ref: 1c42aec23456b4d4aa7c6577f71603e9602f4863
parent: 399ac356bd3ef969d69dd89909a282b763402cef
author: Simon Tatham <anakin@pobox.com>
date: Sun May 20 10:28:48 EDT 2007
Updates and improvements from Jonas Koelker. [originally from svn r7601]
--- a/filling.c
+++ b/filling.c
@@ -6,12 +6,27 @@
/* TODO:
*
* - use a typedef instead of int for numbers on the board
- * + replace int with something else (signed char?)
- * - the type should be signed (I use -board[i] temporarily)
- * - problems are small (<= 9?): type can be char?
+ * + replace int with something else (signed short?)
+ * - the type should be signed (for -board[i] and -SENTINEL)
+ * - the type should be somewhat big: board[i] = i
+ * - Using shorts gives us 181x181 puzzles as upper bound.
*
* - make a somewhat more clever solver
+ * + enable "ghost regions" of size > 1
+ * - one can put an upper bound on the size of a ghost region
+ * by considering the board size and summing present hints.
+ * + for each square, for i=1..n, what is the distance to a region
+ * containing i? How full is the region? How is this useful?
*
+ * - in board generation, after having merged regions such that no
+ * more merges are necessary, try splitting (big) regions.
+ * + it seems that smaller regions make for better puzzles; see
+ * for instance the 7x7 puzzle in this file (grep for 7x7:).
+ *
+ * - symmetric hints (solo-style)
+ * + right now that means including _many_ hints, and the puzzles
+ * won't look any nicer. Not worth it (at the moment).
+ *
* - make the solver do recursion/backtracking.
* + This is for user-submitted puzzles, not for puzzle
* generation (on the other hand, never say never).
@@ -20,12 +35,14 @@
*
* - solo-like pencil marks?
*
- * - speed up generation of puzzles of size >= 11x11
+ * - a user says that the difficulty is unevenly distributed.
+ * + partition into levels? Will they be non-crap?
*
* - Allow square contents > 9?
* + I could use letters for digits (solo does this), but
* letters don't have numeric significance (normal people hate
* base36), which is relevant here (much more than in solo).
+ * + [click, 1, 0, enter] => [10 in clicked square]?
* + How much information is needed to solve? Does one need to
* know the algorithm by which the largest number is set?
*
@@ -42,12 +59,14 @@
*
* - use binary search when discovering the minimal sovable point
* + profile to show a need (but when the solver gets slower...)
- * + avg 0.1s per 9x9, which _is_ human-patience noticable.
+ * + 7x9 @ .011s, 9x13 @ .075s, 17x13 @ .661s (all avg with n=100)
+ * + but the hints are independent, not linear, so... what?
*/
#include <assert.h>
#include <ctype.h>
#include <math.h>
+#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
@@ -54,8 +73,23 @@
#include "puzzles.h"
+static unsigned char verbose;
+
+static void printv(char *fmt, ...) {
+ if (verbose) {
+ va_list va;
+ va_start(va, fmt);
+ vprintf(fmt, va);
+ va_end(va);
+ }
+}
+
+/*****************************************************************************
+ * GAME CONFIGURATION AND PARAMETERS *
+ *****************************************************************************/
+
struct game_params {
- int w, h;
+ int h, w;
};
struct shared_state {
@@ -70,7 +104,7 @@
int completed, cheated;
};
-static const struct game_params defaults[3] = {{5, 5}, {7, 7}, {9, 9}};
+static const struct game_params defaults[3] = {{7, 9}, {9, 13}, {13, 17}};
static game_params *default_params(void)
{
@@ -88,7 +122,7 @@
if (i < 0 || i >= lenof(defaults)) return FALSE;
*params = snew(game_params);
**params = defaults[i]; /* struct copy */
- sprintf(buf, "%dx%d", defaults[i].w, defaults[i].h);
+ sprintf(buf, "%dx%d", defaults[i].h, defaults[i].w);
*name = dupstr(buf);
return TRUE;
@@ -232,9 +266,9 @@
/* fill in the numbers */
for (i = 0; i < sz; ++i) {
const int x = i % w;
- const int y = i / w;
- if (board[i] == EMPTY) continue;
- repr[chw*(2*y + 1) + (4*x + 2)] = board[i] + '0';
+ const int y = i / w;
+ if (board[i] == EMPTY) continue;
+ repr[chw*(2*y + 1) + (4*x + 2)] = board[i] + '0';
}
repr[chlen] = '\0';
@@ -255,43 +289,19 @@
static const int dx[4] = {-1, 1, 0, 0};
static const int dy[4] = {0, 0, -1, 1};
-/*
-static void print_board(int *board, int w, int h) {
- char *repr = board_to_string(board, w, h);
- fputs(repr, stdout);
- free(repr);
-}
-*/
+struct solver_state
+{
+ int *dsf;
+ int *board;
+ int *connected;
+ int nempty;
+};
-#define SENTINEL sz
-
-/* determines whether a board (in dsf form) is valid. If possible,
- * return a conflicting pair in *a and *b and a non-*b neighbour of *a
- * in *c. If not possible, leave them unmodified. */
-static void
-validate_board(int *dsf, int w, int h, int *sq, int *a, int *b, int *c) {
- const int sz = w * h;
- int i;
- assert(*a == SENTINEL);
- assert(*b == SENTINEL);
- assert(*c == SENTINEL);
- for (i = 0; i < sz && *a == sz; ++i) {
- const int aa = dsf_canonify(dsf, sq[i]);
- int cc = sz;
- int j;
- for (j = 0; j < 4; ++j) {
- const int x = (sq[i] % w) + dx[j];
- const int y = (sq[i] / w) + dy[j];
- int bb;
- if (x < 0 || x >= w || y < 0 || y >= h) continue;
- bb = dsf_canonify(dsf, w*y + x);
- if (aa == bb) continue;
- else if (dsf_size(dsf, aa) == dsf_size(dsf, bb)) {
- *a = aa;
- *b = bb;
- *c = cc;
- } else if (cc == sz) *c = cc = bb;
- }
+static void print_board(int *board, int w, int h) {
+ if (verbose) {
+ char *repr = board_to_string(board, w, h);
+ printv("%s\n", repr);
+ free(repr);
}
}
@@ -298,7 +308,9 @@
static game_state *new_game(midend *, game_params *, char *);
static void free_game(game_state *);
-/* generate a random valid board; uses validate_board. */
+#define SENTINEL sz
+
+/* generate a random valid board; uses validate_board. */
static void make_board(int *board, int w, int h, random_state *rs) {
int *dsf;
@@ -312,7 +324,6 @@
* of size > w*h, so the special case only affects w=h=2. */
int nboards = 0;
-
int i;
assert(w >= 1);
@@ -327,31 +338,52 @@
for (i = 0; i < sz; ++i) board[i] = i;
while (1) {
- ++nboards;
- shuffle(board, sz, sizeof (int), rs);
- /* while the board can in principle be fixed */
- while (1) {
- int a = SENTINEL;
- int b = SENTINEL;
- int c = SENTINEL;
- validate_board(dsf, w, h, board, &a, &b, &c);
- if (a == SENTINEL /* meaning the board is valid */) {
- int i;
- for (i = 0; i < sz; ++i) board[i] = dsf_size(dsf, i);
- sfree(dsf);
- /* printf("returning board number %d\n", nboards); */
- return;
- } else {
- /* try to repair the invalid board */
- a = dsf_canonify(dsf, a);
- assert(a != dsf_canonify(dsf, b));
- if (c != sz) assert(a != dsf_canonify(dsf, c));
- dsf_merge(dsf, a, c == sz? b: c);
- /* if repair impossible; make a new board */
- if (dsf_size(dsf, a) > maxsize) break;
- }
- }
- dsf_init(dsf, sz); /* re-init the dsf */
+ int change;
+ ++nboards;
+ shuffle(board, sz, sizeof (int), rs);
+ /* while the board can in principle be fixed */
+ do {
+ change = FALSE;
+ for (i = 0; i < sz; ++i) {
+ int a = SENTINEL;
+ int b = SENTINEL;
+ int c = SENTINEL;
+ const int aa = dsf_canonify(dsf, board[i]);
+ int cc = sz;
+ int j;
+ for (j = 0; j < 4; ++j) {
+ const int x = (board[i] % w) + dx[j];
+ const int y = (board[i] / w) + dy[j];
+ int bb;
+ if (x < 0 || x >= w || y < 0 || y >= h) continue;
+ bb = dsf_canonify(dsf, w*y + x);
+ if (aa == bb) continue;
+ else if (dsf_size(dsf, aa) == dsf_size(dsf, bb)) {
+ a = aa;
+ b = bb;
+ c = cc;
+ } else if (cc == sz) c = cc = bb;
+ }
+ if (a != SENTINEL) {
+ a = dsf_canonify(dsf, a);
+ assert(a != dsf_canonify(dsf, b));
+ if (c != sz) assert(a != dsf_canonify(dsf, c));
+ dsf_merge(dsf, a, c == sz? b: c);
+ /* if repair impossible; make a new board */
+ if (dsf_size(dsf, a) > maxsize) goto retry;
+ change = TRUE;
+ }
+ }
+ } while (change);
+
+ for (i = 0; i < sz; ++i) board[i] = dsf_size(dsf, i);
+
+ sfree(dsf);
+ printv("returning board number %d\n", nboards);
+ return;
+
+ retry:
+ dsf_init(dsf, sz);
}
assert(FALSE); /* unreachable */
}
@@ -393,31 +425,36 @@
return dup;
}
-static void expand(int *board, int *connected, int *dsf, int w, int h,
- int dst, int src, int *empty, int *learn) {
+static void expand(struct solver_state *s, int w, int h, int t, int f) {
int j;
- assert(board);
- assert(connected);
- assert(dsf);
- assert(empty);
- assert(learn);
- assert(board[dst] == EMPTY);
- assert(board[src] != EMPTY);
- board[dst] = board[src];
+ assert(s);
+ assert(s->board[t] == EMPTY); /* expand to empty square */
+ assert(s->board[f] != EMPTY); /* expand from non-empty square */
+ printv(
+ "learn: expanding %d from (%d, %d) into (%d, %d)\n",
+ s->board[f], f % w, f / w, t % w, t / w);
+ s->board[t] = s->board[f];
for (j = 0; j < 4; ++j) {
- const int x = (dst % w) + dx[j];
- const int y = (dst / w) + dy[j];
+ const int x = (t % w) + dx[j];
+ const int y = (t / w) + dy[j];
const int idx = w*y + x;
if (x < 0 || x >= w || y < 0 || y >= h) continue;
- if (board[idx] != board[dst]) continue;
- merge(dsf, connected, dst, idx);
+ if (s->board[idx] != s->board[t]) continue;
+ merge(s->dsf, s->connected, t, idx);
}
-/* printf("set board[%d] = board[%d], which is %d; size(%d) = %d\n", dst, src, board[src], src, dsf[dsf_canonify(dsf, src)] >> 2); */
- --*empty;
- *learn = TRUE;
+ --s->nempty;
}
-static void flood(int *board, int w, int h, int i, int n) {
+static void clear_count(int *board, int sz) {
+ int i;
+ for (i = 0; i < sz; ++i) {
+ if (board[i] >= 0) continue;
+ else if (board[i] == -SENTINEL) board[i] = EMPTY;
+ else board[i] = -board[i];
+ }
+}
+
+static void flood_count(int *board, int w, int h, int i, int n, int *c) {
const int sz = w * h;
int k;
@@ -425,32 +462,25 @@
else if (board[i] == n) board[i] = -board[i];
else return;
+ if (--*c == 0) return;
+
for (k = 0; k < 4; ++k) {
const int x = (i % w) + dx[k];
const int y = (i / w) + dy[k];
const int idx = w*y + x;
if (x < 0 || x >= w || y < 0 || y >= h) continue;
- flood(board, w, h, idx, n);
+ flood_count(board, w, h, idx, n, c);
+ if (*c == 0) return;
}
}
-static int count_and_clear(int *board, int sz) {
- int count = -1;
- int i;
- for (i = 0; i < sz; ++i) {
- if (board[i] >= 0) continue;
- ++count;
- if (board[i] == -SENTINEL) board[i] = EMPTY;
- else board[i] = -board[i];
- }
- return count;
+static int check_capacity(int *board, int w, int h, int i) {
+ int n = board[i];
+ flood_count(board, w, h, i, board[i], &n);
+ clear_count(board, w * h);
+ return n == 0;
}
-static int count(int *board, int w, int h, int i) {
- flood(board, w, h, i, board[i]);
- return count_and_clear(board, w * h);
-}
-
static int expandsize(const int *board, int *dsf, int w, int h, int i, int n) {
int j;
int nhits = 0;
@@ -467,7 +497,7 @@
root = dsf_canonify(dsf, idx);
for (m = 0; m < nhits && root != hits[m]; ++m);
if (m < nhits) continue;
- /* printf("\t (%d, %d) contributed %d to size\n", lx, ly, dsf[root] >> 2); */
+ printv("\t (%d, %d) contrib %d to size\n", x, y, dsf[root] >> 2);
size += dsf_size(dsf, root);
assert(dsf_size(dsf, root) >= 1);
hits[nhits++] = root;
@@ -504,7 +534,8 @@
*
* CONNECTED COMPONENT FORCED EXPANSION (too small):
* When a CC must include a particular square, because otherwise there
- * would not be enough room to complete it.
+ * would not be enough room to complete it. This includes squares not
+ * adjacent to the CC through learn_critical_square.
* +---+---+
* | 2 | _ |
* +---+---+
@@ -523,185 +554,245 @@
*
* TODO: backtracking.
*/
-#define EXPAND(a, b)\
-expand(board, connected, dsf, w, h, a, b, &nempty, &learn)
-static int solver(const int *orig, int w, int h, char **solution) {
+static void filled_square(struct solver_state *s, int w, int h, int i) {
+ int j;
+ for (j = 0; j < 4; ++j) {
+ const int x = (i % w) + dx[j];
+ const int y = (i / w) + dy[j];
+ const int idx = w*y + x;
+ if (x < 0 || x >= w || y < 0 || y >= h) continue;
+ if (s->board[i] == s->board[idx])
+ merge(s->dsf, s->connected, i, idx);
+ }
+}
+
+static void init_solver_state(struct solver_state *s, int w, int h) {
const int sz = w * h;
+ int i;
+ assert(s);
- int *board = memdup(orig, sz, sizeof (int));
- int *dsf = snew_dsf(sz); /* eqv classes: connected components */
- int *connected = snewn(sz, int); /* connected[n] := n.next; */
- /* cyclic disjoint singly linked lists, same partitioning as dsf.
- * The lists lets you iterate over a partition given any member */
+ s->nempty = 0;
+ for (i = 0; i < sz; ++i) s->connected[i] = i;
+ for (i = 0; i < sz; ++i)
+ if (s->board[i] == EMPTY) ++s->nempty;
+ else filled_square(s, w, h, i);
+}
- int nempty = 0;
+static int learn_expand_or_one(struct solver_state *s, int w, int h) {
+ const int sz = w * h;
+ int i;
+ int learn = FALSE;
- int learn;
+ assert(s);
+ for (i = 0; i < sz; ++i) {
+ int j;
+ int one = TRUE;
+
+ if (s->board[i] != EMPTY) continue;
+
+ for (j = 0; j < 4; ++j) {
+ const int x = (i % w) + dx[j];
+ const int y = (i / w) + dy[j];
+ const int idx = w*y + x;
+ if (x < 0 || x >= w || y < 0 || y >= h) continue;
+ if (s->board[idx] == EMPTY) {
+ one = FALSE;
+ continue;
+ }
+ if (one &&
+ (s->board[idx] == 1 ||
+ (s->board[idx] >= expandsize(s->board, s->dsf, w, h,
+ i, s->board[idx]))))
+ one = FALSE;
+ assert(s->board[i] == EMPTY);
+ s->board[i] = -SENTINEL;
+ if (check_capacity(s->board, w, h, idx)) continue;
+ assert(s->board[i] == EMPTY);
+ printv("learn: expanding in one\n");
+ expand(s, w, h, i, idx);
+ learn = TRUE;
+ break;
+ }
+
+ if (j == 4 && one) {
+ printv("learn: one at (%d, %d)\n", i % w, i / w);
+ assert(s->board[i] == EMPTY);
+ s->board[i] = 1;
+ assert(s->nempty);
+ --s->nempty;
+ learn = TRUE;
+ }
+ }
+ return learn;
+}
+
+static int learn_blocked_expansion(struct solver_state *s, int w, int h) {
+ const int sz = w * h;
int i;
- for (i = 0; i < sz; i++) connected[i] = i;
+ int learn = FALSE;
+ assert(s);
+ /* for every connected component */
for (i = 0; i < sz; ++i) {
+ int exp = SENTINEL;
int j;
- if (board[i] == EMPTY) ++nempty;
- else for (j = 0; j < 4; ++j) {
- const int x = (i % w) + dx[j];
- const int y = (i / w) + dy[j];
- const int idx = w*y + x;
- if (x < 0 || x >= w || y < 0 || y >= h) continue;
- if (board[i] == board[idx]) merge(dsf, connected, i, idx);
- }
- }
-/* puts("trying to solve this:");
- print_board(board, w, h); */
+ if (s->board[i] == EMPTY) continue;
+ j = dsf_canonify(s->dsf, i);
- /* TODO: refactor this code, it's too long */
- do {
- int i;
- learn = FALSE;
+ /* (but only for each connected component) */
+ if (i != j) continue;
- /* for every connected component */
- for (i = 0; i < sz; ++i) {
- int exp = SENTINEL;
- int j;
+ /* (and not if it's already complete) */
+ if (dsf_size(s->dsf, j) == s->board[j]) continue;
- /* If the component consists of empty squares */
- if (board[i] == EMPTY) {
- int k;
- int one = TRUE;
- for (k = 0; k < 4; ++k) {
- const int x = (i % w) + dx[k];
- const int y = (i / w) + dy[k];
- const int idx = w*y + x;
- int n;
- if (x < 0 || x >= w || y < 0 || y >= h) continue;
- if (board[idx] == EMPTY) {
- one = FALSE;
- continue;
- }
- if (one &&
- (board[idx] == 1 ||
- (board[idx] >= expandsize(board, dsf, w, h,
- i, board[idx]))))
- one = FALSE;
- assert(board[i] == EMPTY);
- board[i] = -SENTINEL;
- n = count(board, w, h, idx);
- assert(board[i] == EMPTY);
- if (n >= board[idx]) continue;
- EXPAND(i, idx);
- break;
+ /* for each square j _in_ the connected component */
+ do {
+ int k;
+ printv(" looking at (%d, %d)\n", j % w, j / w);
+
+ /* for each neighbouring square (idx) */
+ for (k = 0; k < 4; ++k) {
+ const int x = (j % w) + dx[k];
+ const int y = (j / w) + dy[k];
+ const int idx = w*y + x;
+ int size;
+ /* int l;
+ int nhits = 0;
+ int hits[4]; */
+ if (x < 0 || x >= w || y < 0 || y >= h) continue;
+ if (s->board[idx] != EMPTY) continue;
+ if (exp == idx) continue;
+ printv("\ttrying to expand onto (%d, %d)\n", x, y);
+
+ /* find out the would-be size of the new connected
+ * component if we actually expanded into idx */
+ /*
+ size = 1;
+ for (l = 0; l < 4; ++l) {
+ const int lx = x + dx[l];
+ const int ly = y + dy[l];
+ const int idxl = w*ly + lx;
+ int root;
+ int m;
+ if (lx < 0 || lx >= w || ly < 0 || ly >= h) continue;
+ if (board[idxl] != board[j]) continue;
+ root = dsf_canonify(dsf, idxl);
+ for (m = 0; m < nhits && root != hits[m]; ++m);
+ if (m != nhits) continue;
+ // printv("\t (%d, %d) contributed %d to size\n", lx, ly, dsf[root] >> 2);
+ size += dsf_size(dsf, root);
+ assert(dsf_size(dsf, root) >= 1);
+ hits[nhits++] = root;
}
- if (k == 4 && one) {
- assert(board[i] == EMPTY);
- board[i] = 1;
- assert(nempty);
- --nempty;
- learn = TRUE;
- }
- continue;
- }
- /* printf("expanding blob of (%d, %d)\n", i % w, i / w); */
+ */
- j = dsf_canonify(dsf, i);
+ size = expandsize(s->board, s->dsf, w, h, idx, s->board[j]);
- /* (but only for each connected component) */
- if (i != j) continue;
+ /* ... and see if that size is too big, or if we
+ * have other expansion candidates. Otherwise
+ * remember the (so far) only candidate. */
- /* (and not if it's already complete) */
- if (dsf_size(dsf, j) == board[j]) continue;
+ printv("\tthat would give a size of %d\n", size);
+ if (size > s->board[j]) continue;
+ /* printv("\tnow knowing %d expansions\n", nexpand + 1); */
+ if (exp != SENTINEL) goto next_i;
+ assert(exp != idx);
+ exp = idx;
+ }
- /* for each square j _in_ the connected component */
- do {
- int k;
- /* printf(" looking at (%d, %d)\n", j % w, j / w); */
+ j = s->connected[j]; /* next square in the same CC */
+ assert(s->board[i] == s->board[j]);
+ } while (j != i);
+ /* end: for each square j _in_ the connected component */
- /* for each neighbouring square (idx) */
- for (k = 0; k < 4; ++k) {
- const int x = (j % w) + dx[k];
- const int y = (j / w) + dy[k];
- const int idx = w*y + x;
- int size;
- /* int l;
- int nhits = 0;
- int hits[4]; */
- if (x < 0 || x >= w || y < 0 || y >= h) continue;
- if (board[idx] != EMPTY) continue;
- if (exp == idx) continue;
- /* printf("\ttrying to expand onto (%d, %d)\n", x, y); */
+ if (exp == SENTINEL) continue;
+ printv("learning to expand\n");
+ expand(s, w, h, exp, i);
+ learn = TRUE;
- /* find out the would-be size of the new connected
- * component if we actually expanded into idx */
- /*
- size = 1;
- for (l = 0; l < 4; ++l) {
- const int lx = x + dx[l];
- const int ly = y + dy[l];
- const int idxl = w*ly + lx;
- int root;
- int m;
- if (lx < 0 || lx >= w || ly < 0 || ly >= h) continue;
- if (board[idxl] != board[j]) continue;
- root = dsf_canonify(dsf, idxl);
- for (m = 0; m < nhits && root != hits[m]; ++m);
- if (m != nhits) continue;
- // printf("\t (%d, %d) contributed %d to size\n", lx, ly, dsf[root] >> 2);
- size += dsf_size(dsf, root);
- assert(dsf_size(dsf, root) >= 1);
- hits[nhits++] = root;
- }
- */
+ next_i:
+ ;
+ }
+ /* end: for each connected component */
+ return learn;
+}
- size = expandsize(board, dsf, w, h, idx, board[j]);
+static int learn_critical_square(struct solver_state *s, int w, int h) {
+ const int sz = w * h;
+ int i;
+ int learn = FALSE;
+ assert(s);
- /* ... and see if that size is too big, or if we
- * have other expansion candidates. Otherwise
- * remember the (so far) only candidate. */
-
- /* printf("\tthat would give a size of %d\n", size); */
- if (size > board[j]) continue;
- /* printf("\tnow knowing %d expansions\n", nexpand + 1); */
- if (exp != SENTINEL) goto next_i;
- assert(exp != idx);
- exp = idx;
- }
+ /* for each connected component */
+ for (i = 0; i < sz; ++i) {
+ int j;
+ if (s->board[i] == EMPTY) continue;
+ if (i != dsf_canonify(s->dsf, i)) continue;
+ if (dsf_size(s->dsf, i) == s->board[i]) continue;
+ assert(s->board[i] != 1);
+ /* for each empty square */
+ for (j = 0; j < sz; ++j) {
+ if (s->board[j] != EMPTY) continue;
+ s->board[j] = -SENTINEL;
+ if (check_capacity(s->board, w, h, i)) continue;
+ /* if not expanding s->board[i] to s->board[j] implies
+ * that s->board[i] can't reach its full size, ... */
+ assert(s->nempty);
+ printv(
+ "learn: ds %d at (%d, %d) blocking (%d, %d)\n",
+ s->board[i], j % w, j / w, i % w, i / w);
+ --s->nempty;
+ s->board[j] = s->board[i];
+ filled_square(s, w, h, j);
+ learn = TRUE;
+ }
+ }
+ return learn;
+}
- j = connected[j]; /* next square in the same CC */
- assert(board[i] == board[j]);
- } while (j != i);
- /* end: for each square j _in_ the connected component */
+static int solver(const int *orig, int w, int h, char **solution) {
+ const int sz = w * h;
- if (exp == SENTINEL) continue;
- /* printf("expand b: %d -> %d\n", i, exp); */
- EXPAND(exp, i);
+ struct solver_state ss;
+ ss.board = memdup(orig, sz, sizeof (int));
+ ss.dsf = snew_dsf(sz); /* eqv classes: connected components */
+ ss.connected = snewn(sz, int); /* connected[n] := n.next; */
+ /* cyclic disjoint singly linked lists, same partitioning as dsf.
+ * The lists lets you iterate over a partition given any member */
- next_i:
- ;
- }
- /* end: for each connected component */
- } while (learn && nempty);
+ printv("trying to solve this:\n");
+ print_board(ss.board, w, h);
- /* puts("best guess:");
- print_board(board, w, h); */
+ init_solver_state(&ss, w, h);
+ do {
+ if (learn_blocked_expansion(&ss, w, h)) continue;
+ if (learn_expand_or_one(&ss, w, h)) continue;
+ if (learn_critical_square(&ss, w, h)) continue;
+ break;
+ } while (ss.nempty);
+ printv("best guess:\n");
+ print_board(ss.board, w, h);
+
if (solution) {
int i;
assert(*solution == NULL);
*solution = snewn(sz + 2, char);
**solution = 's';
- for (i = 0; i < sz; ++i) (*solution)[i + 1] = board[i] + '0';
+ for (i = 0; i < sz; ++i) (*solution)[i + 1] = ss.board[i] + '0';
(*solution)[sz + 1] = '\0';
/* We don't need the \0 for execute_move (the only user)
* I'm just being printf-friendly in case I wanna print */
}
- sfree(dsf);
- sfree(board);
- sfree(connected);
+ sfree(ss.dsf);
+ sfree(ss.board);
+ sfree(ss.connected);
- return !nempty;
+ return !ss.nempty;
}
static int *make_dsf(int *dsf, int *board, const int w, const int h) {
@@ -744,6 +835,31 @@
return g_board[*(const int *)pb] - g_board[*(const int *)pa];
}
+static void minimize_clue_set(int *board, int w, int h, int *randomize) {
+ const int sz = w * h;
+ int i;
+ int *board_cp = snewn(sz, int);
+ memcpy(board_cp, board, sz * sizeof (int));
+
+ /* since more clues only helps and never hurts, one pass will do
+ * just fine: if we can remove clue n with k clues of index > n,
+ * we could have removed clue n with >= k clues of index > n.
+ * So an additional pass wouldn't do anything [use induction]. */
+ for (i = 0; i < sz; ++i) {
+ if (board[randomize[i]] == EMPTY) continue;
+ board[randomize[i]] = EMPTY;
+ /* (rot.) symmetry tends to include _way_ too many hints */
+ /* board[sz - randomize[i] - 1] = EMPTY; */
+ if (!solver(board, w, h, NULL)) {
+ board[randomize[i]] = board_cp[randomize[i]];
+ /* board[sz - randomize[i] - 1] =
+ board_cp[sz - randomize[i] - 1]; */
+ }
+ }
+
+ sfree(board_cp);
+}
+
static char *new_game_desc(game_params *params, random_state *rs,
char **aux, int interactive)
{
@@ -752,7 +868,6 @@
const int sz = w * h;
int *board = snewn(sz, int);
int *randomize = snewn(sz, int);
- int *solver_board = snewn(sz, int);
char *game_description = snewn(sz + 1, char);
int i;
@@ -762,35 +877,23 @@
}
make_board(board, w, h, rs);
- memcpy(solver_board, board, sz * sizeof (int));
-
g_board = board;
qsort(randomize, sz, sizeof (int), compare);
+ minimize_clue_set(board, w, h, randomize);
- /* since more clues only helps and never hurts, one pass will do
- * just fine: if we can remove clue n with k clues of index > n,
- * we could have removed clue n with >= k clues of index > n.
- * So an additional pass wouldn't do anything [use induction]. */
for (i = 0; i < sz; ++i) {
- solver_board[randomize[i]] = EMPTY;
- if (!solver(solver_board, w, h, NULL))
- solver_board[randomize[i]] = board[randomize[i]];
+ assert(board[i] >= 0);
+ assert(board[i] < 10);
+ game_description[i] = board[i] + '0';
}
-
- for (i = 0; i < sz; ++i) {
- assert(solver_board[i] >= 0);
- assert(solver_board[i] < 10);
- game_description[i] = solver_board[i] + '0';
- }
game_description[sz] = '\0';
/*
- solver(solver_board, w, h, aux);
- print_board(solver_board, w, h);
+ solver(board, w, h, aux);
+ print_board(board, w, h);
*/
sfree(randomize);
- sfree(solver_board);
sfree(board);
return game_description;
@@ -802,7 +905,7 @@
const int sz = params->w * params->h;
const char m = '0' + max(max(params->w, params->h), 3);
- /* printf("desc = '%s'; sz = %d\n", desc, sz); */
+ printv("desc = '%s'; sz = %d\n", desc, sz);
for (i = 0; desc[i] && i < sz; ++i)
if (!isdigit((unsigned char) *desc))