shithub: puzzles

Download patch

ref: 03e455c2c625fdaad509f5cd56382b8b3bb1eb03
parent: 150b1e66dec40bfb1ab54fb60990955411f1adcf
author: Simon Tatham <anakin@pobox.com>
date: Tue Dec 7 15:00:58 EST 2004

New puzzle: `pattern'.

[originally from svn r4953]

--- a/Recipe
+++ b/Recipe
@@ -23,6 +23,7 @@
 fifteen  : [X] gtk COMMON fifteen
 sixteen  : [X] gtk COMMON sixteen
 rect     : [X] gtk COMMON rect
+pattern  : [X] gtk COMMON pattern
 
 # The Windows Net shouldn't be called `net.exe' since Windows
 # already has a reasonably important utility program by that name!
@@ -32,6 +33,7 @@
 fifteen  : [G] WINDOWS COMMON fifteen
 sixteen  : [G] WINDOWS COMMON sixteen
 rect     : [G] WINDOWS COMMON rect
+pattern  : [G] WINDOWS COMMON pattern
 
 # The `nullgame' source file is a largely blank one, which contains
 # all the correct function definitions to compile and link, but
--- /dev/null
+++ b/pattern.c
@@ -1,0 +1,975 @@
+/*
+ * pattern.c: the pattern-reconstruction game known as `nonograms'.
+ * 
+ * TODO before checkin:
+ * 
+ *  - make some sort of stab at number-of-numbers judgment
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <assert.h>
+#include <ctype.h>
+#include <math.h>
+
+#include "puzzles.h"
+
+#define max(x,y) ( (x)>(y) ? (x):(y) )
+#define min(x,y) ( (x)<(y) ? (x):(y) )
+
+const char *const game_name = "Pattern";
+const char *const game_winhelp_topic = "games.pattern";
+const int game_can_configure = TRUE;
+
+enum {
+    COL_BACKGROUND,
+    COL_EMPTY,
+    COL_FULL,
+    COL_UNKNOWN,
+    COL_GRID,
+    NCOLOURS
+};
+
+#define BORDER 18
+#define TLBORDER(d) ( (d) / 5 + 2 )
+#define GUTTER 12
+#define TILE_SIZE 24
+
+#define FROMCOORD(d, x) \
+        ( ((x) - (BORDER + GUTTER + TILE_SIZE * TLBORDER(d))) / TILE_SIZE )
+
+#define SIZE(d) (2*BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (d)))
+
+#define TOCOORD(d, x) (BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (x)))
+
+struct game_params {
+    int w, h;
+};
+
+#define GRID_UNKNOWN 2
+#define GRID_FULL 1
+#define GRID_EMPTY 0
+
+struct game_state {
+    int w, h;
+    unsigned char *grid;
+    int rowsize;
+    int *rowdata, *rowlen;
+    int completed;
+};
+
+#define FLASH_TIME 0.13F
+
+game_params *default_params(void)
+{
+    game_params *ret = snew(game_params);
+
+    ret->w = ret->h = 15;
+
+    return ret;
+}
+
+int game_fetch_preset(int i, char **name, game_params **params)
+{
+    game_params *ret;
+    char str[80];
+    static const struct { int x, y; } values[] = {
+        {10, 10},
+        {15, 15},
+        {20, 20},
+        {25, 25},
+        {30, 30},
+    };
+
+    if (i < 0 || i >= lenof(values))
+        return FALSE;
+
+    ret = snew(game_params);
+    ret->w = values[i].x;
+    ret->h = values[i].y;
+
+    sprintf(str, "%dx%d", ret->w, ret->h);
+
+    *name = dupstr(str);
+    *params = ret;
+    return TRUE;
+}
+
+void free_params(game_params *params)
+{
+    sfree(params);
+}
+
+game_params *dup_params(game_params *params)
+{
+    game_params *ret = snew(game_params);
+    *ret = *params;		       /* structure copy */
+    return ret;
+}
+
+game_params *decode_params(char const *string)
+{
+    game_params *ret = default_params();
+    char const *p = string;
+
+    ret->w = atoi(p);
+    while (*p && isdigit(*p)) p++;
+    if (*p == 'x') {
+        p++;
+        ret->h = atoi(p);
+        while (*p && isdigit(*p)) p++;
+    } else {
+        ret->h = ret->w;
+    }
+
+    return ret;
+}
+
+char *encode_params(game_params *params)
+{
+    char ret[400];
+    int len;
+
+    len = sprintf(ret, "%dx%d", params->w, params->h);
+    assert(len < lenof(ret));
+    ret[len] = '\0';
+
+    return dupstr(ret);
+}
+
+config_item *game_configure(game_params *params)
+{
+    config_item *ret;
+    char buf[80];
+
+    ret = snewn(3, config_item);
+
+    ret[0].name = "Width";
+    ret[0].type = C_STRING;
+    sprintf(buf, "%d", params->w);
+    ret[0].sval = dupstr(buf);
+    ret[0].ival = 0;
+
+    ret[1].name = "Height";
+    ret[1].type = C_STRING;
+    sprintf(buf, "%d", params->h);
+    ret[1].sval = dupstr(buf);
+    ret[1].ival = 0;
+
+    ret[2].name = NULL;
+    ret[2].type = C_END;
+    ret[2].sval = NULL;
+    ret[2].ival = 0;
+
+    return ret;
+}
+
+game_params *custom_params(config_item *cfg)
+{
+    game_params *ret = snew(game_params);
+
+    ret->w = atoi(cfg[0].sval);
+    ret->h = atoi(cfg[1].sval);
+
+    return ret;
+}
+
+char *validate_params(game_params *params)
+{
+    if (params->w <= 0 && params->h <= 0)
+	return "Width and height must both be greater than zero";
+    if (params->w <= 0)
+	return "Width must be greater than zero";
+    if (params->h <= 0)
+	return "Height must be greater than zero";
+    return NULL;
+}
+
+/* ----------------------------------------------------------------------
+ * Puzzle generation code.
+ * 
+ * For this particular puzzle, it seemed important to me to ensure
+ * a unique solution. I do this the brute-force way, by having a
+ * solver algorithm alongside the generator, and repeatedly
+ * generating a random grid until I find one whose solution is
+ * unique. It turns out that this isn't too onerous on a modern PC
+ * provided you keep grid size below around 30. Any offers of
+ * better algorithms, however, will be very gratefully received.
+ * 
+ * Another annoyance of this approach is that it limits the
+ * available puzzles to those solvable by the algorithm I've used.
+ * My algorithm only ever considers a single row or column at any
+ * one time, which means it's incapable of solving the following
+ * difficult example (found by Bella Image around 1995/6, when she
+ * and I were both doing maths degrees):
+ * 
+ *        2  1  2  1 
+ *
+ *      +--+--+--+--+
+ * 1 1  |  |  |  |  |
+ *      +--+--+--+--+
+ *   2  |  |  |  |  |
+ *      +--+--+--+--+
+ *   1  |  |  |  |  |
+ *      +--+--+--+--+
+ *   1  |  |  |  |  |
+ *      +--+--+--+--+
+ * 
+ * Obviously this cannot be solved by a one-row-or-column-at-a-time
+ * algorithm (it would require at least one row or column reading
+ * `2 1', `1 2', `3' or `4' to get started). However, it can be
+ * proved to have a unique solution: if the top left square were
+ * empty, then the only option for the top row would be to fill the
+ * two squares in the 1 columns, which would imply the squares
+ * below those were empty, leaving no place for the 2 in the second
+ * row. Contradiction. Hence the top left square is full, and the
+ * unique solution follows easily from that starting point.
+ * 
+ * (The game ID for this puzzle is 4x4:2/1/2/1/1.1/2/1/1 , in case
+ * it's useful to anyone.)
+ */
+
+static int float_compare(const void *av, const void *bv)
+{
+    const float *a = (const float *)av;
+    const float *b = (const float *)bv;
+    if (*a < *b)
+        return -1;
+    else if (*a > *b)
+        return +1;
+    else
+        return 0;
+}
+
+static void generate(random_state *rs, int w, int h, unsigned char *retgrid)
+{
+    float *fgrid;
+    float *fgrid2;
+    int step, i, j;
+    float threshold;
+
+    fgrid = snewn(w*h, float);
+
+    for (i = 0; i < h; i++) {
+        for (j = 0; j < w; j++) {
+            fgrid[i*w+j] = random_upto(rs, 100000000UL) / 100000000.F;
+        }
+    }
+
+    /*
+     * The above gives a completely random splattering of black and
+     * white cells. We want to gently bias this in favour of _some_
+     * reasonably thick areas of white and black, while retaining
+     * some randomness and fine detail.
+     * 
+     * So we evolve the starting grid using a cellular automaton.
+     * Currently, I'm doing something very simple indeed, which is
+     * to set each square to the average of the surrounding nine
+     * cells (or the average of fewer, if we're on a corner).
+     */
+    for (step = 0; step < 1; step++) {
+        fgrid2 = snewn(w*h, float);
+
+        for (i = 0; i < h; i++) {
+            for (j = 0; j < w; j++) {
+                float sx, xbar;
+                int n, p, q;
+
+                /*
+                 * Compute the average of the surrounding cells.
+                 */
+                n = 0;
+                sx = 0.F;
+                for (p = -1; p <= +1; p++) {
+                    for (q = -1; q <= +1; q++) {
+                        if (i+p < 0 || i+p >= h || j+q < 0 || j+q >= w)
+                            continue;
+                        n++;
+                        sx += fgrid[(i+p)*w+(j+q)];
+                    }
+                }
+                xbar = sx / n;
+
+                fgrid2[i*w+j] = xbar;
+            }
+        }
+
+        sfree(fgrid);
+        fgrid = fgrid2;
+    }
+
+    fgrid2 = snewn(w*h, float);
+    memcpy(fgrid2, fgrid, w*h*sizeof(float));
+    qsort(fgrid2, w*h, sizeof(float), float_compare);
+    threshold = fgrid2[w*h/2];
+    sfree(fgrid2);
+
+    for (i = 0; i < h; i++) {
+        for (j = 0; j < w; j++) {
+            retgrid[i*w+j] = (fgrid[i*w+j] > threshold ? GRID_FULL :
+                              GRID_EMPTY);
+        }
+    }
+
+    sfree(fgrid);
+}
+
+int compute_rowdata(int *ret, unsigned char *start, int len, int step)
+{
+    int i, n;
+
+    n = 0;
+
+    for (i = 0; i < len; i++) {
+        if (start[i*step] == GRID_UNKNOWN)
+            return -1;
+
+        if (start[i*step] == GRID_FULL) {
+            int runlen = 1;
+            while (i+runlen < len && start[(i+runlen)*step])
+                runlen++;
+            ret[n++] = runlen;
+            i += runlen;
+        }
+    }
+
+    return n;
+}
+
+#define UNKNOWN 0
+#define BLOCK 1
+#define DOT 2
+#define STILL_UNKNOWN 3
+
+static void do_recurse(unsigned char *known, unsigned char *deduced,
+                       unsigned char *row, int *data, int len,
+                       int freespace, int ndone, int lowest)
+{
+    int i, j, k;
+
+    if (data[ndone]) {
+	for (i=0; i<=freespace; i++) {
+	    j = lowest;
+	    for (k=0; k<i; k++) row[j++] = DOT;
+	    for (k=0; k<data[ndone]; k++) row[j++] = BLOCK;
+	    if (j < len) row[j++] = DOT;
+	    do_recurse(known, deduced, row, data, len,
+                       freespace-i, ndone+1, j);
+	}
+    } else {
+	for (i=lowest; i<len; i++)
+	    row[i] = DOT;
+	for (i=0; i<len; i++)
+	    if (known[i] && known[i] != row[i])
+		return;
+	for (i=0; i<len; i++)
+	    deduced[i] |= row[i];
+    }
+}
+
+static int do_row(unsigned char *known, unsigned char *deduced,
+                  unsigned char *row,
+                  unsigned char *start, int len, int step, int *data)
+{
+    int rowlen, i, freespace, done_any;
+
+    freespace = len+1;
+    for (rowlen = 0; data[rowlen]; rowlen++)
+	freespace -= data[rowlen]+1;
+
+    for (i = 0; i < len; i++) {
+	known[i] = start[i*step];
+	deduced[i] = 0;
+    }
+
+    do_recurse(known, deduced, row, data, len, freespace, 0, 0);
+    done_any = FALSE;
+    for (i=0; i<len; i++)
+	if (deduced[i] && deduced[i] != STILL_UNKNOWN && !known[i]) {
+	    start[i*step] = deduced[i];
+	    done_any = TRUE;
+	}
+    return done_any;
+}
+
+static unsigned char *generate_soluble(random_state *rs, int w, int h)
+{
+    int i, j, done_any, ok, ntries, max;
+    unsigned char *grid, *matrix, *workspace;
+    int *rowdata;
+
+    grid = snewn(w*h, unsigned char);
+    matrix = snewn(w*h, unsigned char);
+    max = max(w, h);
+    workspace = snewn(max*3, unsigned char);
+    rowdata = snewn(max+1, int);
+
+    ntries = 0;
+
+    do {
+        ntries++;
+
+        generate(rs, w, h, grid);
+
+        memset(matrix, 0, w*h);
+
+        do {
+            done_any = 0;
+            for (i=0; i<h; i++) {
+                rowdata[compute_rowdata(rowdata, grid+i*w, w, 1)] = 0;
+                done_any |= do_row(workspace, workspace+max, workspace+2*max,
+                                   matrix+i*w, w, 1, rowdata);
+            }
+            for (i=0; i<w; i++) {
+                rowdata[compute_rowdata(rowdata, grid+i, h, w)] = 0;
+                done_any |= do_row(workspace, workspace+max, workspace+2*max,
+                                   matrix+i, h, w, rowdata);
+            }
+        } while (done_any);
+
+        ok = TRUE;
+        for (i=0; i<h; i++) {
+            for (j=0; j<w; j++) {
+                if (matrix[i*w+j] == UNKNOWN)
+                    ok = FALSE;
+            }
+        }
+    } while (!ok);
+
+    sfree(matrix);
+    sfree(workspace);
+    sfree(rowdata);
+    return grid;
+}
+
+char *new_game_seed(game_params *params, random_state *rs)
+{
+    unsigned char *grid;
+    int i, j, max, rowlen, *rowdata;
+    char intbuf[80], *seed;
+    int seedlen, seedpos;
+
+    grid = generate_soluble(rs, params->w, params->h);
+    max = max(params->w, params->h);
+    rowdata = snewn(max, int);
+
+    /*
+     * Seed is a slash-separated list of row contents; each row
+     * contents section is a dot-separated list of integers. Row
+     * contents are listed in the order (columns left to right,
+     * then rows top to bottom).
+     * 
+     * Simplest way to handle memory allocation is to make two
+     * passes, first computing the seed size and then writing it
+     * out.
+     */
+    seedlen = 0;
+    for (i = 0; i < params->w + params->h; i++) {
+        if (i < params->w)
+            rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
+        else
+            rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
+                                     params->w, 1);
+        if (rowlen > 0) {
+            for (j = 0; j < rowlen; j++) {
+                seedlen += 1 + sprintf(intbuf, "%d", rowdata[j]);
+            }
+        } else {
+            seedlen++;
+        }
+    }
+    seed = snewn(seedlen, char);
+    seedpos = 0;
+    for (i = 0; i < params->w + params->h; i++) {
+        if (i < params->w)
+            rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w);
+        else
+            rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w,
+                                     params->w, 1);
+        if (rowlen > 0) {
+            for (j = 0; j < rowlen; j++) {
+                int len = sprintf(seed+seedpos, "%d", rowdata[j]);
+                if (j+1 < rowlen)
+                    seed[seedpos + len] = '.';
+                else
+                    seed[seedpos + len] = '/';
+                seedpos += len+1;
+            }
+        } else {
+            seed[seedpos++] = '/';
+        }
+    }
+    assert(seedpos == seedlen);
+    assert(seed[seedlen-1] == '/');
+    seed[seedlen-1] = '\0';
+    sfree(rowdata);
+    return seed;
+}
+
+char *validate_seed(game_params *params, char *seed)
+{
+    int i, n, rowspace;
+    char *p;
+
+    for (i = 0; i < params->w + params->h; i++) {
+        if (i < params->w)
+            rowspace = params->h + 1;
+        else
+            rowspace = params->w + 1;
+
+        if (*seed && isdigit((unsigned char)*seed)) {
+            do {
+                p = seed;
+                while (seed && isdigit((unsigned char)*seed)) seed++;
+                n = atoi(p);
+                rowspace -= n+1;
+
+                if (rowspace < 0) {
+                    if (i < params->w)
+                        return "at least one column contains more numbers than will fit";
+                    else
+                        return "at least one row contains more numbers than will fit";
+                }
+            } while (*seed++ == '.');
+        } else {
+            seed++;                    /* expect a slash immediately */
+        }
+
+        if (seed[-1] == '/') {
+            if (i+1 == params->w + params->h)
+                return "too many row/column specifications";
+        } else if (seed[-1] == '\0') {
+            if (i+1 < params->w + params->h)
+                return "too few row/column specifications";
+        } else
+            return "unrecognised character in game specification";
+    }
+
+    return NULL;
+}
+
+game_state *new_game(game_params *params, char *seed)
+{
+    int i;
+    char *p;
+    game_state *state = snew(game_state);
+
+    state->w = params->w;
+    state->h = params->h;
+
+    state->grid = snewn(state->w * state->h, unsigned char);
+    memset(state->grid, GRID_UNKNOWN, state->w * state->h);
+
+    state->rowsize = max(state->w, state->h);
+    state->rowdata = snewn(state->rowsize * (state->w + state->h), int);
+    state->rowlen = snewn(state->w + state->h, int);
+
+    state->completed = FALSE;
+
+    for (i = 0; i < params->w + params->h; i++) {
+        state->rowlen[i] = 0;
+        if (*seed && isdigit((unsigned char)*seed)) {
+            do {
+                p = seed;
+                while (seed && isdigit((unsigned char)*seed)) seed++;
+                state->rowdata[state->rowsize * i + state->rowlen[i]++] =
+                    atoi(p);
+            } while (*seed++ == '.');
+        } else {
+            seed++;                    /* expect a slash immediately */
+        }
+    }
+
+    return state;
+}
+
+game_state *dup_game(game_state *state)
+{
+    game_state *ret = snew(game_state);
+
+    ret->w = state->w;
+    ret->h = state->h;
+
+    ret->grid = snewn(ret->w * ret->h, unsigned char);
+    memcpy(ret->grid, state->grid, ret->w * ret->h);
+
+    ret->rowsize = state->rowsize;
+    ret->rowdata = snewn(ret->rowsize * (ret->w + ret->h), int);
+    ret->rowlen = snewn(ret->w + ret->h, int);
+    memcpy(ret->rowdata, state->rowdata,
+           ret->rowsize * (ret->w + ret->h) * sizeof(int));
+    memcpy(ret->rowlen, state->rowlen,
+           (ret->w + ret->h) * sizeof(int));
+
+    ret->completed = state->completed;
+
+    return ret;
+}
+
+void free_game(game_state *state)
+{
+    sfree(state->rowdata);
+    sfree(state->rowlen);
+    sfree(state->grid);
+    sfree(state);
+}
+
+struct game_ui {
+    int dragging;
+    int drag_start_x;
+    int drag_start_y;
+    int drag_end_x;
+    int drag_end_y;
+    int drag, release, state;
+};
+
+game_ui *new_ui(game_state *state)
+{
+    game_ui *ret;
+
+    ret = snew(game_ui);
+    ret->dragging = FALSE;
+
+    return ret;
+}
+
+void free_ui(game_ui *ui)
+{
+    sfree(ui);
+}
+
+game_state *make_move(game_state *from, game_ui *ui, int x, int y, int button)
+{
+    game_state *ret;
+
+    x = FROMCOORD(from->w, x);
+    y = FROMCOORD(from->h, y);
+
+    if (x >= 0 && x < from->w && y >= 0 && y < from->h &&
+        (button == LEFT_BUTTON || button == RIGHT_BUTTON ||
+         button == MIDDLE_BUTTON)) {
+
+        ui->dragging = TRUE;
+
+        if (button == LEFT_BUTTON) {
+            ui->drag = LEFT_DRAG;
+            ui->release = LEFT_RELEASE;
+            ui->state = GRID_FULL;
+        } else if (button == RIGHT_BUTTON) {
+            ui->drag = RIGHT_DRAG;
+            ui->release = RIGHT_RELEASE;
+            ui->state = GRID_EMPTY;
+        } else /* if (button == MIDDLE_BUTTON) */ {
+            ui->drag = MIDDLE_DRAG;
+            ui->release = MIDDLE_RELEASE;
+            ui->state = GRID_UNKNOWN;
+        }
+
+        ui->drag_start_x = ui->drag_end_x = x;
+        ui->drag_start_y = ui->drag_end_y = y;
+
+        return from;                   /* UI activity occurred */
+    }
+
+    if (ui->dragging && button == ui->drag) {
+        /*
+         * There doesn't seem much point in allowing a rectangle
+         * drag; people will generally only want to drag a single
+         * horizontal or vertical line, so we make that easy by
+         * snapping to it.
+         * 
+         * Exception: if we're _middle_-button dragging to tag
+         * things as UNKNOWN, we may well want to trash an entire
+         * area and start over!
+         */
+        if (ui->state != GRID_UNKNOWN) {
+            if (abs(x - ui->drag_start_x) > abs(y - ui->drag_start_y))
+                y = ui->drag_start_y;
+            else
+                x = ui->drag_start_x;
+        }
+
+        if (x < 0) x = 0;
+        if (y < 0) y = 0;
+        if (x >= from->w) x = from->w - 1;
+        if (y >= from->h) y = from->h - 1;
+
+        ui->drag_end_x = x;
+        ui->drag_end_y = y;
+
+        return from;                   /* UI activity occurred */
+    }
+
+    if (ui->dragging && button == ui->release) {
+        int x1, x2, y1, y2, xx, yy;
+        int move_needed = FALSE;
+
+        x1 = min(ui->drag_start_x, ui->drag_end_x);
+        x2 = max(ui->drag_start_x, ui->drag_end_x);
+        y1 = min(ui->drag_start_y, ui->drag_end_y);
+        y2 = max(ui->drag_start_y, ui->drag_end_y);
+
+        for (yy = y1; yy <= y2; yy++)
+            for (xx = x1; xx <= x2; xx++)
+                if (from->grid[yy * from->w + xx] != ui->state)
+                    move_needed = TRUE;
+
+        ui->dragging = FALSE;
+
+        if (move_needed) {
+            ret = dup_game(from);
+            for (yy = y1; yy <= y2; yy++)
+                for (xx = x1; xx <= x2; xx++)
+                    ret->grid[yy * ret->w + xx] = ui->state;
+
+            /*
+             * An actual change, so check to see if we've completed
+             * the game.
+             */
+            if (!ret->completed) {
+                int *rowdata = snewn(ret->rowsize, int);
+                int i, len;
+
+                ret->completed = TRUE;
+
+                for (i=0; i<ret->w; i++) {
+                    len = compute_rowdata(rowdata,
+                                          ret->grid+i, ret->h, ret->w);
+                    if (len != ret->rowlen[i] ||
+                        memcmp(ret->rowdata+i*ret->rowsize, rowdata,
+                               len * sizeof(int))) {
+                        ret->completed = FALSE;
+                        break;
+                    }
+                }
+                for (i=0; i<ret->h; i++) {
+                    len = compute_rowdata(rowdata,
+                                          ret->grid+i*ret->w, ret->w, 1);
+                    if (len != ret->rowlen[i+ret->w] ||
+                        memcmp(ret->rowdata+(i+ret->w)*ret->rowsize, rowdata,
+                               len * sizeof(int))) {
+                        ret->completed = FALSE;
+                        break;
+                    }
+                }
+
+                sfree(rowdata);
+            }
+
+            return ret;
+        } else
+            return from;               /* UI activity occurred */
+    }
+
+    return NULL;
+}
+
+/* ----------------------------------------------------------------------
+ * Drawing routines.
+ */
+
+struct game_drawstate {
+    int started;
+    int w, h;
+    unsigned char *visible;
+};
+
+void game_size(game_params *params, int *x, int *y)
+{
+    *x = SIZE(params->w);
+    *y = SIZE(params->h);
+}
+
+float *game_colours(frontend *fe, game_state *state, int *ncolours)
+{
+    float *ret = snewn(3 * NCOLOURS, float);
+
+    frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]);
+
+    ret[COL_GRID * 3 + 0] = 0.3F;
+    ret[COL_GRID * 3 + 1] = 0.3F;
+    ret[COL_GRID * 3 + 2] = 0.3F;
+
+    ret[COL_UNKNOWN * 3 + 0] = 0.5F;
+    ret[COL_UNKNOWN * 3 + 1] = 0.5F;
+    ret[COL_UNKNOWN * 3 + 2] = 0.5F;
+
+    ret[COL_FULL * 3 + 0] = 0.0F;
+    ret[COL_FULL * 3 + 1] = 0.0F;
+    ret[COL_FULL * 3 + 2] = 0.0F;
+
+    ret[COL_EMPTY * 3 + 0] = 1.0F;
+    ret[COL_EMPTY * 3 + 1] = 1.0F;
+    ret[COL_EMPTY * 3 + 2] = 1.0F;
+
+    *ncolours = NCOLOURS;
+    return ret;
+}
+
+game_drawstate *game_new_drawstate(game_state *state)
+{
+    struct game_drawstate *ds = snew(struct game_drawstate);
+
+    ds->started = FALSE;
+    ds->w = state->w;
+    ds->h = state->h;
+    ds->visible = snewn(ds->w * ds->h, unsigned char);
+    memset(ds->visible, 255, ds->w * ds->h);
+
+    return ds;
+}
+
+void game_free_drawstate(game_drawstate *ds)
+{
+    sfree(ds->visible);
+    sfree(ds);
+}
+
+static void grid_square(frontend *fe, game_drawstate *ds,
+                        int y, int x, int state)
+{
+    int xl, xr, yt, yb;
+
+    draw_rect(fe, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
+              TILE_SIZE, TILE_SIZE, COL_GRID);
+
+    xl = (x % 5 == 0 ? 1 : 0);
+    yt = (y % 5 == 0 ? 1 : 0);
+    xr = (x % 5 == 4 || x == ds->w-1 ? 1 : 0);
+    yb = (y % 5 == 4 || y == ds->h-1 ? 1 : 0);
+
+    draw_rect(fe, TOCOORD(ds->w, x) + 1 + xl, TOCOORD(ds->h, y) + 1 + yt,
+              TILE_SIZE - xl - xr - 1, TILE_SIZE - yt - yb - 1,
+              (state == GRID_FULL ? COL_FULL :
+               state == GRID_EMPTY ? COL_EMPTY : COL_UNKNOWN));
+
+    draw_update(fe, TOCOORD(ds->w, x), TOCOORD(ds->h, y),
+                TILE_SIZE, TILE_SIZE);
+}
+
+void game_redraw(frontend *fe, game_drawstate *ds, game_state *oldstate,
+                 game_state *state, int dir, game_ui *ui,
+                 float animtime, float flashtime)
+{
+    int i, j;
+    int x1, x2, y1, y2;
+
+    if (!ds->started) {
+        /*
+         * The initial contents of the window are not guaranteed
+         * and can vary with front ends. To be on the safe side,
+         * all games should start by drawing a big background-
+         * colour rectangle covering the whole window.
+         */
+        draw_rect(fe, 0, 0, SIZE(ds->w), SIZE(ds->h), COL_BACKGROUND);
+
+        /*
+         * Draw the numbers.
+         */
+        for (i = 0; i < ds->w + ds->h; i++) {
+            int rowlen = state->rowlen[i];
+            int *rowdata = state->rowdata + state->rowsize * i;
+	    int nfit;
+
+	    /*
+	     * Normally I space the numbers out by the same
+	     * distance as the tile size. However, if there are
+	     * more numbers than available spaces, I have to squash
+	     * them up a bit.
+	     */
+	    nfit = max(rowlen, TLBORDER(ds->h))-1;
+	    assert(nfit > 0);
+
+            for (j = 0; j < rowlen; j++) {
+                int x, y;
+                char str[80];
+
+                if (i < ds->w) {
+                    x = TOCOORD(ds->w, i);
+                    y = BORDER + TILE_SIZE * (TLBORDER(ds->h)-1);
+		    y -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(ds->h)-1) / nfit;
+                } else {
+                    y = TOCOORD(ds->h, i - ds->w);
+                    x = BORDER + TILE_SIZE * (TLBORDER(ds->w)-1);
+		    x -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(ds->h)-1) / nfit;
+                }
+
+                sprintf(str, "%d", rowdata[j]);
+                draw_text(fe, x+TILE_SIZE/2, y+TILE_SIZE/2, FONT_VARIABLE,
+                          TILE_SIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE,
+                          COL_FULL, str);   /* FIXME: COL_TEXT */
+            }
+        }
+
+        /*
+         * Draw the grid outline.
+         */
+        draw_rect(fe, TOCOORD(ds->w, 0) - 1, TOCOORD(ds->h, 0) - 1,
+                  ds->w * TILE_SIZE + 2, ds->h * TILE_SIZE + 2,
+                  COL_GRID);
+
+        ds->started = TRUE;
+
+	draw_update(fe, 0, 0, SIZE(ds->w), SIZE(ds->h));
+    }
+
+    if (ui->dragging) {
+        x1 = min(ui->drag_start_x, ui->drag_end_x);
+        x2 = max(ui->drag_start_x, ui->drag_end_x);
+        y1 = min(ui->drag_start_y, ui->drag_end_y);
+        y2 = max(ui->drag_start_y, ui->drag_end_y);
+    } else {
+        x1 = x2 = y1 = y2 = -1;        /* placate gcc warnings */
+    }
+
+    /*
+     * Now draw any grid squares which have changed since last
+     * redraw.
+     */
+    for (i = 0; i < ds->h; i++) {
+        for (j = 0; j < ds->w; j++) {
+            int val;
+
+            /*
+             * Work out what state this square should be drawn in,
+             * taking any current drag operation into account.
+             */
+            if (ui->dragging && x1 <= j && j <= x2 && y1 <= i && i <= y2)
+                val = ui->state;
+            else
+                val = state->grid[i * state->w + j];
+
+            /*
+             * Briefly invert everything twice during a completion
+             * flash.
+             */
+            if (flashtime > 0 &&
+                (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3) &&
+                val != GRID_UNKNOWN)
+                val = (GRID_FULL ^ GRID_EMPTY) ^ val;
+
+            if (ds->visible[i * ds->w + j] != val) {
+                grid_square(fe, ds, i, j, val);
+                ds->visible[i * ds->w + j] = val;
+            }
+        }
+    }
+}
+
+float game_anim_length(game_state *oldstate, game_state *newstate, int dir)
+{
+    return 0.0F;
+}
+
+float game_flash_length(game_state *oldstate, game_state *newstate, int dir)
+{
+    if (!oldstate->completed && newstate->completed)
+        return FLASH_TIME;
+    return 0.0F;
+}
+
+int game_wants_statusbar(void)
+{
+    return FALSE;
+}
--- a/puzzles.but
+++ b/puzzles.but
@@ -22,7 +22,7 @@
 reserved. You may distribute this documentation under the MIT licence.
 See \k{licence} for the licence text in full.
 
-\versionid $Id: puzzles.but,v 1.3 2004/08/16 13:17:40 simon Exp $
+\versionid $Id$
 
 
 \C{intro} Introduction
@@ -467,7 +467,6 @@
 into place you have to slide them into place by moving a whole row at
 a time. 
 
-
 As in Sixteen, \I{controls, for Netslide}control is with the mouse.
 See \k{sixteen-controls}.
 
@@ -474,6 +473,47 @@
 \I{parameters, for Netslide}Game parameters are the same as for Net
 (see \k{net-params}).
 
+\C{pattern} \i{Pattern}
+
+\cfg{winhelp-topic}{games.pattern}
+
+You have a grid of squares, which must all be filled in either black
+or white. Beside each row of the grid are listed the lengths of the
+runs of black squares on that row; above each column are listed the
+lengths of the runs of black squares in that column. Your aim is to
+fill in the entire grid black or white.
+
+I first saw this puzzle form around 1995, under the name
+\q{nonograms}. I've seen it in various places since then, under
+different names.
+
+Normally, puzzles of this type turn out to be a meaningful picture
+of something once you've solved them. However, since this version
+generates the puzzles automatically, they will just look like random
+groupings of squares. (One user has suggested that this is actually
+a \e{good} thing, since it prevents you from guessing the colour of
+squares based on the picture, and forces you to use logic instead.)
+The advantage, though, is that you never run out of them.
+
+\H{pattern-controls} \i{Pattern controls}
+
+This game is played with the mouse.
+
+Left-click in a square to colour it black. Right-click to colour it
+white. If you make a mistake, you can middle-click, or hold down
+Shift while clicking with any button, to colour the square in the
+default grey (meaning \q{undecided}) again.
+
+You can click and drag with the left or right mouse button to colour
+a vertical or horizontal line of squares black or white at a time
+(respectively). If you click and drag with the middle button, or
+with Shift held down, you can colour a whole rectangle of squares
+grey.
+
+\H{pattern-parameters} \I{parameters, for Pattern}Pattern parameters
+
+The only options available from the \q{Custom...} option on the \q{Type}
+menu are \e{Width} and \e{Height}, which are self-explanatory.
 
 \A{licence} \I{MIT licence}\ii{Licence}