ref: 4408476b7584b9a316466fe1bd10867103cddf57
parent: ef6f6427a263627de1d0fed22d8f367b15e2fb1a
author: Simon Tatham <anakin@pobox.com>
date: Wed Apr 18 16:28:17 EDT 2018
Implementation of the Hopcroft-Karp algorithm. This is a dedicated algorithm for finding a maximal matching in a bipartite graph. Previously I've been solving that problem in this code base using maxflow.c, modelling the graph matching problem as a restricted case of the optimal network flow problem and then using a full-strength algorithm for the latter. That's overkill, and also algorithmically wasteful - the H-K algorithm is asymptotically better, because it can find multiple augmenting paths in each pass (hence getting the maximum benefit out of each expensive breadth-first search), as a consequence of not having to worry about lower- or higher-value augmenting paths in this restricted problem. So I expect this algorithm to be faster, at least in principle or in large cases, when it takes over the jobs currently being done by maxflow. But that's not the only benefit. Another is that the data representation is better suited to the problems actually being solved, which should simplify all the call sites; a third is that I've incorporated randomisation of the generated matching into the H-K module itself, which will further save effort at each call site because they will no longer have to worry about permuting the algorithm's input - they just have to pass it a random_state and it will take care of that internally. This commit only introduces the new matching.c and builds a test utility for it. I haven't yet migrated any clients of maxflow.
--- a/Recipe
+++ b/Recipe
@@ -69,6 +69,10 @@
latincheck : [U] latin[STANDALONE_LATIN_TEST] LATIN_DEPS STANDALONE
latincheck : [C] latin[STANDALONE_LATIN_TEST] LATIN_DEPS STANDALONE
+# Test program built from matching.c.
+matching : [U] matching[STANDALONE_MATCHING_TEST] tree234 STANDALONE
+matching : [C] matching[STANDALONE_MATCHING_TEST] tree234 STANDALONE
+
puzzles : [G] windows[COMBINED] WINDOWS_COMMON COMMON ALL noicon.res
# Mac OS X unified application containing all the puzzles.
--- /dev/null
+++ b/matching.c
@@ -1,0 +1,753 @@
+/*
+ * Implementation of matching.h.
+ */
+
+#include <assert.h>
+#include <stdlib.h>
+#include <stdio.h>
+
+#include "puzzles.h"
+#include "matching.h"
+
+struct scratch {
+ /*
+ * Current contents of the in-progress matching. LtoR is an array
+ * of nl integers, each of which holds a value in {0,1,...,nr-1},
+ * or -1 for no current assignment. RtoL is exactly the reverse.
+ *
+ * Invariant: LtoR[i] is non-empty and equal to j if and only if
+ * RtoL[j] is non-empty and equal to i.
+ */
+ int *LtoR, *RtoL;
+
+ /*
+ * Arrays of nl and nr integer respectively, giving the layer
+ * assigned to each integer in the breadth-first search step of
+ * the algorithm.
+ */
+ int *Llayer, *Rlayer;
+
+ /*
+ * Arrays of nl and nr integers respectively, used to hold the
+ * to-do queues in the breadth-first search.
+ */
+ int *Lqueue, *Rqueue;
+
+ /*
+ * An augmenting path of vertices, alternating between L vertices
+ * (in the even-numbered positions, starting at 0) and R (in the
+ * odd positions). Must be long enough to hold any such path that
+ * never repeats a vertex, i.e. must be at least 2*min(nl,nr) in
+ * size.
+ */
+ int *augpath;
+
+ /*
+ * Track the progress of the depth-first search at each
+ * even-numbered layer. Has one element for each even-numbered
+ * position in augpath.
+ */
+ int *dfsstate;
+
+ /*
+ * Store a random permutation of the L vertex indices, if we're
+ * randomising the dfs phase.
+ */
+ int *Lorder;
+};
+
+size_t matching_scratch_size(int nl, int nr)
+{
+ size_t n;
+ int nmin = (nl < nr ? nl : nr);
+
+ n = (sizeof(struct scratch) + sizeof(int)-1)/sizeof(int);
+ n += nl; /* LtoR */
+ n += nr; /* RtoL */
+ n += nl; /* Llayer */
+ n += nr; /* Rlayer */
+ n += nl; /* Lqueue */
+ n += nr; /* Rqueue */
+ n += 2*nmin; /* augpath */
+ n += nmin; /* dfsstate */
+ n += nl; /* Lorder */
+ return n * sizeof(int);
+}
+
+int matching_with_scratch(void *scratchv,
+ int nl, int nr, int **adjlists, int *adjsizes,
+ random_state *rs, int *outl, int *outr)
+{
+ struct scratch *s = (struct scratch *)scratchv;
+ int L, R, i, j;
+
+ /*
+ * Set up the various array pointers in the scratch space.
+ */
+ {
+ int *p = scratchv;
+ int nmin = (nl < nr ? nl : nr);
+
+ p += (sizeof(struct scratch) + sizeof(int)-1)/sizeof(int);
+ s->LtoR = p; p += nl;
+ s->RtoL = p; p += nr;
+ s->Llayer = p; p += nl;
+ s->Rlayer = p; p += nr;
+ s->Lqueue = p; p += nl;
+ s->Rqueue = p; p += nr;
+ s->augpath = p; p += 2*nmin;
+ s->dfsstate = p; p += nmin;
+ s->Lorder = p; p += nl;
+ }
+
+ /*
+ * Set up the initial matching, which is empty.
+ */
+ for (L = 0; L < nl; L++)
+ s->LtoR[L] = -1;
+ for (R = 0; R < nr; R++)
+ s->RtoL[R] = -1;
+
+ while (1) {
+ /*
+ * Breadth-first search starting from the unassigned left
+ * vertices, traversing edges from left to right only if they
+ * are _not_ part of the matching, and from right to left only
+ * if they _are_. We assign a 'layer number' to all vertices
+ * visited by this search, with the starting vertices being
+ * layer 0 and every successor of a layer-n node being layer
+ * n+1.
+ */
+ int Lqs, Rqs, layer, target_layer;
+
+ for (L = 0; L < nl; L++)
+ s->Llayer[L] = -1;
+ for (R = 0; R < nr; R++)
+ s->Rlayer[R] = -1;
+
+ Lqs = 0;
+ for (L = 0; L < nl; L++) {
+ if (s->LtoR[L] == -1) {
+ s->Llayer[L] = 0;
+ s->Lqueue[Lqs++] = L;
+ }
+ }
+
+ layer = 0;
+ while (1) {
+ int found_free_R_vertex = FALSE;
+
+ Rqs = 0;
+ for (i = 0; i < Lqs; i++) {
+ L = s->Lqueue[i];
+ assert(s->Llayer[L] == layer);
+
+ for (j = 0; j < adjsizes[L]; j++) {
+ R = adjlists[L][j];
+ if (R != s->LtoR[L] && s->Rlayer[R] == -1) {
+ s->Rlayer[R] = layer+1;
+ s->Rqueue[Rqs++] = R;
+ if (s->RtoL[R] == -1)
+ found_free_R_vertex = TRUE;
+ }
+ }
+ }
+ layer++;
+
+ if (found_free_R_vertex)
+ break;
+
+ if (Rqs == 0)
+ goto done;
+
+ Lqs = 0;
+ for (j = 0; j < Rqs; j++) {
+ R = s->Rqueue[j];
+ assert(s->Rlayer[R] == layer);
+ if ((L = s->RtoL[R]) != -1 && s->Llayer[L] == -1) {
+ s->Llayer[L] = layer+1;
+ s->Lqueue[Lqs++] = L;
+ }
+ }
+ layer++;
+
+ if (Lqs == 0)
+ goto done;
+ }
+
+ target_layer = layer;
+
+ /*
+ * Vertices in the target layer are only interesting if
+ * they're actually unassigned. Blanking out the others here
+ * will save us a special case in the dfs loop below.
+ */
+ for (R = 0; R < nr; R++)
+ if (s->Rlayer[R] == target_layer && s->RtoL[R] != -1)
+ s->Rlayer[R] = -1;
+
+ /*
+ * Choose an ordering in which to try the L vertices at the
+ * start of the next pass.
+ */
+ for (L = 0; L < nl; L++)
+ s->Lorder[L] = L;
+ if (rs)
+ shuffle(s->Lorder, nl, sizeof(*s->Lorder), rs);
+
+ /*
+ * Now depth-first search through that layered set of vertices
+ * to find as many (vertex-)disjoint augmenting paths as we
+ * can, and for each one we find, augment the matching.
+ */
+ s->dfsstate[0] = 0;
+ i = 0;
+ while (1) {
+ /*
+ * Find the next vertex to go on the end of augpath.
+ */
+ if (i == 0) {
+ /* In this special case, we're just looking for L
+ * vertices that are not yet assigned. */
+ if (s->dfsstate[i] == nl)
+ break; /* entire DFS has finished */
+
+ L = s->Lorder[s->dfsstate[i]++];
+
+ if (s->Llayer[L] != 2*i)
+ continue; /* skip this vertex */
+ } else {
+ /* In the more usual case, we're going through the
+ * adjacency list for the previous L vertex. */
+ L = s->augpath[2*i-2];
+ j = s->dfsstate[i]++;
+ if (j == adjsizes[L]) {
+ /* Run out of neighbours of the previous vertex. */
+ i--;
+ continue;
+ }
+ if (rs && adjsizes[L] - j > 1) {
+ int which = j + random_upto(rs, adjsizes[L] - j);
+ int tmp = adjlists[L][which];
+ adjlists[L][which] = adjlists[L][j];
+ adjlists[L][j] = tmp;
+ }
+ R = adjlists[L][j];
+
+ if (s->Rlayer[R] != 2*i-1)
+ continue; /* skip this vertex */
+
+ s->augpath[2*i-1] = R;
+ s->Rlayer[R] = -1; /* mark vertex as visited */
+
+ if (2*i-1 == target_layer) {
+ /*
+ * We've found an augmenting path, in the form of
+ * an even-sized list of vertices alternating
+ * L,R,...,L,R, with the initial L and final R
+ * vertex free and otherwise each R currently
+ * connected to the next L. Adjust so that each L
+ * connects to the next R, increasing the edge
+ * count in the matching by 1.
+ */
+ for (j = 0; j < 2*i; j += 2) {
+ s->LtoR[s->augpath[j]] = s->augpath[j+1];
+ s->RtoL[s->augpath[j+1]] = s->augpath[j];
+ }
+
+ /*
+ * Having dealt with that path, and already marked
+ * all its vertices as visited, rewind right to
+ * the start and resume our DFS from a new
+ * starting L-vertex.
+ */
+ i = 0;
+ continue;
+ }
+
+ L = s->RtoL[R];
+ if (s->Llayer[L] != 2*i)
+ continue; /* skip this vertex */
+ }
+
+ s->augpath[2*i] = L;
+ s->Llayer[L] = -1; /* mark vertex as visited */
+ i++;
+ s->dfsstate[i] = 0;
+ }
+ }
+
+ done:
+ /*
+ * Fill in the output arrays.
+ */
+ if (outl) {
+ for (i = 0; i < nl; i++)
+ outl[i] = s->LtoR[i];
+ }
+ if (outr) {
+ for (j = 0; j < nr; j++)
+ outr[j] = s->RtoL[j];
+ }
+
+ /*
+ * Return the number of matching edges.
+ */
+ for (i = j = 0; i < nl; i++)
+ if (s->LtoR[i] != -1)
+ j++;
+ return j;
+}
+
+int matching(int nl, int nr, int **adjlists, int *adjsizes,
+ random_state *rs, int *outl, int *outr)
+{
+ void *scratch;
+ int size;
+ int ret;
+
+ size = matching_scratch_size(nl, nr);
+ scratch = malloc(size);
+ if (!scratch)
+ return -1;
+
+ ret = matching_with_scratch(scratch, nl, nr, adjlists, adjsizes,
+ rs, outl, outr);
+
+ free(scratch);
+
+ return ret;
+}
+
+#ifdef STANDALONE_MATCHING_TEST
+
+/*
+ * Diagnostic routine used in testing this algorithm. It is passed a
+ * pointer to a piece of scratch space that's just been used by
+ * matching_with_scratch, and extracts from it a labelling of the
+ * input graph that acts as a 'witness' to the maximality of the
+ * returned matching.
+ *
+ * The output parameter 'witness' should be an array of (nl+nr)
+ * integers, indexed such that witness[L] corresponds to an L-vertex (for
+ * L=0,1,...,nl-1) and witness[nl+R] corresponds to an R-vertex (for
+ * R=0,1,...,nr-1). On return, this array will assign each vertex a
+ * label which is either 0 or 1, and the following properties will
+ * hold:
+ *
+ * + all vertices not paired up by the matching are type L0 or R1
+ * + every L0->R1 edge is used by the matching
+ * + no L1->R0 edge is used by the matching.
+ *
+ * The mere existence of such a labelling is enough to prove the
+ * maximality of the matching, because if there is any larger matching
+ * then its symmetric difference with this one must include at least
+ * one 'augmenting path', which starts at a free L-vertex and ends at
+ * a free R-vertex, traversing only unused L->R edges and only used
+ * R->L edges. But that would mean it starts at an L0, ends at an R1,
+ * and never follows an edge that can get from an 0 to a 1.
+ */
+static void matching_witness(void *scratchv, int nl, int nr, int *witness)
+{
+ struct scratch *s = (struct scratch *)scratchv;
+ int i, j;
+
+ for (i = 0; i < nl; i++)
+ witness[i] = s->Llayer[i] == -1;
+ for (j = 0; j < nr; j++)
+ witness[nl + j] = s->Rlayer[j] == -1;
+}
+
+/*
+ * Standalone tool to run the matching algorithm.
+ */
+
+#include <string.h>
+#include <ctype.h>
+#include <time.h>
+
+#include "tree234.h"
+
+int nl, nr, count;
+int **adjlists, *adjsizes;
+int *adjdata, *outl, *outr, *witness;
+void *scratch;
+random_state *rs;
+
+void allocate(int nl_, int nr_, int maxedges)
+{
+ nl = nl_;
+ nr = nr_;
+ adjdata = snewn(maxedges, int);
+ adjlists = snewn(nl, int *);
+ adjsizes = snewn(nl, int);
+ outl = snewn(nl, int);
+ outr = snewn(nr, int);
+ witness = snewn(nl+nr, int);
+ scratch = smalloc(matching_scratch_size(nl, nr));
+}
+
+void deallocate(void)
+{
+ sfree(adjlists);
+ sfree(adjsizes);
+ sfree(adjdata);
+ sfree(outl);
+ sfree(outr);
+ sfree(witness);
+ sfree(scratch);
+}
+
+void find_and_check_matching(void)
+{
+ int i, j, k;
+
+ count = matching_with_scratch(scratch, nl, nr, adjlists, adjsizes,
+ rs, outl, outr);
+ matching_witness(scratch, nl, nr, witness);
+
+ for (i = j = 0; i < nl; i++) {
+ if (outl[i] != -1) {
+ assert(0 <= outl[i] && outl[i] < nr);
+ assert(outr[outl[i]] == i);
+ j++;
+
+ for (k = 0; k < adjsizes[i]; k++)
+ if (adjlists[i][k] == outl[i])
+ break;
+ assert(k < adjsizes[i]);
+ }
+ }
+ assert(j == count);
+
+ for (i = j = 0; i < nr; i++) {
+ if (outr[i] != -1) {
+ assert(0 <= outr[i] && outr[i] < nl);
+ assert(outl[outr[i]] == i);
+ j++;
+ }
+ }
+ assert(j == count);
+
+ for (i = 0; i < nl; i++) {
+ if (outl[i] == -1)
+ assert(witness[i] == 0);
+ }
+ for (i = 0; i < nr; i++) {
+ if (outr[i] == -1)
+ assert(witness[nl+i] == 1);
+ }
+ for (i = 0; i < nl; i++) {
+ for (j = 0; j < adjsizes[i]; j++) {
+ k = adjlists[i][j];
+
+ if (outl[i] == k)
+ assert(!(witness[i] == 1 && witness[nl+k] == 0));
+ else
+ assert(!(witness[i] == 0 && witness[nl+k] == 1));
+ }
+ }
+}
+
+struct nodename {
+ const char *name;
+ int index;
+};
+
+int compare_nodes(void *av, void *bv)
+{
+ const struct nodename *a = (const struct nodename *)av;
+ const struct nodename *b = (const struct nodename *)bv;
+ return strcmp(a->name, b->name);
+}
+
+int node_index(tree234 *n2i, tree234 *i2n, const char *name)
+{
+ struct nodename *nn, *nn_prev;
+ char *namedup = dupstr(name);
+
+ nn = snew(struct nodename);
+ nn->name = namedup;
+ nn->index = count234(n2i);
+
+ nn_prev = add234(n2i, nn);
+ if (nn_prev != nn) {
+ sfree(nn);
+ sfree(namedup);
+ } else {
+ addpos234(i2n, nn, nn->index);
+ }
+
+ return nn_prev->index;
+}
+
+struct edge {
+ int L, R;
+};
+
+int compare_edges(void *av, void *bv)
+{
+ const struct edge *a = (const struct edge *)av;
+ const struct edge *b = (const struct edge *)bv;
+ if (a->L < b->L) return -1;
+ if (a->L > b->L) return +1;
+ if (a->R < b->R) return -1;
+ if (a->R > b->R) return +1;
+ return 0;
+}
+
+void matching_from_user_input(FILE *fp, const char *filename)
+{
+ tree234 *Ln2i, *Li2n, *Rn2i, *Ri2n, *edges;
+ char *line = NULL;
+ struct edge *e;
+ int i, lineno = 0;
+ int *adjptr;
+
+ Ln2i = newtree234(compare_nodes);
+ Rn2i = newtree234(compare_nodes);
+ Li2n = newtree234(NULL);
+ Ri2n = newtree234(NULL);
+ edges = newtree234(compare_edges);
+
+ while (sfree(line), lineno++, (line = fgetline(fp)) != NULL) {
+ char *p, *Lname, *Rname;
+
+ p = line;
+ while (*p && isspace((unsigned char)*p)) p++;
+ if (!*p)
+ continue;
+
+ Lname = p;
+ while (*p && !isspace((unsigned char)*p)) p++;
+ if (*p)
+ *p++ = '\0';
+ while (*p && isspace((unsigned char)*p)) p++;
+
+ if (!*p) {
+ fprintf(stderr, "%s:%d: expected 2 words, found 1\n",
+ filename, lineno);
+ exit(1);
+ }
+
+ Rname = p;
+ while (*p && !isspace((unsigned char)*p)) p++;
+ if (*p)
+ *p++ = '\0';
+ while (*p && isspace((unsigned char)*p)) p++;
+
+ if (*p) {
+ fprintf(stderr, "%s:%d: expected 2 words, found more\n",
+ filename, lineno);
+ exit(1);
+ }
+
+ e = snew(struct edge);
+ e->L = node_index(Ln2i, Li2n, Lname);
+ e->R = node_index(Rn2i, Ri2n, Rname);
+ if (add234(edges, e) != e) {
+ fprintf(stderr, "%s:%d: duplicate edge\n",
+ filename, lineno);
+ exit(1);
+ }
+ }
+
+ allocate(count234(Ln2i), count234(Rn2i), count234(edges));
+
+ adjptr = adjdata;
+ for (i = 0; i < nl; i++)
+ adjlists[i] = NULL;
+ for (i = 0; (e = index234(edges, i)) != NULL; i++) {
+ if (!adjlists[e->L])
+ adjlists[e->L] = adjptr;
+ *adjptr++ = e->R;
+ adjsizes[e->L] = adjptr - adjlists[e->L];
+ }
+
+ find_and_check_matching();
+
+ for (i = 0; i < nl; i++) {
+ if (outl[i] != -1) {
+ struct nodename *Lnn = index234(Li2n, i);
+ struct nodename *Rnn = index234(Ri2n, outl[i]);
+ printf("%s %s\n", Lnn->name, Rnn->name);
+ }
+ }
+}
+
+void test_subsets(void)
+{
+ int b = 8;
+ int n = 1 << b;
+ int i, j, nruns, expected_size;
+ int *adjptr;
+ int *edgecounts;
+ struct stats {
+ int min, max;
+ double n, sx, sxx;
+ } *stats;
+ static const char seed[] = "fixed random seed for repeatability";
+
+ /*
+ * Generate a graph in which every subset of [b] = {1,...,b}
+ * (represented as a b-bit integer 0 <= i < n) has an edge going
+ * to every subset obtained by removing exactly one element.
+ *
+ * This graph is the disjoint union of the corresponding graph for
+ * each layer (collection of same-sized subset) of the power set
+ * of [b]. Each of those graphs has a matching of size equal to
+ * the smaller of its vertex sets. So we expect the overall size
+ * of the output matching to be less than n by the size of the
+ * largest layer, that is, to be n - binomial(n, floor(n/2)).
+ *
+ * We run the generation repeatedly, randomising it every time,
+ * and we expect to see every possible edge appear sooner or
+ * later.
+ */
+
+ rs = random_new(seed, strlen(seed));
+
+ allocate(n, n, n*b);
+ adjptr = adjdata;
+ expected_size = 0;
+ for (i = 0; i < n; i++) {
+ adjlists[i] = adjptr;
+ for (j = 0; j < b; j++) {
+ if (i & (1 << j))
+ *adjptr++ = i & ~(1 << j);
+ }
+ adjsizes[i] = adjptr - adjlists[i];
+ if (adjsizes[i] != b/2)
+ expected_size++;
+ }
+
+ edgecounts = snewn(n*b, int);
+ for (i = 0; i < n*b; i++)
+ edgecounts[i] = 0;
+
+ stats = snewn(b, struct stats);
+
+ nruns = 0;
+ while (nruns < 10000) {
+ nruns++;
+ find_and_check_matching();
+ assert(count == expected_size);
+
+ for (i = 0; i < n; i++)
+ for (j = 0; j < b; j++)
+ if ((i ^ outl[i]) == (1 << j))
+ edgecounts[b*i+j]++;
+
+ if (nruns % 1000 == 0) {
+ for (i = 0; i < b; i++) {
+ struct stats *st = &stats[i];
+ st->min = st->max = -1;
+ st->n = st->sx = st->sxx = 0;
+ }
+
+ for (i = 0; i < n; i++) {
+ int pop = 0;
+ for (j = 0; j < b; j++)
+ if (i & (1 << j))
+ pop++;
+ pop--;
+
+ for (j = 0; j < b; j++) {
+ if (i & (1 << j)) {
+ struct stats *st = &stats[pop];
+ int x = edgecounts[b*i+j];
+ if (st->max == -1 || st->max < x)
+ st->max = x;
+ if (st->min == -1 || st->min > x)
+ st->min = x;
+ st->n++;
+ st->sx += x;
+ st->sxx += (double)x*x;
+ } else {
+ assert(edgecounts[b*i+j] == 0);
+ }
+ }
+ }
+ }
+ }
+
+ printf("after %d runs:\n", nruns);
+ for (j = 0; j < b; j++) {
+ struct stats *st = &stats[j];
+ printf("edges between layers %d,%d:"
+ " min=%d max=%d mean=%f variance=%f\n",
+ j, j+1, st->min, st->max, st->sx/st->n,
+ (st->sxx - st->sx*st->sx/st->n) / st->n);
+ }
+}
+
+int main(int argc, char **argv)
+{
+ static const char stdin_identifier[] = "<standard input>";
+ const char *infile = NULL;
+ int doing_opts = TRUE;
+ enum { USER_INPUT, AUTOTEST } mode = USER_INPUT;
+
+ while (--argc > 0) {
+ const char *arg = *++argv;
+
+ if (doing_opts && arg[0] == '-' && arg[1]) {
+ if (!strcmp(arg, "--")) {
+ doing_opts = FALSE;
+ } else if (!strcmp(arg, "--random")) {
+ char buf[64];
+ int len = sprintf(buf, "%lu", (unsigned long)time(NULL));
+ rs = random_new(buf, len);
+ } else if (!strcmp(arg, "--autotest")) {
+ mode = AUTOTEST;
+ } else {
+ fprintf(stderr, "matching: unrecognised option '%s'\n", arg);
+ return 1;
+ }
+ } else {
+ if (!infile) {
+ infile = (!strcmp(arg, "-") ? stdin_identifier : arg);
+ } else {
+ fprintf(stderr, "matching: too many arguments\n");
+ return 1;
+ }
+ }
+ }
+
+ if (mode == USER_INPUT) {
+ FILE *fp;
+
+ if (!infile)
+ infile = stdin_identifier;
+
+ if (infile != stdin_identifier) {
+ fp = fopen(infile, "r");
+ if (!fp) {
+ fprintf(stderr, "matching: could not open input file '%s'\n",
+ infile);
+ return 1;
+ }
+ } else {
+ fp = stdin;
+ }
+
+ matching_from_user_input(fp, infile);
+
+ if (infile != stdin_identifier)
+ fclose(fp);
+ }
+
+ if (mode == AUTOTEST) {
+ if (infile) {
+ fprintf(stderr, "matching: expected no filename argument "
+ "with --autotest\n");
+ return 1;
+ }
+
+ test_subsets();
+ }
+
+ return 0;
+}
+
+#endif /* STANDALONE_MATCHING_TEST */
--- /dev/null
+++ b/matching.h
@@ -1,0 +1,80 @@
+/*
+ * Hopcroft-Karp algorithm for finding a maximal matching in a
+ * bipartite graph.
+ */
+
+#ifndef MATCHING_MATCHING_H
+#define MATCHING_MATCHING_H
+
+/*
+ * The actual algorithm.
+ *
+ * Inputs:
+ *
+ * - 'scratch' is previously allocated scratch space of a size
+ * previously determined by calling 'matching_scratch_size'.
+ *
+ * - 'nl' is the number of vertices on the left side of the graph.
+ * Left vertices are numbered from 0 to nl-1.
+ *
+ * - 'nr' is the number of vertices on the left side of the graph.
+ * Right vertices are numbered from 0 to nr-1.
+ *
+ * - 'adjlists' and 'adjsizes' represents the graph in adjacency-list
+ * form. For each left vertex L, adjlists[L] points to an array of
+ * adjsizes[L] integers giving the list of right vertices adjacent
+ * to L.
+ *
+ * - 'rs', if not NULL, is a random_state used to perturb the
+ * progress of the algorithm so as to choose randomly from the
+ * possible matchings if there's more than one. (The exact
+ * probability distribution can't be guaranteed, but at the very
+ * least, any matching that exists should be a _possible_ output.)
+ *
+ * If 'rs' is not NULL, then each list in adjlists[] will be permuted
+ * during the course of the algorithm as a side effect. (That's why
+ * it's not an array of _const_ int pointers.)
+ *
+ * Output:
+ *
+ * - 'outl' may be NULL. If non-NULL, it is an array of 'nl'
+ * integers, and outl[L] will be assigned the index of the right
+ * vertex that the output matching paired with the left vertex L,
+ * or -1 if L is unpaired.
+ *
+ * - 'outr' may be NULL. If non-NULL, it is an array of 'nr'
+ * integers, and outr[R] will be assigned the index of the left
+ * vertex that the output matching paired with the right vertex R,
+ * or -1 if R is unpaired.
+ *
+ * - the returned value from the function is the total number of
+ * edges in the matching.
+ */
+int matching_with_scratch(void *scratch,
+ int nl, int nr, int **adjlists, int *adjsizes,
+ random_state *rs, int *outl, int *outr);
+
+/*
+ * The above function expects its 'scratch' parameter to have already
+ * been set up. This function tells you how much space is needed for a
+ * given size of graph, so that you can allocate a single instance of
+ * scratch space and run the algorithm multiple times without the
+ * overhead of an alloc and free every time.
+ */
+size_t matching_scratch_size(int nl, int nr);
+
+/*
+ * Simplified version of the above function. All parameters are the
+ * same, except that 'scratch' is constructed internally and freed on
+ * exit. This is the simplest way to call the algorithm as a one-off;
+ * however, if you need to call it multiple times on the same size of
+ * graph, it is probably better to call the above version directly so
+ * that you only construct 'scratch' once.
+ *
+ * Additional return value is now -1, meaning that scratch space
+ * could not be allocated.
+ */
+int matching(int nl, int nr, int **adjlists, int *adjsizes,
+ random_state *rs, int *outl, int *outr);
+
+#endif /* MATCHING_MATCHING_H */