in edges for -1, then make a pass
+ * putting in dominoes for +1.
+ */
+ retsize = 256;
+ ret = snewn(retsize, char);
+ retlen = sprintf(ret, "S");
+
+ for (v = -1; v <= +1; v += 2)
+ for (i = 0; i < wh*2; i++)
+ if (placements[i] == v) {
+ int p1 = i / 2;
+ int p2 = (i & 1) ? p1+1 : p1+w;
+
+ extra = sprintf(buf, ";%c%d,%d",
+ v==-1 ? 'E' : 'D', p1, p2);
+
+ if (retlen + extra + 1 >= retsize) {
+ retsize = retlen + extra + 256;
+ ret = sresize(ret, retsize, char);
+ }
+ strcpy(ret + retlen, buf);
+ retlen += extra;
+ }
+
+ sfree(placements);
+ }
+
+ return ret;
+}
+
+static char *game_text_format(game_state *state)
+{
+ return NULL;
+}
+
+static game_ui *new_ui(game_state *state)
+{
+ return NULL;
+}
+
+static void free_ui(game_ui *ui)
+{
+}
+
+static char *encode_ui(game_ui *ui)
+{
+ return NULL;
+}
+
+static void decode_ui(game_ui *ui, char *encoding)
+{
+}
+
+static void game_changed_state(game_ui *ui, game_state *oldstate,
+ game_state *newstate)
+{
+}
+
+#define PREFERRED_TILESIZE 32
+#define TILESIZE (ds->tilesize)
+#define BORDER (TILESIZE * 3 / 4)
+#define DOMINO_GUTTER (TILESIZE / 16)
+#define DOMINO_RADIUS (TILESIZE / 8)
+#define DOMINO_COFFSET (DOMINO_GUTTER + DOMINO_RADIUS)
+
+#define COORD(x) ( (x) * TILESIZE + BORDER )
+#define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 )
+
+struct game_drawstate {
+ int started;
+ int w, h, tilesize;
+ unsigned long *visible;
+};
+
+static char *interpret_move(game_state *state, game_ui *ui, game_drawstate *ds,
+ int x, int y, int button)
+{
+ int w = state->w, h = state->h;
+ char buf[80];
+
+ /*
+ * A left-click between two numbers toggles a domino covering
+ * them. A right-click toggles an edge.
+ */
+ if (button == LEFT_BUTTON || button == RIGHT_BUTTON) {
+ int tx = FROMCOORD(x), ty = FROMCOORD(y), t = ty*w+tx;
+ int dx, dy;
+ int d1, d2;
+
+ if (tx < 0 || tx >= w || ty < 0 || ty >= h)
+ return NULL;
+
+ /*
+ * Now we know which square the click was in, decide which
+ * edge of the square it was closest to.
+ */
+ dx = 2 * (x - COORD(tx)) - TILESIZE;
+ dy = 2 * (y - COORD(ty)) - TILESIZE;
+
+ if (abs(dx) > abs(dy) && dx < 0 && tx > 0)
+ d1 = t - 1, d2 = t; /* clicked in right side of domino */
+ else if (abs(dx) > abs(dy) && dx > 0 && tx+1 < w)
+ d1 = t, d2 = t + 1; /* clicked in left side of domino */
+ else if (abs(dy) > abs(dx) && dy < 0 && ty > 0)
+ d1 = t - w, d2 = t; /* clicked in bottom half of domino */
+ else if (abs(dy) > abs(dx) && dy > 0 && ty+1 < h)
+ d1 = t, d2 = t + w; /* clicked in top half of domino */
+ else
+ return NULL;
+
+ /*
+ * We can't mark an edge next to any domino.
+ */
+ if (button == RIGHT_BUTTON &&
+ (state->grid[d1] != d1 || state->grid[d2] != d2))
+ return NULL;
+
+ sprintf(buf, "%c%d,%d", button == RIGHT_BUTTON ? 'E' : 'D', d1, d2);
+ return dupstr(buf);
+ }
+
+ return NULL;
+}
+
+static game_state *execute_move(game_state *state, char *move)
+{
+ int n = state->params.n, w = n+2, h = n+1, wh = w*h;
+ int d1, d2, d3, p;
+ game_state *ret = dup_game(state);
+
+ while (*move) {
+ if (move[0] == 'S') {
+ int i;
+
+ ret->cheated = TRUE;
+
+ /*
+ * Clear the existing edges and domino placements. We
+ * expect the S to be followed by other commands.
+ */
+ for (i = 0; i < wh; i++) {
+ ret->grid[i] = i;
+ ret->edges[i] = 0;
+ }
+ move++;
+ } else if (move[0] == 'D' &&
+ sscanf(move+1, "%d,%d%n", &d1, &d2, &p) == 2 &&
+ d1 >= 0 && d1 < wh && d2 >= 0 && d2 < wh && d1 < d2) {
+
+ /*
+ * Toggle domino presence between d1 and d2.
+ */
+ if (ret->grid[d1] == d2) {
+ assert(ret->grid[d2] == d1);
+ ret->grid[d1] = d1;
+ ret->grid[d2] = d2;
+ } else {
+ /*
+ * Erase any dominoes that might overlap the new one.
+ */
+ d3 = ret->grid[d1];
+ if (d3 != d1)
+ ret->grid[d3] = d3;
+ d3 = ret->grid[d2];
+ if (d3 != d2)
+ ret->grid[d3] = d3;
+ /*
+ * Place the new one.
+ */
+ ret->grid[d1] = d2;
+ ret->grid[d2] = d1;
+
+ /*
+ * Destroy any edges lurking around it.
+ */
+ if (ret->edges[d1] & EDGE_L) {
+ assert(d1 - 1 >= 0);
+ ret->edges[d1 - 1] &= ~EDGE_R;
+ }
+ if (ret->edges[d1] & EDGE_R) {
+ assert(d1 + 1 < wh);
+ ret->edges[d1 + 1] &= ~EDGE_L;
+ }
+ if (ret->edges[d1] & EDGE_T) {
+ assert(d1 - w >= 0);
+ ret->edges[d1 - w] &= ~EDGE_B;
+ }
+ if (ret->edges[d1] & EDGE_B) {
+ assert(d1 + 1 < wh);
+ ret->edges[d1 + w] &= ~EDGE_T;
+ }
+ ret->edges[d1] = 0;
+ if (ret->edges[d2] & EDGE_L) {
+ assert(d2 - 1 >= 0);
+ ret->edges[d2 - 1] &= ~EDGE_R;
+ }
+ if (ret->edges[d2] & EDGE_R) {
+ assert(d2 + 1 < wh);
+ ret->edges[d2 + 1] &= ~EDGE_L;
+ }
+ if (ret->edges[d2] & EDGE_T) {
+ assert(d2 - w >= 0);
+ ret->edges[d2 - w] &= ~EDGE_B;
+ }
+ if (ret->edges[d2] & EDGE_B) {
+ assert(d2 + 1 < wh);
+ ret->edges[d2 + w] &= ~EDGE_T;
+ }
+ ret->edges[d2] = 0;
+ }
+
+ move += p+1;
+ } else if (move[0] == 'E' &&
+ sscanf(move+1, "%d,%d%n", &d1, &d2, &p) == 2 &&
+ d1 >= 0 && d1 < wh && d2 >= 0 && d2 < wh && d1 < d2 &&
+ ret->grid[d1] == d1 && ret->grid[d2] == d2) {
+
+ /*
+ * Toggle edge presence between d1 and d2.
+ */
+ if (d2 == d1 + 1) {
+ ret->edges[d1] ^= EDGE_R;
+ ret->edges[d2] ^= EDGE_L;
+ } else {
+ ret->edges[d1] ^= EDGE_B;
+ ret->edges[d2] ^= EDGE_T;
+ }
+
+ move += p+1;
+ } else {
+ free_game(ret);
+ return NULL;
+ }
+
+ if (*move) {
+ if (*move != ';') {
+ free_game(ret);
+ return NULL;
+ }
+ move++;
+ }
+ }
+
+ /*
+ * After modifying the grid, check completion.
+ */
+ if (!ret->completed) {
+ int i, ok = 0;
+ unsigned char *used = snewn(TRI(n+1), unsigned char);
+
+ memset(used, 0, TRI(n+1));
+ for (i = 0; i < wh; i++)
+ if (ret->grid[i] > i) {
+ int n1, n2, di;
+
+ n1 = ret->numbers->numbers[i];
+ n2 = ret->numbers->numbers[ret->grid[i]];
+
+ di = DINDEX(n1, n2);
+ assert(di >= 0 && di < TRI(n+1));
+
+ if (!used[di]) {
+ used[di] = 1;
+ ok++;
+ }
+ }
+
+ sfree(used);
+ if (ok == DCOUNT(n))
+ ret->completed = TRUE;
+ }
+
+ return ret;
+}
+
+/* ----------------------------------------------------------------------
+ * Drawing routines.
+ */
+
+static void game_compute_size(game_params *params, int tilesize,
+ int *x, int *y)
+{
+ int n = params->n, w = n+2, h = n+1;
+
+ /* Ick: fake up `ds->tilesize' for macro expansion purposes */
+ struct { int tilesize; } ads, *ds = &ads;
+ ads.tilesize = tilesize;
+
+ *x = w * TILESIZE + 2*BORDER;
+ *y = h * TILESIZE + 2*BORDER;
+}
+
+static void game_set_size(game_drawstate *ds, game_params *params,
+ int tilesize)
+{
+ ds->tilesize = tilesize;
+}
+
+static float *game_colours(frontend *fe, game_state *state, int *ncolours)
+{
+ float *ret = snewn(3 * NCOLOURS, float);
+
+ frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
+
+ ret[COL_TEXT * 3 + 0] = 0.0F;
+ ret[COL_TEXT * 3 + 1] = 0.0F;
+ ret[COL_TEXT * 3 + 2] = 0.0F;
+
+ ret[COL_DOMINO * 3 + 0] = 0.0F;
+ ret[COL_DOMINO * 3 + 1] = 0.0F;
+ ret[COL_DOMINO * 3 + 2] = 0.0F;
+
+ ret[COL_DOMINOCLASH * 3 + 0] = 0.5F;
+ ret[COL_DOMINOCLASH * 3 + 1] = 0.0F;
+ ret[COL_DOMINOCLASH * 3 + 2] = 0.0F;
+
+ ret[COL_DOMINOTEXT * 3 + 0] = 1.0F;
+ ret[COL_DOMINOTEXT * 3 + 1] = 1.0F;
+ ret[COL_DOMINOTEXT * 3 + 2] = 1.0F;
+
+ ret[COL_EDGE * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 2 / 3;
+ ret[COL_EDGE * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 2 / 3;
+ ret[COL_EDGE * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 2 / 3;
+
+ *ncolours = NCOLOURS;
+ return ret;
+}
+
+static game_drawstate *game_new_drawstate(game_state *state)
+{
+ struct game_drawstate *ds = snew(struct game_drawstate);
+ int i;
+
+ ds->started = FALSE;
+ ds->w = state->w;
+ ds->h = state->h;
+ ds->visible = snewn(ds->w * ds->h, unsigned long);
+ ds->tilesize = 0; /* not decided yet */
+ for (i = 0; i < ds->w * ds->h; i++)
+ ds->visible[i] = 0xFFFF;
+
+ return ds;
+}
+
+static void game_free_drawstate(game_drawstate *ds)
+{
+ sfree(ds->visible);
+ sfree(ds);
+}
+
+enum {
+ TYPE_L,
+ TYPE_R,
+ TYPE_T,
+ TYPE_B,
+ TYPE_BLANK,
+ TYPE_MASK = 0x0F
+};
+
+static void draw_tile(frontend *fe, game_drawstate *ds, game_state *state,
+ int x, int y, int type)
+{
+ int w = state->w /*, h = state->h */;
+ int cx = COORD(x), cy = COORD(y);
+ int nc;
+ char str[80];
+ int flags;
+
+ draw_rect(fe, cx, cy, TILESIZE, TILESIZE, COL_BACKGROUND);
+
+ flags = type &~ TYPE_MASK;
+ type &= TYPE_MASK;
+
+ if (type != TYPE_BLANK) {
+ int i, bg;
+
+ /*
+ * Draw one end of a domino. This is composed of:
+ *
+ * - two filled circles (rounded corners)
+ * - two rectangles
+ * - a slight shift in the number
+ */
+
+ if (flags & 0x80)
+ bg = COL_DOMINOCLASH;
+ else
+ bg = COL_DOMINO;
+ nc = COL_DOMINOTEXT;
+
+ if (flags & 0x40) {
+ int tmp = nc;
+ nc = bg;
+ bg = tmp;
+ }
+
+ if (type == TYPE_L || type == TYPE_T)
+ draw_circle(fe, cx+DOMINO_COFFSET, cy+DOMINO_COFFSET,
+ DOMINO_RADIUS, bg, bg);
+ if (type == TYPE_R || type == TYPE_T)
+ draw_circle(fe, cx+TILESIZE-1-DOMINO_COFFSET, cy+DOMINO_COFFSET,
+ DOMINO_RADIUS, bg, bg);
+ if (type == TYPE_L || type == TYPE_B)
+ draw_circle(fe, cx+DOMINO_COFFSET, cy+TILESIZE-1-DOMINO_COFFSET,
+ DOMINO_RADIUS, bg, bg);
+ if (type == TYPE_R || type == TYPE_B)
+ draw_circle(fe, cx+TILESIZE-1-DOMINO_COFFSET,
+ cy+TILESIZE-1-DOMINO_COFFSET,
+ DOMINO_RADIUS, bg, bg);
+
+ for (i = 0; i < 2; i++) {
+ int x1, y1, x2, y2;
+
+ x1 = cx + (i ? DOMINO_GUTTER : DOMINO_COFFSET);
+ y1 = cy + (i ? DOMINO_COFFSET : DOMINO_GUTTER);
+ x2 = cx + TILESIZE-1 - (i ? DOMINO_GUTTER : DOMINO_COFFSET);
+ y2 = cy + TILESIZE-1 - (i ? DOMINO_COFFSET : DOMINO_GUTTER);
+ if (type == TYPE_L)
+ x2 = cx + TILESIZE-1;
+ else if (type == TYPE_R)
+ x1 = cx;
+ else if (type == TYPE_T)
+ y2 = cy + TILESIZE-1;
+ else if (type == TYPE_B)
+ y1 = cy;
+
+ draw_rect(fe, x1, y1, x2-x1+1, y2-y1+1, bg);
+ }
+ } else {
+ if (flags & EDGE_T)
+ draw_rect(fe, cx+DOMINO_GUTTER, cy,
+ TILESIZE-2*DOMINO_GUTTER, 1, COL_EDGE);
+ if (flags & EDGE_B)
+ draw_rect(fe, cx+DOMINO_GUTTER, cy+TILESIZE-1,
+ TILESIZE-2*DOMINO_GUTTER, 1, COL_EDGE);
+ if (flags & EDGE_L)
+ draw_rect(fe, cx, cy+DOMINO_GUTTER,
+ 1, TILESIZE-2*DOMINO_GUTTER, COL_EDGE);
+ if (flags & EDGE_R)
+ draw_rect(fe, cx+TILESIZE-1, cy+DOMINO_GUTTER,
+ 1, TILESIZE-2*DOMINO_GUTTER, COL_EDGE);
+ nc = COL_TEXT;
+ }
+
+ sprintf(str, "%d", state->numbers->numbers[y*w+x]);
+ draw_text(fe, cx+TILESIZE/2, cy+TILESIZE/2, FONT_VARIABLE, TILESIZE/2,
+ ALIGN_HCENTRE | ALIGN_VCENTRE, nc, str);
+
+ draw_update(fe, cx, cy, TILESIZE, TILESIZE);
+}
+
+static void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
+ game_state *state, int dir, game_ui *ui,
+ float animtime, float flashtime)
+{
+ int n = state->params.n, w = state->w, h = state->h, wh = w*h;
+ int x, y, i;
+ unsigned char *used;
+
+ if (!ds->started) {
+ int pw, ph;
+ game_compute_size(&state->params, TILESIZE, &pw, &ph);
+ draw_rect(fe, 0, 0, pw, ph, COL_BACKGROUND);
+ draw_update(fe, 0, 0, pw, ph);
+ ds->started = TRUE;
+ }
+
+ /*
+ * See how many dominoes of each type there are, so we can
+ * highlight clashes in red.
+ */
+ used = snewn(TRI(n+1), unsigned char);
+ memset(used, 0, TRI(n+1));
+ for (i = 0; i < wh; i++)
+ if (state->grid[i] > i) {
+ int n1, n2, di;
+
+ n1 = state->numbers->numbers[i];
+ n2 = state->numbers->numbers[state->grid[i]];
+
+ di = DINDEX(n1, n2);
+ assert(di >= 0 && di < TRI(n+1));
+
+ if (used[di] < 2)
+ used[di]++;
+ }
+
+ for (y = 0; y < h; y++)
+ for (x = 0; x < w; x++) {
+ int n = y*w+x;
+ int n1, n2, di;
+ unsigned long c;
+
+ if (state->grid[n] == n-1)
+ c = TYPE_R;
+ else if (state->grid[n] == n+1)
+ c = TYPE_L;
+ else if (state->grid[n] == n-w)
+ c = TYPE_B;
+ else if (state->grid[n] == n+w)
+ c = TYPE_T;
+ else
+ c = TYPE_BLANK;
+
+ if (c != TYPE_BLANK) {
+ n1 = state->numbers->numbers[n];
+ n2 = state->numbers->numbers[state->grid[n]];
+ di = DINDEX(n1, n2);
+ if (used[di] > 1)
+ c |= 0x80; /* highlight a clash */
+ } else {
+ c |= state->edges[n];
+ }
+
+ if (flashtime != 0)
+ c |= 0x40; /* we're flashing */
+
+ if (ds->visible[n] != c) {
+ draw_tile(fe, ds, state, x, y, c);
+ ds->visible[n] = c;
+ }
+ }
+
+ sfree(used);
+}
+
+static float game_anim_length(game_state *oldstate, game_state *newstate,
+ int dir, game_ui *ui)
+{
+ return 0.0F;
+}
+
+static float game_flash_length(game_state *oldstate, game_state *newstate,
+ int dir, game_ui *ui)
+{
+ if (!oldstate->completed && newstate->completed &&
+ !oldstate->cheated && !newstate->cheated)
+ return FLASH_TIME;
+ return 0.0F;
+}
+
+static int game_wants_statusbar(void)
+{
+ return FALSE;
+}
+
+static int game_timing_state(game_state *state, game_ui *ui)
+{
+ return TRUE;
+}
+
+#ifdef COMBINED
+#define thegame dominosa
+#endif
+
+const struct game thegame = {
+ "Dominosa", "games.dominosa",
+ default_params,
+ game_fetch_preset,
+ decode_params,
+ encode_params,
+ free_params,
+ dup_params,
+ TRUE, game_configure, custom_params,
+ validate_params,
+ new_game_desc,
+ validate_desc,
+ new_game,
+ dup_game,
+ free_game,
+ TRUE, solve_game,
+ FALSE, game_text_format,
+ new_ui,
+ free_ui,
+ encode_ui,
+ decode_ui,
+ game_changed_state,
+ interpret_move,
+ execute_move,
+ PREFERRED_TILESIZE, game_compute_size, game_set_size,
+ game_colours,
+ game_new_drawstate,
+ game_free_drawstate,
+ game_redraw,
+ game_anim_length,
+ game_flash_length,
+ game_wants_statusbar,
+ FALSE, game_timing_state,
+ 0, /* mouse_priorities */
+};
--- a/list.c
+++ b/list.c
@@ -18,6 +18,7 @@
*/
extern const game cube;
+extern const game dominosa;
extern const game fifteen;
extern const game flip;
extern const game guess;
@@ -34,6 +35,7 @@
const game *gamelist[] = {
&cube,
+ &dominosa,
&fifteen,
&flip,
&guess,
--- a/puzzles.but
+++ b/puzzles.but
@@ -1193,6 +1193,56 @@
time (but always one that is known to have a solution).
+\C{dominosa} \i{Dominosa}
+
+\cfg{winhelp-topic}{games.dominosa}
+
+A normal set of dominoes has been arranged irregularly into a
+rectangle; then the number in each square has been written down and
+the dominoes themselves removed. Your task is to reconstruct the
+pattern by arranging the set of dominoes to match the provided array
+of numbers.
+
+This puzzle is widely credited to O. S. Adler, and takes part of its
+name from those initials.
+
+\H{dominosa-controls} \i{Dominosa controls}
+
+\IM{Dominosa controls} controls, for Dominosa
+
+Left-clicking between any two adjacent numbers places a domino
+covering them, or removes one if it is already present. Trying to
+place a domino which overlaps existing dominoes will remove the ones
+it overlaps.
+
+Right-clicking between two adjacent numbers draws a line between
+them, which you can use to remind yourself that you know those two
+numbers are \e{not} covered by a single domino. Right-clicking again
+removes the line.
+
+
+\H{dominosa-parameters} \I{parameters, for Dominosa}Dominosa parameters
+
+These parameters are available from the \q{Custom...} option on the
+\q{Type} menu.
+
+\dt \e{Maximum number on dominoes}
+
+\dd Controls the size of the puzzle, by controlling the size of the
+set of dominoes used to make it. Dominoes with numbers going up to N
+will give rise to an (N+2) \by (N+1) rectangle; so, in particular,
+the default value of 6 gives an 8\by\.7 grid.
+
+\dt \e{Ensure unique solution}
+
+\dd Normally, Dominosa will make sure that the puzzles it presents
+have only one solution. Puzzles with ambiguous sections can be more
+difficult and sometimes more subtle, so if you like you can turn off
+this feature. Also, finding \e{all} the possible solutions can be an
+additional challenge for an advanced player. Turning off this option
+can also speed up puzzle generation.
+
+
\A{licence} \I{MIT licence}\ii{Licence}
This software is \i{copyright} 2004-2005 Simon Tatham.