shithub: puzzles

Download patch

ref: 3d6de1eb47af21a9d9c0e6390b115febbf8b1d91
parent: 407f29c46f35910ce3d7ddd41f13e94213c2597e
author: Simon Tatham <anakin@pobox.com>
date: Sun Feb 22 07:16:54 EST 2009

A substantial patch to Solo from Bernd Schmidt, adding support for
the 'Killer Sudoku' puzzle type. As a side effect I've had to
increase the default tile size of Solo, so that the extra numbers
drawn in the squares in Killer mode were still legible.

[originally from svn r8455]

--- a/LICENCE
+++ b/LICENCE
@@ -1,7 +1,8 @@
 This software is copyright (c) 2004-2008 Simon Tatham.
 
 Portions copyright Richard Boulton, James Harvey, Mike Pinna, Jonas
-K�lker, Dariusz Olszewski, Michael Schierl and Lambros Lambrou.
+K�lker, Dariusz Olszewski, Michael Schierl, Lambros Lambrou and
+Bernd Schmidt.
 
 Permission is hereby granted, free of charge, to any person
 obtaining a copy of this software and associated documentation files
--- a/puzzles.but
+++ b/puzzles.but
@@ -929,10 +929,18 @@
 can select \q{jigsaw} mode, in which the sub-blocks are arbitrary
 shapes which differ between individual puzzles.
 
+Another available mode is \q{killer}. In this mode, clues are not
+given in the form of filled-in squares; instead, the grid is divided
+into \q{cages} by coloured lines, and for each cage the game tells
+you what the sum of all the digits in that cage should be. Also, no
+digit may appear more than once within a cage, even if the cage
+crosses the boundaries of existing regions.
+
 If you select a puzzle size which requires more than 9 digits, the
 additional digits will be letters of the alphabet. For example, if
 you select 3\by\.4 then the digits which go in your grid will be 1
-to 9, plus \cq{a}, \cq{b} and \cq{c}.
+to 9, plus \cq{a}, \cq{b} and \cq{c}. This cannot be selected for
+killer puzzles.
 
 I first saw this puzzle in \i{Nikoli} \k{nikoli-solo}, although it's
 also been popularised by various newspapers under the name
@@ -1000,6 +1008,11 @@
 greater than 1 in both boxes; Jigsaw mode has no constraint on the
 grid size, and it can even be a prime number if you feel like it.
 
+If you tick the \q{Killer} checkbox, Solo will generate a set of
+of cages, which are randomly shaped and drawn in an outline of a
+different colour.  Each of these regions contains a smaller clue
+which shows the digit sum of all the squares in this region.
+
 You can also configure the type of symmetry shown in the generated
 puzzles. More symmetry makes the puzzles look prettier but may also
 make them easier, since the symmetry constraints can force more
@@ -2417,8 +2430,8 @@
 This software is \i{copyright} 2004-2008 Simon Tatham.
 
 Portions copyright Richard Boulton, James Harvey, Mike Pinna, Jonas
-K\u00F6{oe}lker, Dariusz Olszewski, Michael Schierl and Lambros
-Lambrou.
+K\u00F6{oe}lker, Dariusz Olszewski, Michael Schierl, Lambros
+Lambrou and Bernd Schmidt.
 
 Permission is hereby granted, free of charge, to any person
 obtaining a copy of this software and associated documentation files
--- a/solo.c
+++ b/solo.c
@@ -107,7 +107,7 @@
 typedef unsigned char digit;
 #define ORDER_MAX 255
 
-#define PREFERRED_TILE_SIZE 32
+#define PREFERRED_TILE_SIZE 48
 #define TILE_SIZE (ds->tilesize)
 #define BORDER (TILE_SIZE / 2)
 #define GRIDEXTRA max((TILE_SIZE / 32),1)
@@ -117,9 +117,12 @@
 enum { SYMM_NONE, SYMM_ROT2, SYMM_ROT4, SYMM_REF2, SYMM_REF2D, SYMM_REF4,
        SYMM_REF4D, SYMM_REF8 };
 
-enum { DIFF_BLOCK, DIFF_SIMPLE, DIFF_INTERSECT, DIFF_SET, DIFF_EXTREME,
-       DIFF_RECURSIVE, DIFF_AMBIGUOUS, DIFF_IMPOSSIBLE };
+enum { DIFF_BLOCK,
+       DIFF_SIMPLE, DIFF_INTERSECT, DIFF_SET, DIFF_EXTREME, DIFF_RECURSIVE,
+       DIFF_AMBIGUOUS, DIFF_IMPOSSIBLE };
 
+enum { DIFF_KSINGLE, DIFF_KMINMAX, DIFF_KSUMS, DIFF_KINTERSECT };
+
 enum {
     COL_BACKGROUND,
     COL_XDIAGONALS,
@@ -129,9 +132,74 @@
     COL_HIGHLIGHT,
     COL_ERROR,
     COL_PENCIL,
+    COL_KILLER,
     NCOLOURS
 };
 
+/*
+ * To determine all possible ways to reach a given sum by adding two or
+ * three numbers from 1..9, each of which occurs exactly once in the sum,
+ * these arrays contain a list of bitmasks for each sum value, where if
+ * bit N is set, it means that N occurs in the sum.  Each list is
+ * terminated by a zero if it is shorter than the size of the array.
+ */
+#define MAX_2SUMS 5
+#define MAX_3SUMS 8
+#define MAX_4SUMS 12
+unsigned int sum_bits2[18][MAX_2SUMS];
+unsigned int sum_bits3[25][MAX_3SUMS];
+unsigned int sum_bits4[31][MAX_4SUMS];
+
+static int find_sum_bits(unsigned int *array, int idx, int value_left,
+			 int addends_left, int min_addend,
+			 unsigned int bitmask_so_far)
+{
+    int i;
+    assert(addends_left >= 2);
+
+    for (i = min_addend; i < value_left; i++) {
+	unsigned int new_bitmask = bitmask_so_far | (1 << i);
+	assert(bitmask_so_far != new_bitmask);
+
+	if (addends_left == 2) {
+	    int j = value_left - i;
+	    if (j <= i)
+		break;
+	    if (j > 9)
+		continue;
+	    array[idx++] = new_bitmask | (1 << j);
+	} else
+	    idx = find_sum_bits(array, idx, value_left - i,
+				addends_left - 1, i + 1,
+				new_bitmask);
+    }
+    return idx;
+}
+
+static void precompute_sum_bits(void)
+{
+    int i;
+    for (i = 3; i < 31; i++) {
+	int j;
+	if (i < 18) {
+	    j = find_sum_bits(sum_bits2[i], 0, i, 2, 1, 0);
+	    assert (j <= MAX_2SUMS);
+	    if (j < MAX_2SUMS)
+		sum_bits2[i][j] = 0;
+	}
+	if (i < 25) {
+	    j = find_sum_bits(sum_bits3[i], 0, i, 3, 1, 0);
+	    assert (j <= MAX_3SUMS);
+	    if (j < MAX_3SUMS)
+		sum_bits3[i][j] = 0;
+	}
+	j = find_sum_bits(sum_bits4[i], 0, i, 4, 1, 0);
+	assert (j <= MAX_4SUMS);
+	if (j < MAX_4SUMS)
+	    sum_bits4[i][j] = 0;
+    }
+}
+
 struct game_params {
     /*
      * For a square puzzle, `c' and `r' indicate the puzzle
@@ -141,8 +209,9 @@
      * can be whatever it likes (there is no constraint on
      * compositeness - a 7x7 jigsaw sudoku makes perfect sense).
      */
-    int c, r, symm, diff;
+    int c, r, symm, diff, kdiff;
     int xtype;			       /* require all digits in X-diagonals */
+    int killer;
 };
 
 struct block_structure {
@@ -151,20 +220,22 @@
     /*
      * For text formatting, we do need c and r here.
      */
-    int c, r;
+    int c, r, area;
 
     /*
      * For any square index, whichblock[i] gives its block index.
-     * 
+     *
      * For 0 <= b,i < cr, blocks[b][i] gives the index of the ith
-     * square in block b.
-     * 
-     * whichblock and blocks are each dynamically allocated in
-     * their own right, but the subarrays in blocks are appended
-     * to the whichblock array, so shouldn't be freed
-     * individually.
+     * square in block b.  nr_squares[b] gives the number of squares
+     * in block b (also the number of valid elements in blocks[b]).
+     *
+     * blocks_data holds the data pointed to by blocks.
+     *
+     * nr_squares may be NULL for block structures where all blocks are
+     * the same size.
      */
-    int *whichblock, **blocks;
+    int *whichblock, **blocks, *nr_squares, *blocks_data;
+    int nr_blocks, max_nr_squares;
 
 #ifdef STANDALONE_SOLVER
     /*
@@ -191,8 +262,9 @@
      */
     int cr;
     struct block_structure *blocks;
-    int xtype;
-    digit *grid;
+    struct block_structure *kblocks;   /* Blocks for killer puzzles.  */
+    int xtype, killer;
+    digit *grid, *kgrid;
     unsigned char *pencil;             /* c*r*c*r elements */
     unsigned char *immutable;	       /* marks which digits are clues */
     int completed, cheated;
@@ -204,8 +276,10 @@
 
     ret->c = ret->r = 3;
     ret->xtype = FALSE;
+    ret->killer = FALSE;
     ret->symm = SYMM_ROT2;	       /* a plausible default */
     ret->diff = DIFF_BLOCK;	       /* so is this */
+    ret->kdiff = DIFF_KINTERSECT;      /* so is this */
 
     return ret;
 }
@@ -228,22 +302,23 @@
         char *title;
         game_params params;
     } presets[] = {
-        { "2x2 Trivial", { 2, 2, SYMM_ROT2, DIFF_BLOCK, FALSE } },
-        { "2x3 Basic", { 2, 3, SYMM_ROT2, DIFF_SIMPLE, FALSE } },
-        { "3x3 Trivial", { 3, 3, SYMM_ROT2, DIFF_BLOCK, FALSE } },
-        { "3x3 Basic", { 3, 3, SYMM_ROT2, DIFF_SIMPLE, FALSE } },
-        { "3x3 Basic X", { 3, 3, SYMM_ROT2, DIFF_SIMPLE, TRUE } },
-        { "3x3 Intermediate", { 3, 3, SYMM_ROT2, DIFF_INTERSECT, FALSE } },
-        { "3x3 Advanced", { 3, 3, SYMM_ROT2, DIFF_SET, FALSE } },
-        { "3x3 Advanced X", { 3, 3, SYMM_ROT2, DIFF_SET, TRUE } },
-        { "3x3 Extreme", { 3, 3, SYMM_ROT2, DIFF_EXTREME, FALSE } },
-        { "3x3 Unreasonable", { 3, 3, SYMM_ROT2, DIFF_RECURSIVE, FALSE } },
-        { "9 Jigsaw Basic", { 9, 1, SYMM_ROT2, DIFF_SIMPLE, FALSE } },
-        { "9 Jigsaw Basic X", { 9, 1, SYMM_ROT2, DIFF_SIMPLE, TRUE } },
-        { "9 Jigsaw Advanced", { 9, 1, SYMM_ROT2, DIFF_SET, FALSE } },
+        { "2x2 Trivial", { 2, 2, SYMM_ROT2, DIFF_BLOCK, DIFF_KMINMAX, FALSE, FALSE } },
+        { "2x3 Basic", { 2, 3, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, FALSE, FALSE } },
+        { "3x3 Trivial", { 3, 3, SYMM_ROT2, DIFF_BLOCK, DIFF_KMINMAX, FALSE, FALSE } },
+        { "3x3 Basic", { 3, 3, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, FALSE, FALSE } },
+        { "3x3 Basic X", { 3, 3, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, TRUE } },
+        { "3x3 Intermediate", { 3, 3, SYMM_ROT2, DIFF_INTERSECT, DIFF_KMINMAX, FALSE, FALSE } },
+        { "3x3 Advanced", { 3, 3, SYMM_ROT2, DIFF_SET, DIFF_KMINMAX, FALSE, FALSE } },
+        { "3x3 Advanced X", { 3, 3, SYMM_ROT2, DIFF_SET, DIFF_KMINMAX, TRUE } },
+        { "3x3 Extreme", { 3, 3, SYMM_ROT2, DIFF_EXTREME, DIFF_KMINMAX, FALSE, FALSE } },
+        { "3x3 Unreasonable", { 3, 3, SYMM_ROT2, DIFF_RECURSIVE, DIFF_KMINMAX, FALSE, FALSE } },
+        { "3x3 Killer", { 3, 3, SYMM_NONE, DIFF_BLOCK, DIFF_KINTERSECT, FALSE, TRUE } },
+        { "9 Jigsaw Basic", { 9, 1, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, FALSE, FALSE } },
+        { "9 Jigsaw Basic X", { 9, 1, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, TRUE } },
+        { "9 Jigsaw Advanced", { 9, 1, SYMM_ROT2, DIFF_SET, DIFF_KMINMAX, FALSE, FALSE } },
 #ifndef SLOW_SYSTEM
-        { "3x4 Basic", { 3, 4, SYMM_ROT2, DIFF_SIMPLE, FALSE } },
-        { "4x4 Basic", { 4, 4, SYMM_ROT2, DIFF_SIMPLE, FALSE } },
+        { "3x4 Basic", { 3, 4, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, FALSE, FALSE } },
+        { "4x4 Basic", { 4, 4, SYMM_ROT2, DIFF_SIMPLE, DIFF_KMINMAX, FALSE, FALSE } },
 #endif
     };
 
@@ -262,6 +337,7 @@
 
     ret->c = ret->r = atoi(string);
     ret->xtype = FALSE;
+    ret->killer = FALSE;
     while (*string && isdigit((unsigned char)*string)) string++;
     if (*string == 'x') {
         string++;
@@ -278,6 +354,9 @@
 	} else if (*string == 'x') {
 	    string++;
 	    ret->xtype = TRUE;
+	} else if (*string == 'k') {
+	    string++;
+	    ret->killer = TRUE;
 	} else if (*string == 'r' || *string == 'm' || *string == 'a') {
             int sn, sc, sd;
             sc = *string++;
@@ -330,6 +409,8 @@
 	sprintf(str, "%dj", params->c);
     if (params->xtype)
 	strcat(str, "x");
+    if (params->killer)
+	strcat(str, "k");
 
     if (full) {
         switch (params->symm) {
@@ -359,7 +440,7 @@
     config_item *ret;
     char buf[80];
 
-    ret = snewn(7, config_item);
+    ret = snewn(8, config_item);
 
     ret[0].name = "Columns of sub-blocks";
     ret[0].type = C_STRING;
@@ -383,22 +464,27 @@
     ret[3].sval = NULL;
     ret[3].ival = (params->r == 1);
 
-    ret[4].name = "Symmetry";
-    ret[4].type = C_CHOICES;
-    ret[4].sval = ":None:2-way rotation:4-way rotation:2-way mirror:"
+    ret[4].name = "Killer (digit sums)";
+    ret[4].type = C_BOOLEAN;
+    ret[4].sval = NULL;
+    ret[4].ival = params->killer;
+
+    ret[5].name = "Symmetry";
+    ret[5].type = C_CHOICES;
+    ret[5].sval = ":None:2-way rotation:4-way rotation:2-way mirror:"
         "2-way diagonal mirror:4-way mirror:4-way diagonal mirror:"
         "8-way mirror";
-    ret[4].ival = params->symm;
+    ret[5].ival = params->symm;
 
-    ret[5].name = "Difficulty";
-    ret[5].type = C_CHOICES;
-    ret[5].sval = ":Trivial:Basic:Intermediate:Advanced:Extreme:Unreasonable";
-    ret[5].ival = params->diff;
+    ret[6].name = "Difficulty";
+    ret[6].type = C_CHOICES;
+    ret[6].sval = ":Trivial:Basic:Intermediate:Advanced:Extreme:Unreasonable";
+    ret[6].ival = params->diff;
 
-    ret[6].name = NULL;
-    ret[6].type = C_END;
-    ret[6].sval = NULL;
-    ret[6].ival = 0;
+    ret[7].name = NULL;
+    ret[7].type = C_END;
+    ret[7].sval = NULL;
+    ret[7].ival = 0;
 
     return ret;
 }
@@ -414,8 +500,10 @@
 	ret->c *= ret->r;
 	ret->r = 1;
     }
-    ret->symm = cfg[4].ival;
-    ret->diff = cfg[5].ival;
+    ret->killer = cfg[4].ival;
+    ret->symm = cfg[5].ival;
+    ret->diff = cfg[6].ival;
+    ret->kdiff = DIFF_KINTERSECT;
 
     return ret;
 }
@@ -426,11 +514,134 @@
 	return "Both dimensions must be at least 2";
     if (params->c > ORDER_MAX || params->r > ORDER_MAX)
 	return "Dimensions greater than "STR(ORDER_MAX)" are not supported";
-    if ((params->c * params->r) > 35)
-        return "Unable to support more than 35 distinct symbols in a puzzle";
+    if ((params->c * params->r) > 31)
+        return "Unable to support more than 31 distinct symbols in a puzzle";
+    if (params->killer && params->c * params->r > 9)
+	return "Killer puzzle dimensions must be smaller than 10.";
     return NULL;
 }
 
+/*
+ * ----------------------------------------------------------------------
+ * Block structure functions.
+ */
+
+static struct block_structure *alloc_block_structure(int c, int r, int area,
+						     int max_nr_squares,
+						     int nr_blocks)
+{
+    int i;
+    struct block_structure *b = snew(struct block_structure);
+
+    b->refcount = 1;
+    b->nr_blocks = nr_blocks;
+    b->max_nr_squares = max_nr_squares;
+    b->c = c; b->r = r; b->area = area;
+    b->whichblock = snewn(area, int);
+    b->blocks_data = snewn(nr_blocks * max_nr_squares, int);
+    b->blocks = snewn(nr_blocks, int *);
+    b->nr_squares = snewn(nr_blocks, int);
+
+    for (i = 0; i < nr_blocks; i++)
+	b->blocks[i] = b->blocks_data + i*max_nr_squares;
+
+#ifdef STANDALONE_SOLVER
+    b->blocknames = (char **)smalloc(c*r*(sizeof(char *)+80));
+    for (i = 0; i < c * r; i++)
+	b->blocknames[i] = NULL;
+#endif
+    return b;
+}
+
+static void free_block_structure(struct block_structure *b)
+{
+    if (--b->refcount == 0) {
+	sfree(b->whichblock);
+	sfree(b->blocks);
+	sfree(b->blocks_data);
+#ifdef STANDALONE_SOLVER
+	sfree(b->blocknames);
+#endif
+	sfree(b->nr_squares);
+	sfree(b);
+    }
+}
+
+static struct block_structure *dup_block_structure(struct block_structure *b)
+{
+    struct block_structure *nb;
+    int i;
+
+    nb = alloc_block_structure(b->c, b->r, b->area, b->max_nr_squares,
+			       b->nr_blocks);
+    memcpy(nb->nr_squares, b->nr_squares, b->nr_blocks * sizeof *b->nr_squares);
+    memcpy(nb->whichblock, b->whichblock, b->area * sizeof *b->whichblock);
+    memcpy(nb->blocks_data, b->blocks_data,
+	   b->nr_blocks * b->max_nr_squares * sizeof *b->blocks_data);
+    for (i = 0; i < b->nr_blocks; i++)
+	nb->blocks[i] = nb->blocks_data + i*nb->max_nr_squares;
+
+#ifdef STANDALONE_SOLVER
+    nb->blocknames = (char **)smalloc(b->c * b->r *(sizeof(char *)+80));
+    memcpy(nb->blocknames, b->blocknames, b->c * b->r *(sizeof(char *)+80));
+    {
+	int i;
+	for (i = 0; i < b->c * b->r; i++)
+	    if (b->blocknames[i] == NULL)
+		nb->blocknames[i] = NULL;
+	    else
+		nb->blocknames[i] = ((char *)nb->blocknames) + (b->blocknames[i] - (char *)b->blocknames);
+    }
+#endif
+    return nb;
+}
+
+static void split_block(struct block_structure *b, int *squares, int nr_squares)
+{
+    int i, j;
+    int previous_block = b->whichblock[squares[0]];
+    int newblock = b->nr_blocks;
+
+    assert(b->max_nr_squares >= nr_squares);
+    assert(b->nr_squares[previous_block] > nr_squares);
+
+    b->nr_blocks++;
+    b->blocks_data = sresize(b->blocks_data,
+			     b->nr_blocks * b->max_nr_squares, int);
+    b->nr_squares = sresize(b->nr_squares, b->nr_blocks, int);
+    sfree(b->blocks);
+    b->blocks = snewn(b->nr_blocks, int *);
+    for (i = 0; i < b->nr_blocks; i++)
+	b->blocks[i] = b->blocks_data + i*b->max_nr_squares;
+    for (i = 0; i < nr_squares; i++) {
+	assert(b->whichblock[squares[i]] == previous_block);
+	b->whichblock[squares[i]] = newblock;
+	b->blocks[newblock][i] = squares[i];
+    }
+    for (i = j = 0; i < b->nr_squares[previous_block]; i++) {
+	int k;
+	int sq = b->blocks[previous_block][i];
+	for (k = 0; k < nr_squares; k++)
+	    if (squares[k] == sq)
+		break;
+	if (k == nr_squares)
+	    b->blocks[previous_block][j++] = sq;
+    }
+    b->nr_squares[previous_block] -= nr_squares;
+    b->nr_squares[newblock] = nr_squares;
+}
+
+static void remove_from_block(struct block_structure *blocks, int b, int n)
+{
+    int i, j;
+    blocks->whichblock[n] = -1;
+    for (i = j = 0; i < blocks->nr_squares[b]; i++)
+	if (blocks->blocks[b][i] != n)
+	    blocks->blocks[b][j++] = blocks->blocks[b][i];
+    assert(j+1 == i);
+    blocks->nr_squares[b]--;
+}
+
 /* ----------------------------------------------------------------------
  * Solver.
  * 
@@ -452,6 +663,10 @@
  *    square because all the other empty squares in a given
  *    row/col/blk are ruled out.
  *
+ *  - Killer minmax elimination: for killer-type puzzles, a number
+ *    is impossible if choosing it would cause the sum in a killer
+ *    region to be guaranteed to be too large or too small.
+ *
  *  - Numeric elimination: a square must have a particular number
  *    in because all the other numbers that could go in it are
  *    ruled out.
@@ -496,7 +711,7 @@
 
 struct solver_usage {
     int cr;
-    struct block_structure *blocks;
+    struct block_structure *blocks, *kblocks, *extra_cages;
     /*
      * We set up a cubic array, indexed by x, y and digit; each
      * element of this array is TRUE or FALSE according to whether
@@ -512,6 +727,11 @@
      */
     digit *grid;
     /*
+     * For killer-type puzzles, kclues holds the secondary clue for
+     * each cage.  For derived cages, the clue is in extra_clues.
+     */
+    digit *kclues, *extra_clues;
+    /*
      * Now we keep track, at a slightly higher level, of what we
      * have yet to work out, to prevent doing the same deduction
      * many times.
@@ -524,6 +744,10 @@
     unsigned char *blk;
     /* diag[i*cr+n-1] TRUE if digit n has been placed in diagonal i */
     unsigned char *diag;	       /* diag 0 is \, 1 is / */
+
+    int *regions;
+    int nr_regions;
+    int **sq2region;
 };
 #define cubepos2(xy,n) ((xy)*usage->cr+(n)-1)
 #define cubepos(x,y,n) cubepos2((y)*usage->cr+(x),n)
@@ -1149,6 +1373,256 @@
     return 0;
 }
 
+static int solver_killer_minmax(struct solver_usage *usage,
+				struct block_structure *cages, digit *clues,
+				int b
+#ifdef STANDALONE_SOLVER
+				, const char *extra
+#endif
+				)
+{
+    int cr = usage->cr;
+    int i;
+    int ret = 0;
+    int nsquares = cages->nr_squares[b];
+
+    if (clues[b] == 0)
+	return 0;
+
+    for (i = 0; i < nsquares; i++) {
+	int n, x = cages->blocks[b][i];
+
+	for (n = 1; n <= cr; n++)
+	    if (cube2(x, n)) {
+		int maxval = 0, minval = 0;
+		int j;
+		for (j = 0; j < nsquares; j++) {
+		    int m;
+		    int y = cages->blocks[b][j];
+		    if (i == j)
+			continue;
+		    for (m = 1; m <= cr; m++)
+			if (cube2(y, m)) {
+			    minval += m;
+			    break;
+			}
+		    for (m = cr; m > 0; m--)
+			if (cube2(y, m)) {
+			    maxval += m;
+			    break;
+			}
+		}
+		if (maxval + n < clues[b]) {
+		    cube2(x, n) = FALSE;
+		    ret = 1;
+#ifdef STANDALONE_SOLVER
+		    if (solver_show_working)
+			printf("%*s  ruling out %d at (%d,%d) as too low %s\n",
+			       solver_recurse_depth*4, "killer minmax analysis",
+			       n, 1 + x%cr, 1 + x/cr, extra);
+#endif
+		}
+		if (minval + n > clues[b]) {
+		    cube2(x, n) = FALSE;
+		    ret = 1;
+#ifdef STANDALONE_SOLVER
+		    if (solver_show_working)
+			printf("%*s  ruling out %d at (%d,%d) as too high %s\n",
+			       solver_recurse_depth*4, "killer minmax analysis",
+			       n, 1 + x%cr, 1 + x/cr, extra);
+#endif
+		}
+	    }
+    }
+    return ret;
+}
+
+static int solver_killer_sums(struct solver_usage *usage, int b,
+			      struct block_structure *cages, int clue,
+			      int cage_is_region
+#ifdef STANDALONE_SOLVER
+			      , const char *cage_type
+#endif
+			      )
+{
+    int cr = usage->cr;
+    int i, ret, max_sums;
+    int nsquares = cages->nr_squares[b];
+    unsigned int *sumbits, possible_addends;
+
+    if (clue == 0) {
+	assert(nsquares == 0);
+	return 0;
+    }
+    assert(nsquares > 0);
+
+    if (nsquares > 4)
+	return 0;
+
+    if (!cage_is_region) {
+	int known_row = -1, known_col = -1, known_block = -1;
+	/*
+	 * Verify that the cage lies entirely within one region,
+	 * so that using the precomputed sums is valid.
+	 */
+	for (i = 0; i < nsquares; i++) {
+	    int x = cages->blocks[b][i];
+
+	    assert(usage->grid[x] == 0);
+
+	    if (i == 0) {
+		known_row = x/cr;
+		known_col = x%cr;
+		known_block = usage->blocks->whichblock[x];
+	    } else {
+		if (known_row != x/cr)
+		    known_row = -1;
+		if (known_col != x%cr)
+		    known_col = -1;
+		if (known_block != usage->blocks->whichblock[x])
+		    known_block = -1;
+	    }
+	}
+	if (known_block == -1 && known_col == -1 && known_row == -1)
+	    return 0;
+    }
+    if (nsquares == 2) {
+	if (clue < 3 || clue > 17)
+	    return -1;
+
+	sumbits = sum_bits2[clue];
+	max_sums = MAX_2SUMS;
+    } else if (nsquares == 3) {
+	if (clue < 6 || clue > 24)
+	    return -1;
+
+	sumbits = sum_bits3[clue];
+	max_sums = MAX_3SUMS;
+    } else {
+	if (clue < 10 || clue > 30)
+	    return -1;
+
+	sumbits = sum_bits4[clue];
+	max_sums = MAX_4SUMS;
+    }
+    /*
+     * For every possible way to get the sum, see if there is
+     * one square in the cage that disallows all the required
+     * addends.  If we find one such square, this way to compute
+     * the sum is impossible.
+     */
+    possible_addends = 0;
+    for (i = 0; i < max_sums; i++) {
+	int j;
+	unsigned int bits = sumbits[i];
+
+	if (bits == 0)
+	    break;
+
+	for (j = 0; j < nsquares; j++) {
+	    int n;
+	    unsigned int square_bits = bits;
+	    int x = cages->blocks[b][j];
+	    for (n = 1; n <= cr; n++)
+		if (!cube2(x, n))
+		    square_bits &= ~(1 << n);
+	    if (square_bits == 0) {
+		break;
+	    }
+	}
+	if (j == nsquares)
+	    possible_addends |= bits;
+    }
+    /*
+     * Now we know which addends can possibly be used to
+     * compute the sum.  Remove all other digits from the
+     * set of possibilities.
+     */
+    if (possible_addends == 0)
+	return -1;
+
+    ret = 0;
+    for (i = 0; i < nsquares; i++) {
+	int n;
+	int x = cages->blocks[b][i];
+	for (n = 1; n <= cr; n++) {
+	    if (!cube2(x, n))
+		continue;
+	    if ((possible_addends & (1 << n)) == 0) {
+		cube2(x, n) = FALSE;
+		ret = 1;
+#ifdef STANDALONE_SOLVER
+		if (solver_show_working) {
+		    printf("%*s  using %s\n",
+			   solver_recurse_depth*4, "killer sums analysis",
+			   cage_type);
+		    printf("%*s  ruling out %d at (%d,%d) due to impossible %d-sum\n",
+			   solver_recurse_depth*4, "",
+			   n, 1 + x%cr, 1 + x/cr, nsquares);
+		}
+#endif
+	    }
+	}
+    }
+    return ret;
+}
+
+static int filter_whole_cages(struct solver_usage *usage, int *squares, int n,
+			      int *filtered_sum)
+{
+    int b, i, j, off;
+    *filtered_sum = 0;
+
+    /* First, filter squares with a clue.  */
+    for (i = j = 0; i < n; i++)
+	if (usage->grid[squares[i]])
+	    *filtered_sum += usage->grid[squares[i]];
+	else
+	    squares[j++] = squares[i];
+    n = j;
+
+    /*
+     * Filter all cages that are covered entirely by the list of
+     * squares.
+     */
+    off = 0;
+    for (b = 0; b < usage->kblocks->nr_blocks && off < n; b++) {
+	int b_squares = usage->kblocks->nr_squares[b];
+	int matched = 0;
+
+	if (b_squares == 0)
+	    continue;
+
+	/*
+	 * Find all squares of block b that lie in our list,
+	 * and make them contiguous at off, which is the current position
+	 * in the output list.
+	 */
+	for (i = 0; i < b_squares; i++) {
+	    for (j = off; j < n; j++)
+		if (squares[j] == usage->kblocks->blocks[b][i]) {
+		    int t = squares[off + matched];
+		    squares[off + matched] = squares[j];
+		    squares[j] = t;
+		    matched++;
+		    break;
+		}
+	}
+	/* If so, filter out all squares of b from the list.  */
+	if (matched != usage->kblocks->nr_squares[b]) {
+	    off += matched;
+	    continue;
+	}
+	memmove(squares + off, squares + off + matched,
+		(n - off - matched) * sizeof *squares);
+	n -= matched;
+
+	*filtered_sum += usage->kclues[b];
+    }
+    assert(off == n);
+    return off;
+}
+
 static struct solver_scratch *solver_new_scratch(struct solver_usage *usage)
 {
     struct solver_scratch *scratch = snew(struct solver_scratch);
@@ -1183,13 +1657,26 @@
     sfree(scratch);
 }
 
-static int solver(int cr, struct block_structure *blocks, int xtype,
-		  digit *grid, int maxdiff)
+/*
+ * Used for passing information about difficulty levels between the solver
+ * and its callers.
+ */
+struct difficulty {
+    /* Maximum levels allowed.  */
+    int maxdiff, maxkdiff;
+    /* Levels reached by the solver.  */
+    int diff, kdiff;
+};
+
+static void solver(int cr, struct block_structure *blocks,
+		  struct block_structure *kblocks, int xtype,
+		  digit *grid, digit *kgrid, struct difficulty *dlev)
 {
     struct solver_usage *usage;
     struct solver_scratch *scratch;
     int x, y, b, i, n, ret;
     int diff = DIFF_BLOCK;
+    int kdiff = DIFF_KSINGLE;
 
     /*
      * Set up a usage structure as a clean slate (everything
@@ -1198,8 +1685,35 @@
     usage = snew(struct solver_usage);
     usage->cr = cr;
     usage->blocks = blocks;
+    if (kblocks) {
+	usage->kblocks = dup_block_structure(kblocks);
+	usage->extra_cages = alloc_block_structure (kblocks->c, kblocks->r,
+						    cr * cr, cr, cr * cr);
+	usage->extra_clues = snewn(cr*cr, digit);
+    } else {
+	usage->kblocks = usage->extra_cages = NULL;
+	usage->extra_clues = NULL;
+    }
     usage->cube = snewn(cr*cr*cr, unsigned char);
     usage->grid = grid;		       /* write straight back to the input */
+    if (kgrid) {
+	int nclues = kblocks->nr_blocks;
+	/*
+	 * Allow for expansion of the killer regions, the absolute
+	 * limit is obviously one region per square.
+	 */
+	usage->kclues = snewn(cr*cr, digit);
+	for (i = 0; i < nclues; i++) {
+	    for (n = 0; n < kblocks->nr_squares[i]; n++)
+		if (kgrid[kblocks->blocks[i][n]] != 0)
+		    usage->kclues[i] = kgrid[kblocks->blocks[i][n]];
+	    assert(usage->kclues[i] > 0);
+	}
+	memset(usage->kclues + nclues, 0, cr*cr - nclues);
+    } else {
+	usage->kclues = NULL;
+    }
+
     memset(usage->cube, TRUE, cr*cr*cr);
 
     usage->row = snewn(cr * cr, unsigned char);
@@ -1215,6 +1729,24 @@
     } else
 	usage->diag = NULL; 
 
+    usage->nr_regions = cr * 3 + (xtype ? 2 : 0);
+    usage->regions = snewn(cr * usage->nr_regions, int);
+    usage->sq2region = snewn(cr * cr * 3, int *);
+
+    for (n = 0; n < cr; n++) {
+	for (i = 0; i < cr; i++) {
+	    x = n*cr+i;
+	    y = i*cr+n;
+	    b = usage->blocks->blocks[n][i];
+	    usage->regions[cr*n*3 + i] = x;
+	    usage->regions[cr*n*3 + cr + i] = y;
+	    usage->regions[cr*n*3 + 2*cr + i] = b;
+	    usage->sq2region[x*3] = usage->regions + cr*n*3;
+	    usage->sq2region[y*3 + 1] = usage->regions + cr*n*3 + cr;
+	    usage->sq2region[b*3 + 2] = usage->regions + cr*n*3 + 2*cr;
+	}
+    }
+
     scratch = solver_new_scratch(usage);
 
     /*
@@ -1266,7 +1798,241 @@
 		    }
 		}
 
-	if (maxdiff <= DIFF_BLOCK)
+	if (usage->kclues != NULL) {
+	    int changed = FALSE;
+
+	    /*
+	     * First, bring the kblocks into a more useful form: remove
+	     * all filled-in squares, and reduce the sum by their values.
+	     * Walk in reverse order, since otherwise remove_from_block
+	     * can move element past our loop counter.
+	     */
+	    for (b = 0; b < usage->kblocks->nr_blocks; b++)
+		for (i = usage->kblocks->nr_squares[b] -1; i >= 0; i--) {
+		    int x = usage->kblocks->blocks[b][i];
+		    int t = usage->grid[x];
+
+		    if (t == 0)
+			continue;
+		    remove_from_block(usage->kblocks, b, x);
+		    if (t > usage->kclues[b]) {
+			diff = DIFF_IMPOSSIBLE;
+			goto got_result;
+		    }
+		    usage->kclues[b] -= t;
+		    /*
+		     * Since cages are regions, this tells us something
+		     * about the other squares in the cage.
+		     */
+		    for (n = 0; n < usage->kblocks->nr_squares[b]; n++) {
+			cube2(usage->kblocks->blocks[b][n], t) = FALSE;
+		    }
+		}
+
+	    /*
+	     * The most trivial kind of solver for killer puzzles: fill
+	     * single-square cages.
+	     */
+	    for (b = 0; b < usage->kblocks->nr_blocks; b++) {
+		int squares = usage->kblocks->nr_squares[b];
+		if (squares == 1) {
+		    int v = usage->kclues[b];
+		    if (v < 1 || v > cr) {
+			diff = DIFF_IMPOSSIBLE;
+			goto got_result;
+		    }
+		    x = usage->kblocks->blocks[b][0] % cr;
+		    y = usage->kblocks->blocks[b][0] / cr;
+		    if (!cube(x, y, v)) {
+			diff = DIFF_IMPOSSIBLE;
+			goto got_result;
+		    }
+		    solver_place(usage, x, y, v);
+
+#ifdef STANDALONE_SOLVER
+		    if (solver_show_working) {
+			printf("%*s  placing %d at (%d,%d)\n",
+			       solver_recurse_depth*4, "killer single-square cage",
+			       v, 1 + x%cr, 1 + x/cr);
+		    }
+#endif
+		    changed = TRUE;
+		}
+	    }
+
+	    if (changed) {
+		kdiff = max(kdiff, DIFF_KSINGLE);
+		goto cont;
+	    }
+	}
+	if (dlev->maxkdiff >= DIFF_KINTERSECT && usage->kclues != NULL) {
+	    int changed = FALSE;
+	    /*
+	     * Now, create the extra_cages information.  Every full region
+	     * (row, column, or block) has the same sum total (45 for 3x3
+	     * puzzles.  After we try to cover these regions with cages that
+	     * lie entirely within them, any squares that remain must bring
+	     * the total to this known value, and so they form additional
+	     * cages which aren't immediately evident in the displayed form
+	     * of the puzzle.
+	     */
+	    usage->extra_cages->nr_blocks = 0;
+	    for (i = 0; i < 3; i++) {
+		for (n = 0; n < cr; n++) {
+		    int *region = usage->regions + cr*n*3 + i*cr;
+		    int sum = cr * (cr + 1) / 2;
+		    int nsquares = cr;
+		    int filtered;
+		    int n_extra = usage->extra_cages->nr_blocks;
+		    int *extra_list = usage->extra_cages->blocks[n_extra];
+		    memcpy(extra_list, region, cr * sizeof *extra_list);
+
+		    nsquares = filter_whole_cages(usage, extra_list, nsquares, &filtered);
+		    sum -= filtered;
+		    if (nsquares == cr || nsquares == 0)
+			continue;
+		    if (dlev->maxdiff >= DIFF_RECURSIVE) {
+			if (sum <= 0) {
+			    dlev->diff = DIFF_IMPOSSIBLE;
+			    goto got_result;
+			}
+		    }
+		    assert(sum > 0);
+
+		    if (nsquares == 1) {
+			if (sum > cr) {
+			    diff = DIFF_IMPOSSIBLE;
+			    goto got_result;
+			}
+			x = extra_list[0] % cr;
+			y = extra_list[0] / cr;
+			if (!cube(x, y, sum)) {
+			    diff = DIFF_IMPOSSIBLE;
+			    goto got_result;
+			}
+			solver_place(usage, x, y, sum);
+			changed = TRUE;
+#ifdef STANDALONE_SOLVER
+			if (solver_show_working) {
+			    printf("%*s  placing %d at (%d,%d)\n",
+				   solver_recurse_depth*4, "killer single-square deduced cage",
+				   sum, 1 + x, 1 + y);
+			}
+#endif
+		    }
+
+		    b = usage->kblocks->whichblock[extra_list[0]];
+		    for (x = 1; x < nsquares; x++)
+			if (usage->kblocks->whichblock[extra_list[x]] != b)
+			    break;
+		    if (x == nsquares) {
+			assert(usage->kblocks->nr_squares[b] > nsquares);
+			split_block(usage->kblocks, extra_list, nsquares);
+			assert(usage->kblocks->nr_squares[usage->kblocks->nr_blocks - 1] == nsquares);
+			usage->kclues[usage->kblocks->nr_blocks - 1] = sum;
+			usage->kclues[b] -= sum;
+		    } else {
+			usage->extra_cages->nr_squares[n_extra] = nsquares;
+			usage->extra_cages->nr_blocks++;
+			usage->extra_clues[n_extra] = sum;
+		    }
+		}
+	    }
+	    if (changed) {
+		kdiff = max(kdiff, DIFF_KINTERSECT);
+		goto cont;
+	    }
+	}
+
+	/*
+	 * Another simple killer-type elimination.  For every square in a
+	 * cage, find the minimum and maximum possible sums of all the
+	 * other squares in the same cage, and rule out possibilities
+	 * for the given square based on whether they are guaranteed to
+	 * cause the sum to be either too high or too low.
+	 * This is a special case of trying all possible sums across a
+	 * region, which is a recursive algorithm.  We should probably
+	 * implement it for a higher difficulty level.
+	 */
+	if (dlev->maxkdiff >= DIFF_KMINMAX && usage->kclues != NULL) {
+	    int changed = FALSE;
+	    for (b = 0; b < usage->kblocks->nr_blocks; b++) {
+		int ret = solver_killer_minmax(usage, usage->kblocks,
+					       usage->kclues, b
+#ifdef STANDALONE_SOLVER
+					     , ""
+#endif
+					       );
+		if (ret < 0) {
+		    diff = DIFF_IMPOSSIBLE;
+		    goto got_result;
+		} else if (ret > 0)
+		    changed = TRUE;
+	    }
+	    for (b = 0; b < usage->extra_cages->nr_blocks; b++) {
+		int ret = solver_killer_minmax(usage, usage->extra_cages,
+					       usage->extra_clues, b
+#ifdef STANDALONE_SOLVER
+					       , "using deduced cages"
+#endif
+					       );
+		if (ret < 0) {
+		    diff = DIFF_IMPOSSIBLE;
+		    goto got_result;
+		} else if (ret > 0)
+		    changed = TRUE;
+	    }
+	    if (changed) {
+		kdiff = max(kdiff, DIFF_KMINMAX);
+		goto cont;
+	    }
+	}
+
+	/*
+	 * Try to use knowledge of which numbers can be used to generate
+	 * a given sum.
+	 * This can only be used if a cage lies entirely within a region.
+	 */
+	if (dlev->maxkdiff >= DIFF_KSUMS && usage->kclues != NULL) {
+	    int changed = FALSE;
+
+	    for (b = 0; b < usage->kblocks->nr_blocks; b++) {
+		int ret = solver_killer_sums(usage, b, usage->kblocks,
+					     usage->kclues[b], TRUE
+#ifdef STANDALONE_SOLVER
+					     , "regular clues"
+#endif
+					     );
+		if (ret > 0) {
+		    changed = TRUE;
+		    kdiff = max(kdiff, DIFF_KSUMS);
+		} else if (ret < 0) {
+		    diff = DIFF_IMPOSSIBLE;
+		    goto got_result;
+		}
+	    }
+
+	    for (b = 0; b < usage->extra_cages->nr_blocks; b++) {
+		int ret = solver_killer_sums(usage, b, usage->extra_cages,
+					     usage->extra_clues[b], FALSE
+#ifdef STANDALONE_SOLVER
+					     , "deduced clues"
+#endif
+					     );
+		if (ret > 0) {
+		    changed = TRUE;
+		    kdiff = max(kdiff, DIFF_KINTERSECT);
+		} else if (ret < 0) {
+		    diff = DIFF_IMPOSSIBLE;
+		    goto got_result;
+		}
+	    }
+
+	    if (changed)
+		goto cont;
+	}
+
+	if (dlev->maxdiff <= DIFF_BLOCK)
 	    break;
 
 	/*
@@ -1379,7 +2145,7 @@
 		    }
                 }
 
-	if (maxdiff <= DIFF_SIMPLE)
+	if (dlev->maxdiff <= DIFF_SIMPLE)
 	    break;
 
         /*
@@ -1521,7 +2287,7 @@
 		}
 	}
 
-	if (maxdiff <= DIFF_INTERSECT)
+	if (dlev->maxdiff <= DIFF_INTERSECT)
 	    break;
 
 	/*
@@ -1628,7 +2394,7 @@
 	    }
 	}
 
-	if (maxdiff <= DIFF_SET)
+	if (dlev->maxdiff <= DIFF_SET)
 	    break;
 
 	/*
@@ -1674,7 +2440,7 @@
      * has the effect of pruning the search tree as much as
      * possible.
      */
-    if (maxdiff >= DIFF_RECURSIVE) {
+    if (dlev->maxdiff >= DIFF_RECURSIVE) {
 	int best, bestcount;
 
 	best = -1;
@@ -1746,8 +2512,6 @@
 	     * main solver at every stage.
 	     */
 	    for (i = 0; i < j; i++) {
-		int ret;
-
 		memcpy(outgrid, ingrid, cr * cr);
 		outgrid[y*cr+x] = list[i];
 
@@ -1758,7 +2522,7 @@
 		solver_recurse_depth++;
 #endif
 
-		ret = solver(cr, blocks, xtype, outgrid, maxdiff);
+		solver(cr, blocks, kblocks, xtype, outgrid, kgrid, dlev);
 
 #ifdef STANDALONE_SOLVER
 		solver_recurse_depth--;
@@ -1772,12 +2536,12 @@
 		 * If we have our first solution, copy it into the
 		 * grid we will return.
 		 */
-		if (diff == DIFF_IMPOSSIBLE && ret != DIFF_IMPOSSIBLE)
+		if (diff == DIFF_IMPOSSIBLE && dlev->diff != DIFF_IMPOSSIBLE)
 		    memcpy(grid, outgrid, cr*cr);
 
-		if (ret == DIFF_AMBIGUOUS)
+		if (dlev->diff == DIFF_AMBIGUOUS)
 		    diff = DIFF_AMBIGUOUS;
-		else if (ret == DIFF_IMPOSSIBLE)
+		else if (dlev->diff == DIFF_IMPOSSIBLE)
 		    /* do not change our return value */;
 		else {
 		    /* the recursion turned up exactly one solution */
@@ -1812,7 +2576,9 @@
                     diff = DIFF_IMPOSSIBLE;
     }
 
-    got_result:;
+    got_result:
+    dlev->diff = diff;
+    dlev->kdiff = kdiff;
 
 #ifdef STANDALONE_SOLVER
     if (solver_show_working)
@@ -1827,11 +2593,14 @@
     sfree(usage->row);
     sfree(usage->col);
     sfree(usage->blk);
+    if (usage->kblocks) {
+	free_block_structure(usage->kblocks);
+	free_block_structure(usage->extra_cages);
+	sfree(usage->extra_clues);
+    }
     sfree(usage);
 
     solver_free_scratch(scratch);
-
-    return diff;
 }
 
 /* ----------------------------------------------------------------------
@@ -1839,6 +2608,10 @@
  */
 
 /* ----------------------------------------------------------------------
+ * Killer set generator.
+ */
+
+/* ----------------------------------------------------------------------
  * Solo filled-grid generator.
  *
  * This grid generator works by essentially trying to solve a grid
@@ -1862,6 +2635,9 @@
  * any squares with only one possibility) will cut down on the list
  * of possibilities for other squares and hence reduce the enormous
  * search space as much as possible as early as possible.
+ *
+ * The use of bit sets implies that we support puzzles up to a size of
+ * 32x32 (less if anyone finds a 16-bit machine to compile this on).
  */
 
 /*
@@ -1871,17 +2647,18 @@
 struct gridgen_coord { int x, y, r; };
 struct gridgen_usage {
     int cr;
-    struct block_structure *blocks;
+    struct block_structure *blocks, *kblocks;
     /* grid is a copy of the input grid, modified as we go along */
     digit *grid;
-    /* row[y*cr+n-1] TRUE if digit n has been placed in row y */
-    unsigned char *row;
-    /* col[x*cr+n-1] TRUE if digit n has been placed in row x */
-    unsigned char *col;
-    /* blk[(y*c+x)*cr+n-1] TRUE if digit n has been placed in block (x,y) */
-    unsigned char *blk;
-    /* diag[i*cr+n-1] TRUE if digit n has been placed in diagonal i */
-    unsigned char *diag;
+    /*
+     * Bitsets.  In each of them, bit n is set if digit n has been placed
+     * in the corresponding region.  row, col and blk are used for all
+     * puzzles.  cge is used only for killer puzzles, and diag is used
+     * only for x-type puzzles.
+     * All of these have cr entries, except diag which only has 2,
+     * and cge, which has as many entries as kblocks.
+     */
+    unsigned int *row, *col, *blk, *cge, *diag;
     /* This lists all the empty spaces remaining in the grid. */
     struct gridgen_coord *spaces;
     int nspaces;
@@ -1889,21 +2666,44 @@
     random_state *rs;
 };
 
-static void gridgen_place(struct gridgen_usage *usage, int x, int y, digit n,
-			  int placing)
+static void gridgen_place(struct gridgen_usage *usage, int x, int y, digit n)
 {
+    unsigned int bit = 1 << n;
     int cr = usage->cr;
-    usage->row[y*cr+n-1] = usage->col[x*cr+n-1] =
-	usage->blk[usage->blocks->whichblock[y*cr+x]*cr+n-1] = placing;
+    usage->row[y] |= bit;
+    usage->col[x] |= bit;
+    usage->blk[usage->blocks->whichblock[y*cr+x]] |= bit;
+    if (usage->cge)
+	usage->cge[usage->kblocks->whichblock[y*cr+x]] |= bit;
     if (usage->diag) {
 	if (ondiag0(y*cr+x))
-	    usage->diag[n-1] = placing;
+	    usage->diag[0] |= bit;
 	if (ondiag1(y*cr+x))
-	    usage->diag[cr+n-1] = placing;
+	    usage->diag[1] |= bit;
     }
-    usage->grid[y*cr+x] = placing ? n : 0;
+    usage->grid[y*cr+x] = n;
 }
 
+static void gridgen_remove(struct gridgen_usage *usage, int x, int y, digit n)
+{
+    unsigned int mask = ~(1 << n);
+    int cr = usage->cr;
+    usage->row[y] &= mask;
+    usage->col[x] &= mask;
+    usage->blk[usage->blocks->whichblock[y*cr+x]] &= mask;
+    if (usage->cge)
+	usage->cge[usage->kblocks->whichblock[y*cr+x]] &= mask;
+    if (usage->diag) {
+	if (ondiag0(y*cr+x))
+	    usage->diag[0] &= mask;
+	if (ondiag1(y*cr+x))
+	    usage->diag[1] &= mask;
+    }
+    usage->grid[y*cr+x] = 0;
+}
+
+#define N_SINGLE 32
+
 /*
  * The real recursive step in the generating function.
  *
@@ -1915,6 +2715,7 @@
     int cr = usage->cr;
     int i, j, n, sx, sy, bestm, bestr, ret;
     int *digits;
+    unsigned int used;
 
     /*
      * Firstly, check for completion! If there are no spaces left
@@ -1936,22 +2737,35 @@
      */
     bestm = cr+1;		       /* so that any space will beat it */
     bestr = 0;
+    used = ~0;
     i = sx = sy = -1;
     for (j = 0; j < usage->nspaces; j++) {
 	int x = usage->spaces[j].x, y = usage->spaces[j].y;
+	unsigned int used_xy;
 	int m;
 
+	m = usage->blocks->whichblock[y*cr+x];
+	used_xy = usage->row[y] | usage->col[x] | usage->blk[m];
+	if (usage->cge != NULL)
+	    used_xy |= usage->cge[usage->kblocks->whichblock[y*cr+x]];
+	if (usage->cge != NULL)
+	    used_xy |= usage->cge[usage->kblocks->whichblock[y*cr+x]];
+	if (usage->diag != NULL) {
+	    if (ondiag0(y*cr+x))
+		used_xy |= usage->diag[0];
+	    if (ondiag1(y*cr+x))
+		used_xy |= usage->diag[1];
+	}
+
 	/*
 	 * Find the number of digits that could go in this space.
 	 */
 	m = 0;
-	for (n = 0; n < cr; n++)
-	    if (!usage->row[y*cr+n] && !usage->col[x*cr+n] &&
-		!usage->blk[usage->blocks->whichblock[y*cr+x]*cr+n] &&
-		(!usage->diag || ((!ondiag0(y*cr+x) || !usage->diag[n]) &&
-				  (!ondiag1(y*cr+x) || !usage->diag[cr+n]))))
+	for (n = 1; n <= cr; n++) {
+	    unsigned int bit = 1 << n;
+	    if ((used_xy & bit) == 0)
 		m++;
-
+	}
 	if (m < bestm || (m == bestm && usage->spaces[j].r < bestr)) {
 	    bestm = m;
 	    bestr = usage->spaces[j].r;
@@ -1958,6 +2772,7 @@
 	    sx = x;
 	    sy = y;
 	    i = j;
+	    used = used_xy;
 	}
     }
 
@@ -1978,15 +2793,15 @@
      * randomly first if necessary.
      */
     digits = snewn(bestm, int);
+
     j = 0;
-    for (n = 0; n < cr; n++)
-	if (!usage->row[sy*cr+n] && !usage->col[sx*cr+n] &&
-	    !usage->blk[usage->blocks->whichblock[sy*cr+sx]*cr+n] &&
-	    (!usage->diag || ((!ondiag0(sy*cr+sx) || !usage->diag[n]) &&
-			      (!ondiag1(sy*cr+sx) || !usage->diag[cr+n])))) {
-	    digits[j++] = n+1;
-	}
+    for (n = 1; n <= cr; n++) {
+	unsigned int bit = 1 << n;
 
+	if ((used & bit) == 0)
+	    digits[j++] = n;
+    }
+
     if (usage->rs)
 	shuffle(digits, j, sizeof(*digits), usage->rs);
 
@@ -1996,7 +2811,7 @@
 	n = digits[i];
 
 	/* Update the usage structure to reflect the placing of this digit. */
-	gridgen_place(usage, sx, sy, n, TRUE);
+	gridgen_place(usage, sx, sy, n);
 	usage->nspaces--;
 
 	/* Call the solver recursively. Stop when we find a solution. */
@@ -2006,7 +2821,7 @@
 	}
 
 	/* Revert the usage structure. */
-	gridgen_place(usage, sx, sy, n, FALSE);
+	gridgen_remove(usage, sx, sy, n);
 	usage->nspaces++;
     }
 
@@ -2018,7 +2833,8 @@
  * Entry point to generator. You give it parameters and a starting
  * grid, which is simply an array of cr*cr digits.
  */
-static int gridgen(int cr, struct block_structure *blocks, int xtype,
+static int gridgen(int cr, struct block_structure *blocks,
+		   struct block_structure *kblocks, int xtype,
 		   digit *grid, random_state *rs, int maxsteps)
 {
     struct gridgen_usage *usage;
@@ -2039,16 +2855,24 @@
 
     usage->grid = grid;
 
-    usage->row = snewn(cr * cr, unsigned char);
-    usage->col = snewn(cr * cr, unsigned char);
-    usage->blk = snewn(cr * cr, unsigned char);
-    memset(usage->row, FALSE, cr * cr);
-    memset(usage->col, FALSE, cr * cr);
-    memset(usage->blk, FALSE, cr * cr);
+    usage->row = snewn(cr, unsigned int);
+    usage->col = snewn(cr, unsigned int);
+    usage->blk = snewn(cr, unsigned int);
+    if (kblocks != NULL) {
+	usage->kblocks = kblocks;
+	usage->cge = snewn(usage->kblocks->nr_blocks, unsigned int);
+	memset(usage->cge, FALSE, kblocks->nr_blocks * sizeof *usage->cge);
+    } else {
+	usage->cge = NULL;
+    }
 
+    memset(usage->row, 0, cr * sizeof *usage->row);
+    memset(usage->col, 0, cr * sizeof *usage->col);
+    memset(usage->blk, 0, cr * sizeof *usage->blk);
+
     if (xtype) {
-	usage->diag = snewn(2 * cr, unsigned char);
-	memset(usage->diag, FALSE, 2 * cr);
+	usage->diag = snewn(2, unsigned int);
+	memset(usage->diag, 0, 2 * sizeof *usage->diag);
     } else {
 	usage->diag = NULL;
     }
@@ -2064,7 +2888,7 @@
 	grid[x] = x+1;
     shuffle(grid, cr, sizeof(*grid), rs);
     for (x = 0; x < cr; x++)
-	gridgen_place(usage, x, 0, grid[x], TRUE);
+	gridgen_place(usage, x, 0, grid[x]);
 
     usage->spaces = snewn(cr * cr, struct gridgen_coord);
     usage->nspaces = 0;
@@ -2093,6 +2917,7 @@
      * Clean up the usage structure now we have our answer.
      */
     sfree(usage->spaces);
+    sfree(usage->cge);
     sfree(usage->blk);
     sfree(usage->col);
     sfree(usage->row);
@@ -2284,20 +3109,367 @@
     return ret;
 }
 
+static void dsf_to_blocks(int *dsf, struct block_structure *blocks,
+			  int min_expected, int max_expected)
+{
+    int cr = blocks->c * blocks->r, area = cr * cr;
+    int i, nb = 0;
+
+    for (i = 0; i < area; i++)
+	blocks->whichblock[i] = -1;
+    for (i = 0; i < area; i++) {
+	int j = dsf_canonify(dsf, i);
+	if (blocks->whichblock[j] < 0)
+	    blocks->whichblock[j] = nb++;
+	blocks->whichblock[i] = blocks->whichblock[j];
+    }
+    assert(nb >= min_expected && nb <= max_expected);
+    blocks->nr_blocks = nb;
+}
+
+static void make_blocks_from_whichblock(struct block_structure *blocks)
+{
+    int i;
+
+    for (i = 0; i < blocks->nr_blocks; i++) {
+	blocks->blocks[i][blocks->max_nr_squares-1] = 0;
+	blocks->nr_squares[i] = 0;
+    }
+    for (i = 0; i < blocks->area; i++) {
+	int b = blocks->whichblock[i];
+	int j = blocks->blocks[b][blocks->max_nr_squares-1]++;
+	assert(j < blocks->max_nr_squares);
+	blocks->blocks[b][j] = i;
+	blocks->nr_squares[b]++;
+    }
+}
+
+static char *encode_block_structure_desc(char *p, struct block_structure *blocks)
+{
+    int i, currrun = 0;
+    int c = blocks->c, r = blocks->r, cr = c * r;
+
+    /*
+     * Encode the block structure. We do this by encoding
+     * the pattern of dividing lines: first we iterate
+     * over the cr*(cr-1) internal vertical grid lines in
+     * ordinary reading order, then over the cr*(cr-1)
+     * internal horizontal ones in transposed reading
+     * order.
+     * 
+     * We encode the number of non-lines between the
+     * lines; _ means zero (two adjacent divisions), a
+     * means 1, ..., y means 25, and z means 25 non-lines
+     * _and no following line_ (so that za means 26, zb 27
+     * etc).
+     */
+    for (i = 0; i <= 2*cr*(cr-1); i++) {
+	int x, y, p0, p1, edge;
+
+	if (i == 2*cr*(cr-1)) {
+	    edge = TRUE;       /* terminating virtual edge */
+	} else {
+	    if (i < cr*(cr-1)) {
+		y = i/(cr-1);
+		x = i%(cr-1);
+		p0 = y*cr+x;
+		p1 = y*cr+x+1;
+	    } else {
+		x = i/(cr-1) - cr;
+		y = i%(cr-1);
+		p0 = y*cr+x;
+		p1 = (y+1)*cr+x;
+	    }
+	    edge = (blocks->whichblock[p0] != blocks->whichblock[p1]);
+	}
+
+	if (edge) {
+	    while (currrun > 25)
+		*p++ = 'z', currrun -= 25;
+	    if (currrun)
+		*p++ = 'a'-1 + currrun;
+	    else
+		*p++ = '_';
+	    currrun = 0;
+	} else
+	    currrun++;
+    }
+    return p;
+}
+
+static char *encode_grid(char *desc, digit *grid, int area)
+{
+    int run, i;
+    char *p = desc;
+
+    run = 0;
+    for (i = 0; i <= area; i++) {
+	int n = (i < area ? grid[i] : -1);
+
+	if (!n)
+	    run++;
+	else {
+	    if (run) {
+		while (run > 0) {
+		    int c = 'a' - 1 + run;
+		    if (run > 26)
+			c = 'z';
+		    *p++ = c;
+		    run -= c - ('a' - 1);
+		}
+	    } else {
+		/*
+		 * If there's a number in the very top left or
+		 * bottom right, there's no point putting an
+		 * unnecessary _ before or after it.
+		 */
+		if (p > desc && n > 0)
+		    *p++ = '_';
+	    }
+	    if (n > 0)
+		p += sprintf(p, "%d", n);
+	    run = 0;
+	}
+    }
+    return p;
+}
+
+/*
+ * Conservatively stimate the number of characters required for
+ * encoding a grid of a certain area.
+ */
+static int grid_encode_space (int area)
+{
+    int t, count;
+    for (count = 1, t = area; t > 26; t -= 26)
+	count++;
+    return count * area;
+}
+
+/*
+ * Conservatively stimate the number of characters required for
+ * encoding a given blocks structure.
+ */
+static int blocks_encode_space(struct block_structure *blocks)
+{
+    int cr = blocks->c * blocks->r, area = cr * cr;
+    return grid_encode_space(area);
+}
+
+static char *encode_puzzle_desc(game_params *params, digit *grid,
+				struct block_structure *blocks,
+				digit *kgrid,
+				struct block_structure *kblocks)
+{
+    int c = params->c, r = params->r, cr = c*r;
+    int area = cr*cr;
+    char *p, *desc;
+    int space;
+
+    space = grid_encode_space(area) + 1;
+    if (r == 1)
+	space += blocks_encode_space(blocks) + 1;
+    if (params->killer) {
+	space += blocks_encode_space(kblocks) + 1;
+	space += grid_encode_space(area) + 1;
+    }
+    desc = snewn(space, char);
+    p = encode_grid(desc, grid, area);
+
+    if (r == 1) {
+	*p++ = ',';
+	p = encode_block_structure_desc(p, blocks);
+    }
+    if (params->killer) {
+	*p++ = ',';
+	p = encode_block_structure_desc(p, kblocks);
+	*p++ = ',';
+	p = encode_grid(p, kgrid, area);
+    }
+    assert(p - desc < space);
+    *p++ = '\0';
+    desc = sresize(desc, p - desc, char);
+
+    return desc;
+}
+
+static void merge_blocks(struct block_structure *b, int n1, int n2)
+{
+    int i;
+    /* Move data towards the lower block number.  */
+    if (n2 < n1) {
+	int t = n2;
+	n2 = n1;
+	n1 = t;
+    }
+
+    /* Merge n2 into n1, and move the last block into n2's position.  */
+    for (i = 0; i < b->nr_squares[n2]; i++)
+	b->whichblock[b->blocks[n2][i]] = n1;
+    memcpy(b->blocks[n1] + b->nr_squares[n1], b->blocks[n2],
+	   b->nr_squares[n2] * sizeof **b->blocks);
+    b->nr_squares[n1] += b->nr_squares[n2];
+
+    n1 = b->nr_blocks - 1;
+    if (n2 != n1) {
+	memcpy(b->blocks[n2], b->blocks[n1],
+	       b->nr_squares[n1] * sizeof **b->blocks);
+	for (i = 0; i < b->nr_squares[n1]; i++)
+	    b->whichblock[b->blocks[n1][i]] = n2;
+	b->nr_squares[n2] = b->nr_squares[n1];
+    }
+    b->nr_blocks = n1;
+}
+
+static void merge_some_cages(struct block_structure *b, int cr, int area,
+			     digit *grid, random_state *rs)
+{
+    do {
+	/* Find two candidates for merging.  */
+	int i, n1, n2;
+	int x = 1 + random_bits(rs, 20) % (cr - 2);
+	int y = 1 + random_bits(rs, 20) % (cr - 2);
+	int xy = y*cr + x;
+	int off = random_bits(rs, 1) == 0 ? -1 : 1;
+	int other = xy;
+	unsigned int digits_found;
+
+	if (random_bits(rs, 1) == 0)
+	    other = xy + off;
+	else
+	    other = xy + off * cr;
+	n1 = b->whichblock[xy];
+	n2 = b->whichblock[other];
+	if (n1 == n2)
+	    continue;
+
+	assert(n1 >= 0 && n2 >= 0 && n1 < b->nr_blocks && n2 < b->nr_blocks);
+
+	if (b->nr_squares[n1] + b->nr_squares[n2] > b->max_nr_squares)
+	    continue;
+
+	/* Guarantee that the merged cage would still be a region.  */
+	digits_found = 0;
+	for (i = 0; i < b->nr_squares[n1]; i++)
+	    digits_found |= 1 << grid[b->blocks[n1][i]];
+	for (i = 0; i < b->nr_squares[n2]; i++)
+	    if (digits_found & (1 << grid[b->blocks[n2][i]]))
+		break;
+	if (i != b->nr_squares[n2])
+	    continue;
+
+	merge_blocks(b, n1, n2);
+	break;
+    } while (1);
+}
+
+static void compute_kclues(struct block_structure *cages, digit *kclues,
+			   digit *grid, int area)
+{
+    int i;
+    memset(kclues, 0, area * sizeof *kclues);
+    for (i = 0; i < cages->nr_blocks; i++) {
+	int j, sum = 0;
+	for (j = 0; j < area; j++)
+	    if (cages->whichblock[j] == i)
+		sum += grid[j];
+	for (j = 0; j < area; j++)
+	    if (cages->whichblock[j] == i)
+		break;
+	assert (j != area);
+	kclues[j] = sum;
+    }
+}
+
+static struct block_structure *gen_killer_cages(int cr, random_state *rs,
+						int remove_singletons)
+{
+    int nr;
+    int x, y, area = cr * cr;
+    int n_singletons = 0;
+    struct block_structure *b = alloc_block_structure (1, cr, area, cr, area);
+
+    for (x = 0; x < area; x++)
+	b->whichblock[x] = -1;
+    nr = 0;
+    for (y = 0; y < cr; y++)
+	for (x = 0; x < cr; x++) {
+	    int rnd;
+	    int xy = y*cr+x;
+	    if (b->whichblock[xy] != -1)
+		continue;
+	    b->whichblock[xy] = nr;
+
+	    rnd = random_bits(rs, 4);
+	    if (xy + 1 < area && (rnd >= 4 || (!remove_singletons && rnd >= 1))) {
+		int xy2 = xy + 1;
+		if (x + 1 == cr || b->whichblock[xy2] != -1 ||
+		    (xy + cr < area && random_bits(rs, 1) == 0))
+		    xy2 = xy + cr;
+		if (xy2 >= area)
+		    n_singletons++;
+		else
+		    b->whichblock[xy2] = nr;
+	    } else
+		n_singletons++;
+	    nr++;
+	}
+
+    b->nr_blocks = nr;
+    make_blocks_from_whichblock(b);
+
+    for (x = y = 0; x < b->nr_blocks; x++)
+	if (b->nr_squares[x] == 1)
+	    y++;
+    assert(y == n_singletons);
+
+    if (n_singletons > 0 && remove_singletons) {
+	int n;
+	for (n = 0; n < b->nr_blocks;) {
+	    int xy, x, y, xy2, other;
+	    if (b->nr_squares[n] > 1) {
+		n++;
+		continue;
+	    }
+	    xy = b->blocks[n][0];
+	    x = xy % cr;
+	    y = xy / cr;
+	    if (xy + 1 == area)
+		xy2 = xy - 1;
+	    else if (x + 1 < cr && (y + 1 == cr || random_bits(rs, 1) == 0))
+		xy2 = xy + 1;
+	    else
+		xy2 = xy + cr;
+	    other = b->whichblock[xy2];
+
+	    if (b->nr_squares[other] == 1)
+		n_singletons--;
+	    n_singletons--;
+	    merge_blocks(b, n, other);
+	    if (n < other)
+		n++;
+	}
+	assert(n_singletons == 0);
+    }
+    return b;
+}
+
 static char *new_game_desc(game_params *params, random_state *rs,
 			   char **aux, int interactive)
 {
     int c = params->c, r = params->r, cr = c*r;
     int area = cr*cr;
-    struct block_structure *blocks;
-    digit *grid, *grid2;
+    struct block_structure *blocks, *kblocks;
+    digit *grid, *grid2, *kgrid;
     struct xy { int x, y; } *locs;
     int nlocs;
     char *desc;
     int coords[16], ncoords;
-    int maxdiff;
     int x, y, i, j;
+    struct difficulty dlev;
 
+    precompute_sum_bits();
+
     /*
      * Adjust the maximum difficulty level to be consistent with
      * the puzzle size: all 2x2 puzzles appear to be Trivial
@@ -2304,20 +3476,25 @@
      * (DIFF_BLOCK) so we cannot hold out for even a Basic
      * (DIFF_SIMPLE) one.
      */
-    maxdiff = params->diff;
+    dlev.maxdiff = params->diff;
+    dlev.maxkdiff = params->kdiff;
     if (c == 2 && r == 2)
-        maxdiff = DIFF_BLOCK;
+        dlev.maxdiff = DIFF_BLOCK;
 
     grid = snewn(area, digit);
     locs = snewn(area, struct xy);
     grid2 = snewn(area, digit);
 
-    blocks = snew(struct block_structure);
-    blocks->c = params->c; blocks->r = params->r;
-    blocks->whichblock = snewn(area*2, int);
-    blocks->blocks = snewn(cr, int *);
-    for (i = 0; i < cr; i++)
-	blocks->blocks[i] = blocks->whichblock + area + i*cr;
+    blocks = alloc_block_structure (c, r, area, cr, cr);
+
+    if (params->killer) {
+	kblocks = alloc_block_structure (c, r, area, cr, area);
+	kgrid = snewn(area, digit);
+    } else {
+	kblocks = NULL;
+	kgrid = NULL;
+    }
+
 #ifdef STANDALONE_SOLVER
     assert(!"This should never happen, so we don't need to create blocknames");
 #endif
@@ -2334,17 +3511,8 @@
          */
 	if (r == 1) {		       /* jigsaw mode */
 	    int *dsf = divvy_rectangle(cr, cr, cr, rs);
-	    int nb = 0;
 
-	    for (i = 0; i < area; i++)
-		blocks->whichblock[i] = -1;
-	    for (i = 0; i < area; i++) {
-		int j = dsf_canonify(dsf, i);
-		if (blocks->whichblock[j] < 0)
-		    blocks->whichblock[j] = nb++;
-		blocks->whichblock[i] = blocks->whichblock[j];
-	    }
-	    assert(nb == cr);
+	    dsf_to_blocks (dsf, blocks, cr, cr);
 
 	    sfree(dsf);
 	} else {		       /* basic Sudoku mode */
@@ -2352,16 +3520,13 @@
 		for (x = 0; x < cr; x++)
 		    blocks->whichblock[y*cr+x] = (y/c) * c + (x/r);
 	}
-	for (i = 0; i < cr; i++)
-	    blocks->blocks[i][cr-1] = 0;
-	for (i = 0; i < area; i++) {
-	    int b = blocks->whichblock[i];
-	    j = blocks->blocks[b][cr-1]++;
-	    assert(j < cr);
-	    blocks->blocks[b][j] = i;
+	make_blocks_from_whichblock(blocks);
+
+	if (params->killer) {
+	    kblocks = gen_killer_cages(cr, rs, params->kdiff > DIFF_KSINGLE);
 	}
 
-        if (!gridgen(cr, blocks, params->xtype, grid, rs, area*area))
+        if (!gridgen(cr, blocks, kblocks, params->xtype, grid, rs, area*area))
 	    continue;
         assert(check_valid(cr, blocks, params->xtype, grid));
 
@@ -2381,11 +3546,78 @@
             *aux = encode_solve_move(cr, grid);
 	}
 
-        /*
-         * Now we have a solved grid, start removing things from it
-         * while preserving solubility.
-         */
+	/*
+	 * Now we have a solved grid. For normal puzzles, we start removing
+	 * things from it while preserving solubility.  Killer puzzles are
+	 * different: we just pass the empty grid to the solver, and use
+	 * the puzzle if it comes back solved.
+	 */
 
+	if (params->killer) {
+	    struct block_structure *good_cages = NULL;
+	    struct block_structure *last_cages = NULL;
+	    int ntries = 0;
+
+            memcpy(grid2, grid, area);
+
+	    for (;;) {
+		compute_kclues(kblocks, kgrid, grid2, area);
+
+		memset(grid, 0, area * sizeof *grid);
+		solver(cr, blocks, kblocks, params->xtype, grid, kgrid, &dlev);
+		if (dlev.diff == dlev.maxdiff && dlev.kdiff == dlev.maxkdiff) {
+		    /*
+		     * We have one that matches our difficulty.  Store it for
+		     * later, but keep going.
+		     */
+		    if (good_cages)
+			free_block_structure(good_cages);
+		    ntries = 0;
+		    good_cages = dup_block_structure(kblocks);
+		    merge_some_cages(kblocks, cr, area, grid2, rs);
+		} else if (dlev.diff > dlev.maxdiff || dlev.kdiff > dlev.maxkdiff) {
+		    /*
+		     * Give up after too many tries and either use the good one we
+		     * found, or generate a new grid.
+		     */
+		    if (++ntries > 50)
+			break;
+		    /*
+		     * The difficulty level got too high.  If we have a good
+		     * one, use it, otherwise go back to the last one that
+		     * was at a lower difficulty and restart the process from
+		     * there.
+		     */
+		    if (good_cages != NULL) {
+			free_block_structure(kblocks);
+			kblocks = dup_block_structure(good_cages);
+			merge_some_cages(kblocks, cr, area, grid2, rs);
+		    } else {
+			if (last_cages == NULL)
+			    break;
+			free_block_structure(kblocks);
+			kblocks = last_cages;
+			last_cages = NULL;
+		    }
+		} else {
+		    if (last_cages)
+			free_block_structure(last_cages);
+		    last_cages = dup_block_structure(kblocks);
+		    merge_some_cages(kblocks, cr, area, grid2, rs);
+		}
+	    }
+	    if (last_cages)
+		free_block_structure(last_cages);
+	    if (good_cages != NULL) {
+		free_block_structure(kblocks);
+		kblocks = good_cages;
+		compute_kclues(kblocks, kgrid, grid2, area);
+		memset(grid, 0, area * sizeof *grid);
+		break;
+	    }
+	    continue;
+	}
+
         /*
          * Find the set of equivalence classes of squares permitted
          * by the selected symmetry. We do this by enumerating all
@@ -2420,8 +3652,6 @@
          * from the grid will still leave the grid soluble.
          */
         for (i = 0; i < nlocs; i++) {
-            int ret;
-
             x = locs[i].x;
             y = locs[i].y;
 
@@ -2430,8 +3660,9 @@
             for (j = 0; j < ncoords; j++)
                 grid2[coords[2*j+1]*cr+coords[2*j]] = 0;
 
-            ret = solver(cr, blocks, params->xtype, grid2, maxdiff);
-            if (ret <= maxdiff) {
+            solver(cr, blocks, kblocks, params->xtype, grid2, kgrid, &dlev);
+            if (dlev.diff <= dlev.maxdiff &&
+		(!params->killer || dlev.kdiff <= dlev.maxkdiff)) {
                 for (j = 0; j < ncoords; j++)
                     grid[coords[2*j+1]*cr+coords[2*j]] = 0;
             }
@@ -2438,8 +3669,10 @@
         }
 
         memcpy(grid2, grid, area);
-	
-	if (solver(cr, blocks, params->xtype, grid2, maxdiff) == maxdiff)
+
+	solver(cr, blocks, kblocks, params->xtype, grid2, kgrid, &dlev);
+	if (dlev.diff == dlev.maxdiff &&
+	    (!params->killer || dlev.kdiff == dlev.maxkdiff))
 	    break;		       /* found one! */
     }
 
@@ -2450,110 +3683,111 @@
      * Now we have the grid as it will be presented to the user.
      * Encode it in a game desc.
      */
-    {
-	char *p;
-	int run, i;
+    desc = encode_puzzle_desc(params, grid, blocks, kgrid, kblocks);
 
-	desc = snewn(7 * area, char);
-	p = desc;
-	run = 0;
-	for (i = 0; i <= area; i++) {
-	    int n = (i < area ? grid[i] : -1);
+    sfree(grid);
 
-	    if (!n)
-		run++;
-	    else {
-		if (run) {
-		    while (run > 0) {
-			int c = 'a' - 1 + run;
-			if (run > 26)
-			    c = 'z';
-			*p++ = c;
-			run -= c - ('a' - 1);
-		    }
-		} else {
-		    /*
-		     * If there's a number in the very top left or
-		     * bottom right, there's no point putting an
-		     * unnecessary _ before or after it.
-		     */
-		    if (p > desc && n > 0)
-			*p++ = '_';
-		}
-		if (n > 0)
-		    p += sprintf(p, "%d", n);
-		run = 0;
-	    }
+    return desc;
+}
+
+static char *spec_to_grid(char *desc, digit *grid, int area)
+{
+    int i = 0;
+    while (*desc && *desc != ',') {
+        int n = *desc++;
+        if (n >= 'a' && n <= 'z') {
+            int run = n - 'a' + 1;
+            assert(i + run <= area);
+            while (run-- > 0)
+                grid[i++] = 0;
+        } else if (n == '_') {
+            /* do nothing */;
+        } else if (n > '0' && n <= '9') {
+            assert(i < area);
+            grid[i++] = atoi(desc-1);
+            while (*desc >= '0' && *desc <= '9')
+                desc++;
+        } else {
+            assert(!"We can't get here");
+        }
+    }
+    assert(i == area);
+    return desc;
+}
+
+/*
+ * Create a DSF from a spec found in *pdesc. Update this to point past the
+ * end of the block spec, and return an error string or NULL if everything
+ * is OK. The DSF is stored in *PDSF.
+ */
+static char *spec_to_dsf(char **pdesc, int **pdsf, int cr, int area)
+{
+    char *desc = *pdesc;
+    int pos = 0;
+    int *dsf;
+
+    *pdsf = dsf = snew_dsf(area);
+
+    while (*desc && *desc != ',') {
+	int c, adv;
+
+	if (*desc == '_')
+	    c = 0;
+	else if (*desc >= 'a' && *desc <= 'z')
+	    c = *desc - 'a' + 1;
+	else {
+	    sfree(dsf);
+	    return "Invalid character in game description";
 	}
+	desc++;
 
-	if (r == 1) {
-	    int currrun = 0;
+	adv = (c != 25);	       /* 'z' is a special case */
 
-	    *p++ = ',';
+	while (c-- > 0) {
+	    int p0, p1;
 
 	    /*
-	     * Encode the block structure. We do this by encoding
-	     * the pattern of dividing lines: first we iterate
-	     * over the cr*(cr-1) internal vertical grid lines in
-	     * ordinary reading order, then over the cr*(cr-1)
-	     * internal horizontal ones in transposed reading
-	     * order.
-	     * 
-	     * We encode the number of non-lines between the
-	     * lines; _ means zero (two adjacent divisions), a
-	     * means 1, ..., y means 25, and z means 25 non-lines
-	     * _and no following line_ (so that za means 26, zb 27
-	     * etc).
+	     * Non-edge; merge the two dsf classes on either
+	     * side of it.
 	     */
-	    for (i = 0; i <= 2*cr*(cr-1); i++) {
-		int p0, p1, edge;
-
-		if (i == 2*cr*(cr-1)) {
-		    edge = TRUE;       /* terminating virtual edge */
-		} else {
-		    if (i < cr*(cr-1)) {
-			y = i/(cr-1);
-			x = i%(cr-1);
-			p0 = y*cr+x;
-			p1 = y*cr+x+1;
-		    } else {
-			x = i/(cr-1) - cr;
-			y = i%(cr-1);
-			p0 = y*cr+x;
-			p1 = (y+1)*cr+x;
-		    }
-		    edge = (blocks->whichblock[p0] != blocks->whichblock[p1]);
-		}
-
-		if (edge) {
-		    while (currrun > 25)
-			*p++ = 'z', currrun -= 25;
-		    if (currrun)
-			*p++ = 'a'-1 + currrun;
-		    else
-			*p++ = '_';
-		    currrun = 0;
-		} else
-		    currrun++;
+	    assert(pos < 2*cr*(cr-1));
+	    if (pos < cr*(cr-1)) {
+		int y = pos/(cr-1);
+		int x = pos%(cr-1);
+		p0 = y*cr+x;
+		p1 = y*cr+x+1;
+	    } else {
+		int x = pos/(cr-1) - cr;
+		int y = pos%(cr-1);
+		p0 = y*cr+x;
+		p1 = (y+1)*cr+x;
 	    }
+	    dsf_merge(dsf, p0, p1);
+
+	    pos++;
 	}
+	if (adv)
+	    pos++;
+    }
+    *pdesc = desc;
 
-	assert(p - desc < 7 * area);
-	*p++ = '\0';
-	desc = sresize(desc, p - desc, char);
+    /*
+     * When desc is exhausted, we expect to have gone exactly
+     * one space _past_ the end of the grid, due to the dummy
+     * edge at the end.
+     */
+    if (pos != 2*cr*(cr-1)+1) {
+	sfree(dsf);
+	return "Not enough data in block structure specification";
     }
 
-    sfree(grid);
-
-    return desc;
+    return NULL;
 }
 
-static char *validate_desc(game_params *params, char *desc)
+static char *validate_grid_desc(char **pdesc, int range, int area)
 {
-    int cr = params->c * params->r, area = cr*cr;
+    char *desc = *pdesc;
     int squares = 0;
-    int *dsf;
-
     while (*desc && *desc != ',') {
         int n = *desc++;
         if (n >= 'a' && n <= 'z') {
@@ -2562,7 +3796,7 @@
             /* do nothing */;
         } else if (n > '0' && n <= '9') {
             int val = atoi(desc-1);
-            if (val < 1 || val > params->c * params->r)
+            if (val < 1 || val > range)
                 return "Out-of-range number in game description";
             squares++;
             while (*desc >= '0' && *desc <= '9')
@@ -2576,140 +3810,127 @@
 
     if (squares > area)
         return "Too much data to fit in grid";
+    *pdesc = desc;
+    return NULL;
+}
 
-    if (params->r == 1) {
-	int pos;
+static char *validate_block_desc(char **pdesc, int cr, int area,
+				 int min_nr_blocks, int max_nr_blocks,
+				 int min_nr_squares, int max_nr_squares)
+{
+    char *err;
+    int *dsf;
 
-	/*
-	 * Now we expect a suffix giving the jigsaw block
-	 * structure. Parse it and validate that it divides the
-	 * grid into the right number of regions which are the
-	 * right size.
-	 */
-	if (*desc != ',')
-	    return "Expected jigsaw block structure in game description";
-	pos = 0;
+    err = spec_to_dsf(pdesc, &dsf, cr, area);
+    if (err) {
+	return err;
+    }
 
-	dsf = snew_dsf(area);
-	desc++;
+    if (min_nr_squares == max_nr_squares) {
+	assert(min_nr_blocks == max_nr_blocks);
+	assert(min_nr_blocks * min_nr_squares == area);
+    }
+    /*
+     * Now we've got our dsf. Verify that it matches
+     * expectations.
+     */
+    {
+	int *canons, *counts;
+	int i, j, c, ncanons = 0;
 
-	while (*desc) {
-	    int c, adv;
+	canons = snewn(max_nr_blocks, int);
+	counts = snewn(max_nr_blocks, int);
 
-	    if (*desc == '_')
-		c = 0;
-	    else if (*desc >= 'a' && *desc <= 'z')
-		c = *desc - 'a' + 1;
-	    else {
-		sfree(dsf);
-		return "Invalid character in game description";
-	    }
-	    desc++;
+	for (i = 0; i < area; i++) {
+	    j = dsf_canonify(dsf, i);
 
-	    adv = (c != 25);	       /* 'z' is a special case */
+	    for (c = 0; c < ncanons; c++)
+		if (canons[c] == j) {
+		    counts[c]++;
+		    if (counts[c] > max_nr_squares) {
+			sfree(dsf);
+			sfree(canons);
+			sfree(counts);
+			return "A jigsaw block is too big";
+		    }
+		    break;
+		}
 
-	    while (c-- > 0) {
-		int p0, p1;
-
-		/*
-		 * Non-edge; merge the two dsf classes on either
-		 * side of it.
-		 */
-		if (pos >= 2*cr*(cr-1)) {
+	    if (c == ncanons) {
+		if (ncanons >= max_nr_blocks) {
 		    sfree(dsf);
-		    return "Too much data in block structure specification";
-		} else if (pos < cr*(cr-1)) {
-		    int y = pos/(cr-1);
-		    int x = pos%(cr-1);
-		    p0 = y*cr+x;
-		    p1 = y*cr+x+1;
-		} else {
-		    int x = pos/(cr-1) - cr;
-		    int y = pos%(cr-1);
-		    p0 = y*cr+x;
-		    p1 = (y+1)*cr+x;
+		    sfree(canons);
+		    sfree(counts);
+		    return "Too many distinct jigsaw blocks";
 		}
-		dsf_merge(dsf, p0, p1);
-
-		pos++;
+		canons[ncanons] = j;
+		counts[ncanons] = 1;
+		ncanons++;
 	    }
-	    if (adv)
-		pos++;
 	}
 
-	/*
-	 * When desc is exhausted, we expect to have gone exactly
-	 * one space _past_ the end of the grid, due to the dummy
-	 * edge at the end.
-	 */
-	if (pos != 2*cr*(cr-1)+1) {
+	if (ncanons < min_nr_blocks) {
 	    sfree(dsf);
-	    return "Not enough data in block structure specification";
+	    sfree(canons);
+	    sfree(counts);
+	    return "Not enough distinct jigsaw blocks";
 	}
+	for (c = 0; c < ncanons; c++) {
+	    if (counts[c] < min_nr_squares) {
+		sfree(dsf);
+		sfree(canons);
+		sfree(counts);
+		return "A jigsaw block is too small";
+	    }
+	}
+	sfree(canons);
+	sfree(counts);
+    }
 
-	/*
-	 * Now we've got our dsf. Verify that it matches
-	 * expectations.
-	 */
-	{
-	    int *canons, *counts;
-	    int i, j, c, ncanons = 0;
+    sfree(dsf);
+    return NULL;
+}
 
-	    canons = snewn(cr, int);
-	    counts = snewn(cr, int);
+static char *validate_desc(game_params *params, char *desc)
+{
+    int cr = params->c * params->r, area = cr*cr;
+    char *err;
 
-	    for (i = 0; i < area; i++) {
-		j = dsf_canonify(dsf, i);
+    err = validate_grid_desc(&desc, cr, area);
+    if (err)
+	return err;
 
-		for (c = 0; c < ncanons; c++)
-		    if (canons[c] == j) {
-			counts[c]++;
-			if (counts[c] > cr) {
-			    sfree(dsf);
-			    sfree(canons);
-			    sfree(counts);
-			    return "A jigsaw block is too big";
-			}
-			break;
-		    }
+    if (params->r == 1) {
+	/*
+	 * Now we expect a suffix giving the jigsaw block
+	 * structure. Parse it and validate that it divides the
+	 * grid into the right number of regions which are the
+	 * right size.
+	 */
+	if (*desc != ',')
+	    return "Expected jigsaw block structure in game description";
+	desc++;
+	err = validate_block_desc(&desc, cr, area, cr, cr, cr, cr);
+	if (err)
+	    return err;
 
-		if (c == ncanons) {
-		    if (ncanons >= cr) {
-			sfree(dsf);
-			sfree(canons);
-			sfree(counts);
-			return "Too many distinct jigsaw blocks";
-		    }
-		    canons[ncanons] = j;
-		    counts[ncanons] = 1;
-		    ncanons++;
-		}
-	    }
-
-	    /*
-	     * If we've managed to get through that loop without
-	     * tripping either of the error conditions, then we
-	     * must have partitioned the entire grid into at most
-	     * cr blocks of at most cr squares each; therefore we
-	     * must have _exactly_ cr blocks of _exactly_ cr
-	     * squares each. I'll verify that by assertion just in
-	     * case something has gone horribly wrong, but it
-	     * shouldn't have been able to happen by duff input,
-	     * only by a bug in the above code.
-	     */
-	    assert(ncanons == cr);
-	    for (c = 0; c < ncanons; c++)
-		assert(counts[c] == cr);
-
-	    sfree(canons);
-	    sfree(counts);
-	}
-
-	sfree(dsf);
-    } else {
-	if (*desc)
-	    return "Unexpected jigsaw block structure in game description";
     }
+    if (params->killer) {
+	if (*desc != ',')
+	    return "Expected killer block structure in game description";
+	desc++;
+	err = validate_block_desc(&desc, cr, area, cr, area, 2, cr);
+	if (err)
+	    return err;
+	if (*desc != ',')
+	    return "Expected killer clue grid in game description";
+	desc++;
+	err = validate_grid_desc(&desc, cr * area, area);
+	if (err)
+	    return err;
+    }
+    if (*desc)
+	return "Unexpected data at end of game description";
 
     return NULL;
 }
@@ -2720,8 +3941,11 @@
     int c = params->c, r = params->r, cr = c*r, area = cr * cr;
     int i;
 
+    precompute_sum_bits();
+
     state->cr = cr;
     state->xtype = params->xtype;
+    state->killer = params->killer;
 
     state->grid = snewn(area, digit);
     state->pencil = snewn(area * cr, unsigned char);
@@ -2729,135 +3953,56 @@
     state->immutable = snewn(area, unsigned char);
     memset(state->immutable, FALSE, area);
 
-    state->blocks = snew(struct block_structure);
-    state->blocks->c = c; state->blocks->r = r;
-    state->blocks->refcount = 1;
-    state->blocks->whichblock = snewn(area*2, int);
-    state->blocks->blocks = snewn(cr, int *);
-    for (i = 0; i < cr; i++)
-	state->blocks->blocks[i] = state->blocks->whichblock + area + i*cr;
-#ifdef STANDALONE_SOLVER
-    state->blocks->blocknames = (char **)smalloc(cr*(sizeof(char *)+80));
-#endif
+    state->blocks = alloc_block_structure (c, r, area, cr, cr);
 
+    if (params->killer) {
+	state->kblocks = alloc_block_structure (c, r, area, cr, area);
+	state->kgrid = snewn(area, digit);
+    } else {
+	state->kblocks = NULL;
+	state->kgrid = NULL;
+    }
     state->completed = state->cheated = FALSE;
 
-    i = 0;
-    while (*desc && *desc != ',') {
-        int n = *desc++;
-        if (n >= 'a' && n <= 'z') {
-            int run = n - 'a' + 1;
-            assert(i + run <= area);
-            while (run-- > 0)
-                state->grid[i++] = 0;
-        } else if (n == '_') {
-            /* do nothing */;
-        } else if (n > '0' && n <= '9') {
-            assert(i < area);
+    desc = spec_to_grid(desc, state->grid, area);
+    for (i = 0; i < area; i++)
+	if (state->grid[i] != 0)
 	    state->immutable[i] = TRUE;
-            state->grid[i++] = atoi(desc-1);
-            while (*desc >= '0' && *desc <= '9')
-                desc++;
-        } else {
-            assert(!"We can't get here");
-        }
-    }
-    assert(i == area);
 
     if (r == 1) {
-	int pos = 0;
+	char *err;
 	int *dsf;
-	int nb;
-
 	assert(*desc == ',');
-
-	dsf = snew_dsf(area);
 	desc++;
-
-	while (*desc) {
-	    int c, adv;
-
-	    if (*desc == '_')
-		c = 0;
-	    else {
-                assert(*desc >= 'a' && *desc <= 'z');
-		c = *desc - 'a' + 1;
-            }
-	    desc++;
-
-	    adv = (c != 25);	       /* 'z' is a special case */
-
-	    while (c-- > 0) {
-		int p0, p1;
-
-		/*
-		 * Non-edge; merge the two dsf classes on either
-		 * side of it.
-		 */
-		assert(pos < 2*cr*(cr-1));
-		if (pos < cr*(cr-1)) {
-		    int y = pos/(cr-1);
-		    int x = pos%(cr-1);
-		    p0 = y*cr+x;
-		    p1 = y*cr+x+1;
-		} else {
-		    int x = pos/(cr-1) - cr;
-		    int y = pos%(cr-1);
-		    p0 = y*cr+x;
-		    p1 = (y+1)*cr+x;
-		}
-		dsf_merge(dsf, p0, p1);
-
-		pos++;
-	    }
-	    if (adv)
-		pos++;
-	}
-
-	/*
-	 * When desc is exhausted, we expect to have gone exactly
-	 * one space _past_ the end of the grid, due to the dummy
-	 * edge at the end.
-	 */
-	assert(pos == 2*cr*(cr-1)+1);
-
-	/*
-	 * Now we've got our dsf. Translate it into a block
-	 * structure.
-	 */
-	nb = 0;
-	for (i = 0; i < area; i++)
-	    state->blocks->whichblock[i] = -1;
-	for (i = 0; i < area; i++) {
-	    int j = dsf_canonify(dsf, i);
-	    if (state->blocks->whichblock[j] < 0)
-		state->blocks->whichblock[j] = nb++;
-	    state->blocks->whichblock[i] = state->blocks->whichblock[j];
-	}
-	assert(nb == cr);
-
+	err = spec_to_dsf(&desc, &dsf, cr, area);
+	assert(err == NULL);
+	dsf_to_blocks(dsf, state->blocks, cr, cr);
 	sfree(dsf);
     } else {
 	int x, y;
 
-	assert(!*desc);
-
 	for (y = 0; y < cr; y++)
 	    for (x = 0; x < cr; x++)
 		state->blocks->whichblock[y*cr+x] = (y/c) * c + (x/r);
     }
+    make_blocks_from_whichblock(state->blocks);
 
-    /*
-     * Having sorted out whichblock[], set up the block index arrays.
-     */
-    for (i = 0; i < cr; i++)
-	state->blocks->blocks[i][cr-1] = 0;
-    for (i = 0; i < area; i++) {
-	int b = state->blocks->whichblock[i];
-	int j = state->blocks->blocks[b][cr-1]++;
-	assert(j < cr);
-	state->blocks->blocks[b][j] = i;
+    if (params->killer) {
+	char *err;
+	int *dsf;
+	assert(*desc == ',');
+	desc++;
+	err = spec_to_dsf(&desc, &dsf, cr, area);
+	assert(err == NULL);
+	dsf_to_blocks(dsf, state->kblocks, cr, area);
+	sfree(dsf);
+	make_blocks_from_whichblock(state->kblocks);
+
+	assert(*desc == ',');
+	desc++;
+	desc = spec_to_grid(desc, state->kgrid, area);
     }
+    assert(!*desc);
 
 #ifdef STANDALONE_SOLVER
     /*
@@ -2867,9 +4012,6 @@
 	char *p = (char *)(state->blocks->blocknames + cr);
 
 	if (r == 1) {
-	    for (i = 0; i < cr; i++)
-		state->blocks->blocknames[i] = NULL;
-
 	    for (i = 0; i < area; i++) {
 		int j = state->blocks->whichblock[i];
 		if (!state->blocks->blocknames[j]) {
@@ -2902,13 +4044,24 @@
 
     ret->cr = state->cr;
     ret->xtype = state->xtype;
+    ret->killer = state->killer;
 
     ret->blocks = state->blocks;
     ret->blocks->refcount++;
 
+    ret->kblocks = state->kblocks;
+    if (ret->kblocks)
+	ret->kblocks->refcount++;
+
     ret->grid = snewn(area, digit);
     memcpy(ret->grid, state->grid, area);
 
+    if (state->killer) {
+	ret->kgrid = snewn(area, digit);
+	memcpy(ret->kgrid, state->kgrid, area);
+    } else
+	ret->kgrid = NULL;
+
     ret->pencil = snewn(area * cr, unsigned char);
     memcpy(ret->pencil, state->pencil, area * cr);
 
@@ -2923,14 +4076,10 @@
 
 static void free_game(game_state *state)
 {
-    if (--state->blocks->refcount == 0) {
-	sfree(state->blocks->whichblock);
-	sfree(state->blocks->blocks);
-#ifdef STANDALONE_SOLVER
-	sfree(state->blocks->blocknames);
-#endif
-	sfree(state->blocks);
-    }
+    free_block_structure(state->blocks);
+    if (state->kblocks)
+	free_block_structure(state->kblocks);
+
     sfree(state->immutable);
     sfree(state->pencil);
     sfree(state->grid);
@@ -2943,7 +4092,7 @@
     int cr = state->cr;
     char *ret;
     digit *grid;
-    int solve_ret;
+    struct difficulty dlev;
 
     /*
      * If we already have the solution in ai, save ourselves some
@@ -2954,13 +4103,16 @@
 
     grid = snewn(cr*cr, digit);
     memcpy(grid, state->grid, cr*cr);
-    solve_ret = solver(cr, state->blocks, state->xtype, grid, DIFF_RECURSIVE);
+    dlev.maxdiff = DIFF_RECURSIVE;
+    dlev.maxkdiff = DIFF_KINTERSECT;
+    solver(cr, state->blocks, state->kblocks, state->xtype, grid,
+	   state->kgrid, &dlev);
 
     *error = NULL;
 
-    if (solve_ret == DIFF_IMPOSSIBLE)
+    if (dlev.diff == DIFF_IMPOSSIBLE)
 	*error = "No solution exists for this puzzle";
-    else if (solve_ret == DIFF_AMBIGUOUS)
+    else if (dlev.diff == DIFF_AMBIGUOUS)
 	*error = "Multiple solutions exist for this puzzle";
 
     if (*error) {
@@ -3164,11 +4316,20 @@
 
 static int game_can_format_as_text_now(game_params *params)
 {
+    /*
+     * Formatting Killer puzzles as text is currently unsupported. I
+     * can't think of any sensible way of doing it which doesn't
+     * involve expanding the puzzle to such a large scale as to make
+     * it unusable.
+     */
+    if (params->killer)
+        return FALSE;
     return TRUE;
 }
 
 static char *game_text_format(game_state *state)
 {
+    assert(!state->kblocks);
     return grid_text_format(state->cr, state->blocks, state->xtype,
 			    state->grid);
 }
@@ -3460,6 +4621,10 @@
     ret[COL_PENCIL * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
     ret[COL_PENCIL * 3 + 2] = ret[COL_BACKGROUND * 3 + 2];
 
+    ret[COL_KILLER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0];
+    ret[COL_KILLER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1];
+    ret[COL_KILLER * 3 + 2] = 0.1F * ret[COL_BACKGROUND * 3 + 2];
+
     *ncolours = NCOLOURS;
     return ret;
 }
@@ -3496,9 +4661,10 @@
 			int x, int y, int hl)
 {
     int cr = state->cr;
-    int tx, ty;
+    int tx, ty, tw, th;
     int cx, cy, cw, ch;
-    char str[2];
+    int col_killer = (hl & 32 ? COL_ERROR : COL_KILLER);
+    char str[20];
 
     if (ds->grid[y*cr+x] == state->grid[y*cr+x] &&
         ds->hl[y*cr+x] == hl &&
@@ -3510,8 +4676,8 @@
 
     cx = tx;
     cy = ty;
-    cw = TILE_SIZE-1-2*GRIDEXTRA;
-    ch = TILE_SIZE-1-2*GRIDEXTRA;
+    cw = tw = TILE_SIZE-1-2*GRIDEXTRA;
+    ch = th = TILE_SIZE-1-2*GRIDEXTRA;
 
     if (x > 0 && state->blocks->whichblock[y*cr+x] == state->blocks->whichblock[y*cr+x-1])
 	cx -= GRIDEXTRA, cw += GRIDEXTRA;
@@ -3555,6 +4721,69 @@
         draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT);
     }
 
+    if (state->kblocks) {
+	int t = GRIDEXTRA * 3;
+	int kl = cx - 1, kt = cy - 1, kr = cx + cw, kb = cy + ch;
+	int has_left = 0, has_right = 0, has_top = 0, has_bottom = 0;
+
+	/*
+	 * First, draw the lines dividing this area from neighbouring
+	 * different areas.
+	 */
+	if (x == 0 || state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[y*cr+x-1])
+	    has_left = 1, kl += t;
+	if (x+1 >= cr || state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[y*cr+x+1])
+	    has_right = 1, kr -= t;
+	if (y == 0 || state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y-1)*cr+x])
+	    has_top = 1, kt += t;
+	if (y+1 >= cr || state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y+1)*cr+x])
+	    has_bottom = 1, kb -= t;
+	if (has_top)
+	    draw_line(dr, kl, kt, kr, kt, col_killer);
+	if (has_bottom)
+	    draw_line(dr, kl, kb, kr, kb, col_killer);
+	if (has_left)
+	    draw_line(dr, kl, kt, kl, kb, col_killer);
+	if (has_right)
+	    draw_line(dr, kr, kt, kr, kb, col_killer);
+	/*
+	 * Now, take care of the corners (just as for the normal borders).
+	 * We only need a corner if there wasn't a full edge.
+	 */
+	if (x > 0 && y > 0 && !has_left && !has_top
+	    && state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y-1)*cr+x-1])
+	{
+	    draw_line(dr, kl, kt + t, kl + t, kt + t, col_killer);
+	    draw_line(dr, kl + t, kt, kl + t, kt + t, col_killer);
+	}
+	if (x+1 < cr && y > 0 && !has_right && !has_top
+	    && state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y-1)*cr+x+1])
+	{
+	    draw_line(dr, cx + cw - t, kt + t, cx + cw, kt + t, col_killer);
+	    draw_line(dr, cx + cw - t, kt, cx + cw - t, kt + t, col_killer);
+	}
+	if (x > 0 && y+1 < cr && !has_left && !has_bottom
+	    && state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y+1)*cr+x-1])
+	{
+	    draw_line(dr, kl, cy + ch - t, kl + t, cy + ch - t, col_killer);
+	    draw_line(dr, kl + t, cy + ch - t, kl + t, cy + ch, col_killer);
+	}
+	if (x+1 < cr && y+1 < cr && !has_right && !has_bottom
+	    && state->kblocks->whichblock[y*cr+x] != state->kblocks->whichblock[(y+1)*cr+x+1])
+	{
+	    draw_line(dr, cx + cw - t, cy + ch - t, cx + cw - t, cy + ch, col_killer);
+	    draw_line(dr, cx + cw - t, cy + ch - t, cx + cw, cy + ch - t, col_killer);
+	}
+
+    }
+
+    if (state->killer && state->kgrid[y*cr+x]) {
+	sprintf (str, "%d", state->kgrid[y*cr+x]);
+	draw_text(dr, tx + GRIDEXTRA * 4, ty + GRIDEXTRA * 4 + TILE_SIZE/4,
+		  FONT_VARIABLE, TILE_SIZE/4, ALIGN_VNORMAL | ALIGN_HLEFT,
+		  col_killer, str);
+    }
+
     /* new number needs drawing? */
     if (state->grid[y*cr+x]) {
 	str[1] = '\0';
@@ -3566,42 +4795,113 @@
 		  state->immutable[y*cr+x] ? COL_CLUE : (hl & 16) ? COL_ERROR : COL_USER, str);
     } else {
         int i, j, npencil;
-	int pw, ph, pmax, fontsize;
+	int pl, pr, pt, pb;
+	float bestsize;
+	int pw, ph, minph, pbest, fontsize;
 
-        /* count the pencil marks required */
+        /* Count the pencil marks required. */
         for (i = npencil = 0; i < cr; i++)
             if (state->pencil[(y*cr+x)*cr+i])
 		npencil++;
+	if (npencil) {
 
-	/*
-	 * It's not sensible to arrange pencil marks in the same
-	 * layout as the squares within a block, because this leads
-	 * to the font being too small. Instead, we arrange pencil
-	 * marks in the nearest thing we can to a square layout,
-	 * and we adjust the square layout depending on the number
-	 * of pencil marks in the square.
-	 */
-	for (pw = 1; pw * pw < npencil; pw++);
-	if (pw < 3) pw = 3;	       /* otherwise it just looks _silly_ */
-	ph = (npencil + pw - 1) / pw;
-	if (ph < 2) ph = 2;	       /* likewise */
-	pmax = max(pw, ph);
-	fontsize = TILE_SIZE/(pmax*(11-pmax)/8);
+	    minph = 2;
 
-        for (i = j = 0; i < cr; i++)
-            if (state->pencil[(y*cr+x)*cr+i]) {
-                int dx = j % pw, dy = j / pw;
+	    /*
+	     * Determine the bounding rectangle within which we're going
+	     * to put the pencil marks.
+	     */
+	    /* Start with the whole square */
+	    pl = tx + GRIDEXTRA;
+	    pr = pl + TILE_SIZE - GRIDEXTRA;
+	    pt = ty + GRIDEXTRA;
+	    pb = pt + TILE_SIZE - GRIDEXTRA;
+	    if (state->killer) {
+		/*
+		 * Make space for the Killer cages. We do this
+		 * unconditionally, for uniformity between squares,
+		 * rather than making it depend on whether a Killer
+		 * cage edge is actually present on any given side.
+		 */
+		pl += GRIDEXTRA * 3;
+		pr -= GRIDEXTRA * 3;
+		pt += GRIDEXTRA * 3;
+		pb -= GRIDEXTRA * 3;
+		if (state->kgrid[y*cr+x] != 0) {
+		    /* Make further space for the Killer number. */
+		    pt += TILE_SIZE/4;
+		    /* minph--; */
+		}
+	    }
 
-                str[1] = '\0';
-                str[0] = i + '1';
-                if (str[0] > '9')
-                    str[0] += 'a' - ('9'+1);
-                draw_text(dr, tx + (4*dx+3) * TILE_SIZE / (4*pw+2),
-                          ty + (4*dy+3) * TILE_SIZE / (4*ph+2),
-                          FONT_VARIABLE, fontsize,
-                          ALIGN_VCENTRE | ALIGN_HCENTRE, COL_PENCIL, str);
-                j++;
-            }
+	    /*
+	     * We arrange our pencil marks in a grid layout, with
+	     * the number of rows and columns adjusted to allow the
+	     * maximum font size.
+	     *
+	     * So now we work out what the grid size ought to be.
+	     */
+	    bestsize = 0.0;
+	    pbest = 0;
+	    /* Minimum */
+	    for (pw = 3; pw < max(npencil,4); pw++) {
+		float fw, fh, fs;
+
+		ph = (npencil + pw - 1) / pw;
+		ph = max(ph, minph);
+		fw = (pr - pl) / (float)pw;
+		fh = (pb - pt) / (float)ph;
+		fs = min(fw, fh);
+		if (fs > bestsize) {
+		    bestsize = fs;
+		    pbest = pw;
+		}
+	    }
+	    assert(pbest > 0);
+	    pw = pbest;
+	    ph = (npencil + pw - 1) / pw;
+	    ph = max(ph, minph);
+
+	    /*
+	     * Now we've got our grid dimensions, work out the pixel
+	     * size of a grid element, and round it to the nearest
+	     * pixel. (We don't want rounding errors to make the
+	     * grid look uneven at low pixel sizes.)
+	     */
+	    fontsize = min((pr - pl) / pw, (pb - pt) / ph);
+
+	    /*
+	     * Centre the resulting figure in the square.
+	     */
+	    pl = tx + (TILE_SIZE - fontsize * pw) / 2;
+	    pt = ty + (TILE_SIZE - fontsize * ph) / 2;
+
+	    /*
+	     * And move it down a bit if it's collided with the
+	     * Killer cage number.
+	     */
+	    if (state->killer && state->kgrid[y*cr+x] != 0) {
+		pt = max(pt, ty + GRIDEXTRA * 3 + TILE_SIZE/4);
+	    }
+
+	    /*
+	     * Now actually draw the pencil marks.
+	     */
+	    for (i = j = 0; i < cr; i++)
+		if (state->pencil[(y*cr+x)*cr+i]) {
+		    int dx = j % pw, dy = j / pw;
+
+		    str[1] = '\0';
+		    str[0] = i + '1';
+		    if (str[0] > '9')
+			str[0] += 'a' - ('9'+1);
+		    draw_text(dr, pl + fontsize * (2*dx+1) / 2,
+			      pt + fontsize * (2*dy+1) / 2,
+			      FONT_VARIABLE, fontsize,
+			      ALIGN_VCENTRE | ALIGN_HCENTRE, COL_PENCIL, str);
+		    j++;
+		}
+	}
     }
 
     unclip(dr);
@@ -3688,6 +4988,29 @@
 				     (ondiag1(y*cr+x) && (ds->entered_items[cr+d-1] & 128))))))
 		highlight |= 16;
 
+	    if (d && state->kblocks) {
+		int i, b = state->kblocks->whichblock[y*cr+x];
+		int n_squares = state->kblocks->nr_squares[b];
+		int sum = 0, clue = 0;
+		for (i = 0; i < n_squares; i++) {
+		    int xy = state->kblocks->blocks[b][i];
+		    if (state->grid[xy] == 0)
+			break;
+
+		    sum += state->grid[xy];
+		    if (state->kgrid[xy]) {
+			assert(clue == 0);
+			clue = state->kgrid[xy];
+		    }
+		}
+
+		if (i == n_squares) {
+		    assert(clue != 0);
+		    if (sum != clue)
+			highlight |= 32;
+		}
+	    }
+
 	    draw_number(dr, ds, state, x, y, highlight);
 	}
     }
@@ -3718,6 +5041,8 @@
 
 static int game_timing_state(game_state *state, game_ui *ui)
 {
+    if (state->completed)
+	return FALSE;
     return TRUE;
 }
 
@@ -3735,6 +5060,175 @@
     *y = ph / 100.0F;
 }
 
+/*
+ * Subfunction to draw the thick lines between cells. In order to do
+ * this using the line-drawing rather than rectangle-drawing API (so
+ * as to get line thicknesses to scale correctly) and yet have
+ * correctly mitred joins between lines, we must do this by tracing
+ * the boundary of each sub-block and drawing it in one go as a
+ * single polygon.
+ *
+ * This subfunction is also reused with thinner dotted lines to
+ * outline the Killer cages, this time offsetting the outline toward
+ * the interior of the affected squares.
+ */
+static void outline_block_structure(drawing *dr, game_drawstate *ds,
+				    game_state *state,
+				    struct block_structure *blocks,
+				    int ink, int inset)
+{
+    int cr = state->cr;
+    int *coords;
+    int bi, i, n;
+    int x, y, dx, dy, sx, sy, sdx, sdy;
+
+    /*
+     * Maximum perimeter of a k-omino is 2k+2. (Proof: start
+     * with k unconnected squares, with total perimeter 4k.
+     * Now repeatedly join two disconnected components
+     * together into a larger one; every time you do so you
+     * remove at least two unit edges, and you require k-1 of
+     * these operations to create a single connected piece, so
+     * you must have at most 4k-2(k-1) = 2k+2 unit edges left
+     * afterwards.)
+     */
+    coords = snewn(4*cr+4, int);   /* 2k+2 points, 2 coords per point */
+
+    /*
+     * Iterate over all the blocks.
+     */
+    for (bi = 0; bi < blocks->nr_blocks; bi++) {
+	if (blocks->nr_squares[bi] == 0)
+	    continue;
+
+	/*
+	 * For each block, find a starting square within it
+	 * which has a boundary at the left.
+	 */
+	for (i = 0; i < cr; i++) {
+	    int j = blocks->blocks[bi][i];
+	    if (j % cr == 0 || blocks->whichblock[j-1] != bi)
+		break;
+	}
+	assert(i < cr); /* every block must have _some_ leftmost square */
+	x = blocks->blocks[bi][i] % cr;
+	y = blocks->blocks[bi][i] / cr;
+	dx = -1;
+	dy = 0;
+
+	/*
+	 * Now begin tracing round the perimeter. At all
+	 * times, (x,y) describes some square within the
+	 * block, and (x+dx,y+dy) is some adjacent square
+	 * outside it; so the edge between those two squares
+	 * is always an edge of the block.
+	 */
+	sx = x, sy = y, sdx = dx, sdy = dy;   /* save starting position */
+	n = 0;
+	do {
+	    int cx, cy, tx, ty, nin;
+
+	    /*
+	     * Advance to the next edge, by looking at the two
+	     * squares beyond it. If they're both outside the block,
+	     * we turn right (by leaving x,y the same and rotating
+	     * dx,dy clockwise); if they're both inside, we turn
+	     * left (by rotating dx,dy anticlockwise and contriving
+	     * to leave x+dx,y+dy unchanged); if one of each, we go
+	     * straight on (and may enforce by assertion that
+	     * they're one of each the _right_ way round).
+	     */
+	    nin = 0;
+	    tx = x - dy + dx;
+	    ty = y + dx + dy;
+	    nin += (tx >= 0 && tx < cr && ty >= 0 && ty < cr &&
+		    blocks->whichblock[ty*cr+tx] == bi);
+	    tx = x - dy;
+	    ty = y + dx;
+	    nin += (tx >= 0 && tx < cr && ty >= 0 && ty < cr &&
+		    blocks->whichblock[ty*cr+tx] == bi);
+	    if (nin == 0) {
+		/*
+		 * Turn right.
+		 */
+		int tmp;
+		tmp = dx;
+		dx = -dy;
+		dy = tmp;
+	    } else if (nin == 2) {
+		/*
+		 * Turn left.
+		 */
+		int tmp;
+
+		x += dx;
+		y += dy;
+
+		tmp = dx;
+		dx = dy;
+		dy = -tmp;
+
+		x -= dx;
+		y -= dy;
+	    } else {
+		/*
+		 * Go straight on.
+		 */
+		x -= dy;
+		y += dx;
+	    }
+
+	    /*
+	     * Now enforce by assertion that we ended up
+	     * somewhere sensible.
+	     */
+	    assert(x >= 0 && x < cr && y >= 0 && y < cr &&
+		   blocks->whichblock[y*cr+x] == bi);
+	    assert(x+dx < 0 || x+dx >= cr || y+dy < 0 || y+dy >= cr ||
+		   blocks->whichblock[(y+dy)*cr+(x+dx)] != bi);
+
+	    /*
+	     * Record the point we just went past at one end of the
+	     * edge. To do this, we translate (x,y) down and right
+	     * by half a unit (so they're describing a point in the
+	     * _centre_ of the square) and then translate back again
+	     * in a manner rotated by dy and dx.
+	     */
+	    assert(n < 2*cr+2);
+	    cx = ((2*x+1) + dy + dx) / 2;
+	    cy = ((2*y+1) - dx + dy) / 2;
+	    coords[2*n+0] = BORDER + cx * TILE_SIZE;
+	    coords[2*n+1] = BORDER + cy * TILE_SIZE;
+	    coords[2*n+0] -= dx * inset;
+	    coords[2*n+1] -= dy * inset;
+	    if (nin == 0) {
+		/*
+		 * We turned right, so inset this corner back along
+		 * the edge towards the centre of the square.
+		 */
+		coords[2*n+0] -= dy * inset;
+		coords[2*n+1] += dx * inset;
+	    } else if (nin == 2) {
+		/*
+		 * We turned left, so inset this corner further
+		 * _out_ along the edge into the next square.
+		 */
+		coords[2*n+0] += dy * inset;
+		coords[2*n+1] -= dx * inset;
+	    }
+	    n++;
+
+	} while (x != sx || y != sy || dx != sdx || dy != sdy);
+
+	/*
+	 * That's our polygon; now draw it.
+	 */
+	draw_polygon(dr, coords, n, -1, ink);
+    }
+
+    sfree(coords);
+}
+
 static void game_print(drawing *dr, game_state *state, int tilesize)
 {
     int cr = state->cr;
@@ -3783,152 +5277,36 @@
     }
 
     /*
-     * Thick lines between cells. In order to do this using the
-     * line-drawing rather than rectangle-drawing API (so as to
-     * get line thicknesses to scale correctly) and yet have
-     * correctly mitred joins between lines, we must do this by
-     * tracing the boundary of each sub-block and drawing it in
-     * one go as a single polygon.
+     * Thick lines between cells.
      */
-    {
-	int *coords;
-	int bi, i, n;
-	int x, y, dx, dy, sx, sy, sdx, sdy;
+    print_line_width(dr, 3 * TILE_SIZE / 40);
+    outline_block_structure(dr, ds, state, state->blocks, ink, 0);
 
-	print_line_width(dr, 3 * TILE_SIZE / 40);
-
-	/*
-	 * Maximum perimeter of a k-omino is 2k+2. (Proof: start
-	 * with k unconnected squares, with total perimeter 4k.
-	 * Now repeatedly join two disconnected components
-	 * together into a larger one; every time you do so you
-	 * remove at least two unit edges, and you require k-1 of
-	 * these operations to create a single connected piece, so
-	 * you must have at most 4k-2(k-1) = 2k+2 unit edges left
-	 * afterwards.)
-	 */
-	coords = snewn(4*cr+4, int);   /* 2k+2 points, 2 coords per point */
-
-	/*
-	 * Iterate over all the blocks.
-	 */
-	for (bi = 0; bi < cr; bi++) {
-
-	    /*
-	     * For each block, find a starting square within it
-	     * which has a boundary at the left.
-	     */
-	    for (i = 0; i < cr; i++) {
-		int j = state->blocks->blocks[bi][i];
-		if (j % cr == 0 || state->blocks->whichblock[j-1] != bi)
-		    break;
-	    }
-	    assert(i < cr); /* every block must have _some_ leftmost square */
-	    x = state->blocks->blocks[bi][i] % cr;
-	    y = state->blocks->blocks[bi][i] / cr;
-	    dx = -1;
-	    dy = 0;
-
-	    /*
-	     * Now begin tracing round the perimeter. At all
-	     * times, (x,y) describes some square within the
-	     * block, and (x+dx,y+dy) is some adjacent square
-	     * outside it; so the edge between those two squares
-	     * is always an edge of the block.
-	     */
-	    sx = x, sy = y, sdx = dx, sdy = dy;   /* save starting position */
-	    n = 0;
-	    do {
-		int cx, cy, tx, ty, nin;
-
-		/*
-		 * To begin with, record the point at one end of
-		 * the edge. To do this, we translate (x,y) down
-		 * and right by half a unit (so they're describing
-		 * a point in the _centre_ of the square) and then
-		 * translate back again in a manner rotated by dy
-		 * and dx.
-		 */
-		assert(n < 2*cr+2);
-		cx = ((2*x+1) + dy + dx) / 2;
-		cy = ((2*y+1) - dx + dy) / 2;
-		coords[2*n+0] = BORDER + cx * TILE_SIZE;
-		coords[2*n+1] = BORDER + cy * TILE_SIZE;
-		n++;
-
-		/*
-		 * Now advance to the next edge, by looking at the
-		 * two squares beyond it. If they're both outside
-		 * the block, we turn right (by leaving x,y the
-		 * same and rotating dx,dy clockwise); if they're
-		 * both inside, we turn left (by rotating dx,dy
-		 * anticlockwise and contriving to leave x+dx,y+dy
-		 * unchanged); if one of each, we go straight on
-		 * (and may enforce by assertion that they're one
-		 * of each the _right_ way round).
-		 */
-		nin = 0;
-		tx = x - dy + dx;
-		ty = y + dx + dy;
-		nin += (tx >= 0 && tx < cr && ty >= 0 && ty < cr &&
-			state->blocks->whichblock[ty*cr+tx] == bi);
-		tx = x - dy;
-		ty = y + dx;
-		nin += (tx >= 0 && tx < cr && ty >= 0 && ty < cr &&
-			state->blocks->whichblock[ty*cr+tx] == bi);
-		if (nin == 0) {
-		    /*
-		     * Turn right.
-		     */
-		    int tmp;
-		    tmp = dx;
-		    dx = -dy;
-		    dy = tmp;
-		} else if (nin == 2) {
-		    /*
-		     * Turn left.
-		     */
-		    int tmp;
-
-		    x += dx;
-		    y += dy;
-		    
-		    tmp = dx;
-		    dx = dy;
-		    dy = -tmp;
-
-		    x -= dx;
-		    y -= dy;
-		} else {
-		    /*
-		     * Go straight on.
-		     */
-		    x -= dy;
-		    y += dx;
+    /*
+     * Killer cages and their totals.
+     */
+    if (state->kblocks) {
+	print_line_width(dr, TILE_SIZE / 40);
+	print_line_dotted(dr, TRUE);
+	outline_block_structure(dr, ds, state, state->kblocks, ink,
+				5 * TILE_SIZE / 40);
+	print_line_dotted(dr, FALSE);
+	for (y = 0; y < cr; y++)
+	    for (x = 0; x < cr; x++)
+		if (state->kgrid[y*cr+x]) {
+		    char str[20];
+		    sprintf(str, "%d", state->kgrid[y*cr+x]);
+		    draw_text(dr,
+			      BORDER+x*TILE_SIZE + 7*TILE_SIZE/40,
+			      BORDER+y*TILE_SIZE + 16*TILE_SIZE/40,
+			      FONT_VARIABLE, TILE_SIZE/4,
+			      ALIGN_VNORMAL | ALIGN_HLEFT,
+			      ink, str);
 		}
-
-		/*
-		 * Now enforce by assertion that we ended up
-		 * somewhere sensible.
-		 */
-		assert(x >= 0 && x < cr && y >= 0 && y < cr &&
-		       state->blocks->whichblock[y*cr+x] == bi);
-		assert(x+dx < 0 || x+dx >= cr || y+dy < 0 || y+dy >= cr ||
-		       state->blocks->whichblock[(y+dy)*cr+(x+dx)] != bi);
-
-	    } while (x != sx || y != sy || dx != sdx || dy != sdy);
-
-	    /*
-	     * That's our polygon; now draw it.
-	     */
-	    draw_polygon(dr, coords, n, -1, ink);
-	}
-
-	sfree(coords);
     }
 
     /*
-     * Numbers.
+     * Standard (non-Killer) clue numbers.
      */
     for (y = 0; y < cr; y++)
 	for (x = 0; x < cr; x++)
@@ -3994,7 +5372,7 @@
     game_state *s;
     char *id = NULL, *desc, *err;
     int grade = FALSE;
-    int ret;
+    struct difficulty dlev;
 
     while (--argc > 0) {
         char *p = *++argv;
@@ -4031,18 +5409,27 @@
     }
     s = new_game(NULL, p, desc);
 
-    ret = solver(s->cr, s->blocks, s->xtype, s->grid, DIFF_RECURSIVE);
+    dlev.maxdiff = DIFF_RECURSIVE;
+    dlev.maxkdiff = DIFF_KINTERSECT;
+    solver(s->cr, s->blocks, s->kblocks, s->xtype, s->grid, s->kgrid, &dlev);
     if (grade) {
 	printf("Difficulty rating: %s\n",
-	       ret==DIFF_BLOCK ? "Trivial (blockwise positional elimination only)":
-	       ret==DIFF_SIMPLE ? "Basic (row/column/number elimination required)":
-	       ret==DIFF_INTERSECT ? "Intermediate (intersectional analysis required)":
-	       ret==DIFF_SET ? "Advanced (set elimination required)":
-	       ret==DIFF_EXTREME ? "Extreme (complex non-recursive techniques required)":
-	       ret==DIFF_RECURSIVE ? "Unreasonable (guesswork and backtracking required)":
-	       ret==DIFF_AMBIGUOUS ? "Ambiguous (multiple solutions exist)":
-	       ret==DIFF_IMPOSSIBLE ? "Impossible (no solution exists)":
+	       dlev.diff==DIFF_BLOCK ? "Trivial (blockwise positional elimination only)":
+	       dlev.diff==DIFF_SIMPLE ? "Basic (row/column/number elimination required)":
+	       dlev.diff==DIFF_INTERSECT ? "Intermediate (intersectional analysis required)":
+	       dlev.diff==DIFF_SET ? "Advanced (set elimination required)":
+	       dlev.diff==DIFF_EXTREME ? "Extreme (complex non-recursive techniques required)":
+	       dlev.diff==DIFF_RECURSIVE ? "Unreasonable (guesswork and backtracking required)":
+	       dlev.diff==DIFF_AMBIGUOUS ? "Ambiguous (multiple solutions exist)":
+	       dlev.diff==DIFF_IMPOSSIBLE ? "Impossible (no solution exists)":
 	       "INTERNAL ERROR: unrecognised difficulty code");
+	if (p->killer)
+	    printf("Killer diffculty: %s\n",
+		   dlev.kdiff==DIFF_KSINGLE ? "Trivial (single square cages only)":
+		   dlev.kdiff==DIFF_KMINMAX ? "Simple (maximum sum analysis required)":
+		   dlev.kdiff==DIFF_KSUMS ? "Intermediate (sum possibilities)":
+		   dlev.kdiff==DIFF_KINTERSECT ? "Advanced (sum region intersections)":
+		   "INTERNAL ERROR: unrecognised difficulty code");
     } else {
         printf("%s\n", grid_text_format(s->cr, s->blocks, s->xtype, s->grid));
     }