shithub: sox

Download patch

ref: beb858619e7e833a62ad1bf884793aa1f029d7fa
parent: 92ba81db75c5b673ce4d1d561a97d3296ebad4df
author: cbagwell <cbagwell>
date: Thu Sep 6 12:54:36 EDT 2007

Files were moved.

--- a/src/libgsm/CMakeLists.txt
+++ /dev/null
@@ -1,1 +1,0 @@
-add_library(gsm add code decode gsm_create gsm_decode gsm_destroy gsm_encode gsm_option long_term lpc preprocess rpe short_term table)
--- a/src/libgsm/Makefile.am
+++ /dev/null
@@ -1,39 +1,0 @@
-SASR    = -DSASR
-######### Define SASR if >> is a signed arithmetic shift (-1 >> 1 == -1)
-
-MULHACK = -DUSE_FLOAT_MUL
-######### Define this if your host multiplies floats faster than integers,
-######### e.g. on a SPARCstation.
-
-FAST    = -DFAST
-######### Define together with USE_FLOAT_MUL to enable the GSM library's
-######### approximation option for incorrect, but good-enough results.
-
-# LTP_CUT       = -DLTP_CUT
-LTP_CUT =
-######### Define to enable the GSM library's long-term correlation 
-######### approximation option---faster, but worse; works for
-######### both integer and floating point multiplications.
-######### This flag is still in the experimental stage.
-
-WAV49   = -DWAV49
-#WAV49  =
-######### Define to enable the GSM library's option to pack GSM frames 
-######### in the style used by the WAV #49 format.  If you want to write
-######### a tool that produces .WAV files which contain GSM-encoded data,
-######### define this, and read about the GSM_OPT_WAV49 option in the
-######### manual page on gsm_option(3).
-
-AM_CFLAGS = $(SASR) $(MULHAC) $(FAST) $(LTP_CUT) $(WAV49) 
-
-if EXTERNAL_GSM
-EXTRA_DIST = add.c code.c decode.c long_term.c lpc.c preprocess.c \
-	     rpe.c gsm_destroy.c gsm_decode.c gsm_encode.c gsm_create.c \
-	     gsm_option.c short_term.c table.c private.h gsm.h
-else
-noinst_LTLIBRARIES = libgsm.la
-noinst_HEADERS = gsm.h
-libgsm_la_SOURCES = add.c code.c decode.c long_term.c lpc.c preprocess.c \
-		rpe.c gsm_destroy.c gsm_decode.c gsm_encode.c gsm_create.c \
-		gsm_option.c short_term.c table.c private.h
-endif
--- a/src/libgsm/add.c
+++ /dev/null
@@ -1,234 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
- * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/add.c,v 1.5 2007/01/29 03:09:32 cbagwell Exp $ */
-
-/*
- *  See private.h for the more commonly used macro versions.
- */
-
-#include	<stdio.h>
-#include	<assert.h>
-
-#include	"private.h"
-#include	"gsm.h"
-
-#define	saturate(x) 	\
-	((x) < MIN_WORD ? MIN_WORD : (x) > MAX_WORD ? MAX_WORD: (x))
-
-word gsm_add (word a, word b)
-{
-	longword sum = (longword)a + (longword)b;
-	return saturate(sum);
-}
-
-word gsm_sub (word a, word b)
-{
-	longword diff = (longword)a - (longword)b;
-	return saturate(diff);
-}
-
-word gsm_mult (word a, word b)
-{
-	if (a == MIN_WORD && b == MIN_WORD) return MAX_WORD;
-	else return SASR( (longword)a * (longword)b, 15 );
-}
-
-word gsm_mult_r (word a, word b)
-{
-	if (b == MIN_WORD && a == MIN_WORD) return MAX_WORD;
-	else {
-		longword prod = (longword)a * (longword)b + 16384;
-		prod >>= 15;
-		return prod & 0xFFFF;
-	}
-}
-
-word gsm_abs (word a)
-{
-	return a < 0 ? (a == MIN_WORD ? MAX_WORD : -a) : a;
-}
-
-longword gsm_L_mult (word a, word b)
-{
-	assert( a != MIN_WORD || b != MIN_WORD );
-	return ((longword)a * (longword)b) << 1;
-}
-
-longword gsm_L_add (longword a, longword b)
-{
-	if (a < 0) {
-		if (b >= 0) return a + b;
-		else {
-			ulongword A = (ulongword)-(a + 1) + (ulongword)-(b + 1);
-			return A >= MAX_LONGWORD ? MIN_LONGWORD :-(longword)A-2;
-		}
-	}
-	else if (b <= 0) return a + b;
-	else {
-		ulongword A = (ulongword)a + (ulongword)b;
-		return A > MAX_LONGWORD ? MAX_LONGWORD : A;
-	}
-}
-
-longword gsm_L_sub (longword a, longword b)
-{
-	if (a >= 0) {
-		if (b >= 0) return a - b;
-		else {
-			/* a>=0, b<0 */
-
-			ulongword A = (ulongword)a + -(b + 1);
-			return A >= MAX_LONGWORD ? MAX_LONGWORD : (A + 1);
-		}
-	}
-	else if (b <= 0) return a - b;
-	else {
-		/* a<0, b>0 */  
-
-		ulongword A = (ulongword)-(a + 1) + b;
-		return A >= MAX_LONGWORD ? MIN_LONGWORD : -(longword)A - 1;
-	}
-}
-
-static unsigned char const bitoff[ 256 ] = {
-	 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
-	 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
-	 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
-	 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
-	 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
-	 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
-	 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
-	 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
-	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
-	 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
-};
-
-word gsm_norm (longword a )
-/*
- * the number of left shifts needed to normalize the 32 bit
- * variable L_var1 for positive values on the interval
- *
- * with minimum of
- * minimum of 1073741824  (01000000000000000000000000000000) and 
- * maximum of 2147483647  (01111111111111111111111111111111)
- *
- *
- * and for negative values on the interval with
- * minimum of -2147483648 (-10000000000000000000000000000000) and
- * maximum of -1073741824 ( -1000000000000000000000000000000).
- *
- * in order to normalize the result, the following
- * operation must be done: L_norm_var1 = L_var1 << norm( L_var1 );
- *
- * (That's 'ffs', only from the left, not the right..)
- */
-{
-	assert(a != 0);
-
-	if (a < 0) {
-		if (a <= -1073741824) return 0;
-		a = ~a;
-	}
-
-	return    a & 0xffff0000 
-		? ( a & 0xff000000
-		  ?  -1 + bitoff[ 0xFF & (a >> 24) ]
-		  :   7 + bitoff[ 0xFF & (a >> 16) ] )
-		: ( a & 0xff00
-		  ?  15 + bitoff[ 0xFF & (a >> 8) ]
-		  :  23 + bitoff[ 0xFF & a ] );
-}
-
-longword gsm_L_asl (longword a, int n)
-{
-	if (n >= 32) return 0;
-	if (n <= -32) return -(a < 0);
-	if (n < 0) return gsm_L_asr(a, -n);
-	return a << n;
-}
-
-word gsm_asl (word a, int n)
-{
-	if (n >= 16) return 0;
-	if (n <= -16) return -(a < 0);
-	if (n < 0) return gsm_asr(a, -n);
-	return a << n;
-}
-
-longword gsm_L_asr (longword a, int n)
-{
-	if (n >= 32) return -(a < 0);
-	if (n <= -32) return 0;
-	if (n < 0) return a << -n;
-
-#	ifdef	SASR
-		return a >> n;
-#	else
-		if (a >= 0) return a >> n;
-		else return -(longword)( -(ulongword)a >> n );
-#	endif
-}
-
-word gsm_asr (word a, int n)
-{
-	if (n >= 16) return -(a < 0);
-	if (n <= -16) return 0;
-	if (n < 0) return a << -n;
-
-#	ifdef	SASR
-		return a >> n;
-#	else
-		if (a >= 0) return a >> n;
-		else return -(word)( -(uword)a >> n );
-#	endif
-}
-
-/* 
- *  (From p. 46, end of section 4.2.5)
- *
- *  NOTE: The following lines gives [sic] one correct implementation
- *  	  of the div(num, denum) arithmetic operation.  Compute div
- *        which is the integer division of num by denum: with denum
- *	  >= num > 0
- */
-
-word gsm_div (word num, word denum)
-{
-	longword	L_num   = num;
-	longword	L_denum = denum;
-	word		div 	= 0;
-	int		k 	= 15;
-
-	/* The parameter num sometimes becomes zero.
-	 * Although this is explicitly guarded against in 4.2.5,
-	 * we assume that the result should then be zero as well.
-	 */
-
-	/* assert(num != 0); */
-
-	assert(num >= 0 && denum >= num);
-	if (num == 0)
-	    return 0;
-
-	while (k--) {
-		div   <<= 1;
-		L_num <<= 1;
-
-		if (L_num >= L_denum) {
-			L_num -= L_denum;
-			div++;
-		}
-	}
-
-	return div;
-}
--- a/src/libgsm/code.c
+++ /dev/null
@@ -1,91 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
- * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/code.c,v 1.4 2007/01/29 03:09:32 cbagwell Exp $ */
-
-#include	<stdlib.h>
-#include	<string.h>
-
-#include	"private.h"
-#include	"gsm.h"
-
-/* 
- *  4.2 FIXED POINT IMPLEMENTATION OF THE RPE-LTP CODER 
- */
-
-void Gsm_Coder (
-
-	struct gsm_state	* S,
-
-	word	* s,	/* [0..159] samples		  	IN	*/
-
-/*
- * The RPE-LTD coder works on a frame by frame basis.  The length of
- * the frame is equal to 160 samples.  Some computations are done
- * once per frame to produce at the output of the coder the
- * LARc[1..8] parameters which are the coded LAR coefficients and 
- * also to realize the inverse filtering operation for the entire
- * frame (160 samples of signal d[0..159]).  These parts produce at
- * the output of the coder:
- */
-
-	word	* LARc,	/* [0..7] LAR coefficients		OUT	*/
-
-/*
- * Procedure 4.2.11 to 4.2.18 are to be executed four times per
- * frame.  That means once for each sub-segment RPE-LTP analysis of
- * 40 samples.  These parts produce at the output of the coder:
- */
-
-	word	* Nc,	/* [0..3] LTP lag			OUT 	*/
-	word	* bc,	/* [0..3] coded LTP gain		OUT 	*/
-	word	* Mc,	/* [0..3] RPE grid selection		OUT     */
-	word	* xmaxc,/* [0..3] Coded maximum amplitude	OUT	*/
-	word	* xMc	/* [13*4] normalized RPE samples	OUT	*/
-)
-{
-	int	k;
-	word	* dp  = S->dp0 + 120;	/* [ -120...-1 ] */
-	word	* dpp = dp;		/* [ 0...39 ]	 */
-
-	static word e[50];
-
-	word	so[160];
-
-	Gsm_Preprocess			(S, s, so);
-	Gsm_LPC_Analysis		(S, so, LARc);
-	Gsm_Short_Term_Analysis_Filter	(S, LARc, so);
-
-	for (k = 0; k <= 3; k++, xMc += 13) {
-
-		Gsm_Long_Term_Predictor	( S,
-					 so+k*40, /* d      [0..39] IN	*/
-					 dp,	  /* dp  [-120..-1] IN	*/
-					e + 5,	  /* e      [0..39] OUT	*/
-					dpp,	  /* dpp    [0..39] OUT */
-					 Nc++,
-					 bc++);
-
-		Gsm_RPE_Encoding	( S,
-					e + 5,	/* e	  ][0..39][ IN/OUT */
-					  xmaxc++, Mc++, xMc );
-		/*
-		 * Gsm_Update_of_reconstructed_short_time_residual_signal
-		 *			( dpp, e + 5, dp );
-		 */
-
-		{ register int i;
-		  register longword ltmp;
-		  for (i = 0; i <= 39; i++)
-			dp[ i ] = GSM_ADD( e[5 + i], dpp[i] );
-		}
-		dp  += 40;
-		dpp += 40;
-
-	}
-	(void)memcpy( (char *)S->dp0, (char *)(S->dp0 + 160),
-		120 * sizeof(*S->dp0) );
-}
--- a/src/libgsm/decode.c
+++ /dev/null
@@ -1,62 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
- * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/decode.c,v 1.4 2007/01/29 03:09:32 cbagwell Exp $ */
-
-#include <stdio.h>
-
-#include	"private.h"
-#include	"gsm.h"
-
-/*
- *  4.3 FIXED POINT IMPLEMENTATION OF THE RPE-LTP DECODER
- */
-
-static void Postprocessing (
-	struct gsm_state	* S,
-	register word 		* s)
-{
-	register int		k;
-	register word		msr = S->msr;
-	register longword	ltmp;	/* for GSM_ADD */
-	register word		tmp;
-
-	for (k = 160; k--; s++) {
-		tmp = GSM_MULT_R( msr, 28180 );
-		msr = GSM_ADD(*s, tmp);  	   /* Deemphasis 	     */
-		*s  = GSM_ADD(msr, msr) & 0xFFF8;  /* Truncation & Upscaling */
-	}
-	S->msr = msr;
-}
-
-void Gsm_Decoder (
-	struct gsm_state	* S,
-
-	word		* LARcr,	/* [0..7]		IN	*/
-
-	word		* Ncr,		/* [0..3] 		IN 	*/
-	word		* bcr,		/* [0..3]		IN	*/
-	word		* Mcr,		/* [0..3] 		IN 	*/
-	word		* xmaxcr,	/* [0..3]		IN 	*/
-	word		* xMcr,		/* [0..13*4]		IN	*/
-
-	word		* s)		/* [0..159]		OUT 	*/
-{
-	int		j, k;
-	word		erp[40], wt[160];
-	word		* drp = S->dp0 + 120;
-
-	for (j=0; j <= 3; j++, xmaxcr++, bcr++, Ncr++, Mcr++, xMcr += 13) {
-
-		Gsm_RPE_Decoding( S, *xmaxcr, *Mcr, xMcr, erp );
-		Gsm_Long_Term_Synthesis_Filtering( S, *Ncr, *bcr, erp, drp );
-
-		for (k = 0; k <= 39; k++) wt[ j * 40 + k ] =  drp[ k ];
-	}
-
-	Gsm_Short_Term_Synthesis_Filter( S, LARcr, wt, s );
-	Postprocessing(S, s);
-}
--- a/src/libgsm/gsm.3
+++ /dev/null
@@ -1,105 +1,0 @@
-.\"
-.\" Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
-.\" Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
-.\" details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
-.\"
-.PU
-.TH GSM 3 
-.SH NAME
-gsm_create, gsm_destroy, gsm_encode, gsm_decode \(em GSM\ 06.10 lossy sound compression
-.SH SYNOPSIS
-.PP
-#include "gsm.h"
-.PP
-gsm gsm_create();
-.PP
-void gsm_encode(handle, src, dst)
-.br
-gsm handle;
-.br
-gsm_signal src[160];
-.br
-gsm_frame dst;
-.PP
-int gsm_decode(handle, src, dst)
-.br
-gsm handle;
-.br
-gsm_frame src;
-.br
-gsm_signal dst[160];
-.PP
-void gsm_destroy(handle)
-.br
-gsm handle;
-.br
-.SH "DESCRIPTION"
-Gsm is an implementation of the final draft GSM 06.10
-standard for full-rate speech transcoding.
-.PP
-gsm_create() initializes a gsm pass and returns a 'gsm' object
-which can be used as a handle in subsequent calls to gsm_decode(),
-gsm_encode() or gsm_destroy().
-.PP
-gsm_encode() encodes an array of 160 13-bit samples (given as
-gsm_signal's, signed integral values of at least 16 bits) into
-a gsm_frame of 33 bytes.
-(gsm_frame is a type defined as an array of 33 gsm_bytes in gsm.h.)
-.PP
-gsm_decode() decodes a gsm_frame into an array of 160 13-bit samples
-(given as gsm_signals), which sound rather like what you handed to
-gsm_encode() on the other side of the wire.
-.PP
-gsm_destroy() finishes a gsm pass and frees all storage associated
-with it.
-.SS "Sample format"
-The following scaling is assumed for input to the algorithm:
-.br
-.nf
-   0  1                             11 12
-   S..v..v..v..v..v..v..v..v..v..v..v..v..*..*..*
-.nf
-.br
-Only the top 13 bits are used as a signed input value.
-The output of gsm_decode() has the three lower bits set to zero.
-.\" .SH OPTIONS
-.SH "RETURN VALUE"
-gsm_create() returns an opaque handle object of type gsm, or 0 on error.
-gsm_decode() returns -1 if the passed frame is invalid, else 0.
-.SH EXAMPLE
-.nf
-#include "gsm.h"
-
-gsm handle;
-gsm_frame buf;
-gsm_signal sample[160];
-int cc, soundfd;
-
-play() {	/* read compressed data from standard input, write to soundfd */
-
-	if (!(handle = gsm_create())) error...
-	while (cc = read(0, (char *)buf, sizeof buf)) {
-		if (cc != sizeof buf) error...
-		if (gsm_decode(handle, buf, sample) < 0) error... 
-		if (write(soundfd, sample, sizeof sample) != sizeof sample)
-			error...
-	}
-	gsm_destroy(handle);
-}
-
-record() {	/* read from soundfd, write compressed to standard output */
-
-	if (!(handle = gsm_create())) error...
-	while (cc = read(soundfd, sample, sizeof sample)) {
-		if (cc != sizeof sample) error...
-		gsm_encode(handle, sample, buf);
-		if (write(1, (char *)buf, sizeof buf) != sizeof sample) 
-			error...
-	}
-	gsm_destroy(handle);
-}
-.nf
-.SH BUGS
-Please direct bug reports to jutta@cs.tu-berlin.de and cabo@cs.tu-berlin.de.
-.SH "SEE ALSO"
-toast(1), gsm_print(3), gsm_explode(3), gsm_option(3)
--- a/src/libgsm/gsm.h
+++ /dev/null
@@ -1,67 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
- * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/*$Header: /cvsroot/sox/sox/src/libgsm/Attic/gsm.h,v 1.5 2007/01/29 03:09:32 cbagwell Exp $*/
-
-#ifndef	GSM_H
-#define	GSM_H
-
-#ifdef __cplusplus
-#	define	NeedFunctionPrototypes	1
-#endif
-
-#if __STDC__
-#	define	NeedFunctionPrototypes	1
-#endif
-
-#ifdef _NO_PROTO
-#	undef	NeedFunctionPrototypes
-#endif
-
-#ifdef NeedFunctionPrototypes
-#   include	<stdio.h>		/* for FILE * 	*/
-#endif
-
-#undef GSM_P
-#if NeedFunctionPrototypes
-#	define	GSM_P( protos )	protos
-#else
-#	define  GSM_P( protos )	( /* protos */ )
-#endif
-
-/*
- *	Interface
- */
-
-typedef struct gsm_state * 	gsm;
-typedef short		   	gsm_signal;		/* signed 16 bit */
-typedef unsigned char		gsm_byte;
-typedef gsm_byte 		gsm_frame[33];		/* 33 * 8 bits	 */
-
-#define	GSM_MAGIC		0xD		  	/* 13 kbit/s RPE-LTP */
-
-#define	GSM_PATCHLEVEL		10
-#define	GSM_MINOR		0
-#define	GSM_MAJOR		1
-
-#define	GSM_OPT_VERBOSE		1
-#define	GSM_OPT_FAST		2
-#define	GSM_OPT_LTP_CUT		3
-#define	GSM_OPT_WAV49		4
-#define	GSM_OPT_FRAME_INDEX	5
-#define	GSM_OPT_FRAME_CHAIN	6
-
-extern gsm  gsm_create 	GSM_P((void));
-extern void gsm_destroy GSM_P((gsm));	
-
-extern int  gsm_option  GSM_P((gsm, int, int *));
-
-extern void gsm_encode  GSM_P((gsm, gsm_signal *, gsm_byte  *));
-extern int  gsm_decode  GSM_P((gsm, gsm_byte   *, gsm_signal *));
-
-#undef	GSM_P
-
-#endif	/* GSM_H */
--- a/src/libgsm/gsm_create.c
+++ /dev/null
@@ -1,27 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
- * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-static char const	ident[] = "$Header: /cvsroot/sox/sox/src/libgsm/Attic/gsm_create.c,v 1.5 2007/01/29 03:09:32 cbagwell Exp $";
-
-#include <string.h>
-#include <stdlib.h>
-#include <stdio.h>
-
-#include "gsm.h"
-#include "private.h"
-
-gsm gsm_create ()
-{
-	gsm  r;
-
-	r = (gsm)malloc(sizeof(struct gsm_state));
-	if (!r) return r;
-
-	memset((char *)r, 0, sizeof(*r));
-	r->nrp = 40;
-
-	return r;
-}
--- a/src/libgsm/gsm_decode.c
+++ /dev/null
@@ -1,360 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
- * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/gsm_decode.c,v 1.4 2007/01/29 03:09:32 cbagwell Exp $ */
-
-#include "private.h"
-
-#include "gsm.h"
-
-int gsm_decode (gsm s, gsm_byte * c, gsm_signal * target)
-{
-	word  	LARc[8], Nc[4], Mc[4], bc[4], xmaxc[4], xmc[13*4];
-
-#ifdef WAV49
-	if (s->wav_fmt) {
-
-		uword sr = 0;
-
-		s->frame_index = !s->frame_index;
-		if (s->frame_index) {
-
-			sr = *c++;
-			LARc[0] = sr & 0x3f;  sr >>= 6;
-			sr |= (uword)*c++ << 2;
-			LARc[1] = sr & 0x3f;  sr >>= 6;
-			sr |= (uword)*c++ << 4;
-			LARc[2] = sr & 0x1f;  sr >>= 5;
-			LARc[3] = sr & 0x1f;  sr >>= 5;
-			sr |= (uword)*c++ << 2;
-			LARc[4] = sr & 0xf;  sr >>= 4;
-			LARc[5] = sr & 0xf;  sr >>= 4;
-			sr |= (uword)*c++ << 2;			/* 5 */
-			LARc[6] = sr & 0x7;  sr >>= 3;
-			LARc[7] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 4;
-			Nc[0] = sr & 0x7f;  sr >>= 7;
-			bc[0] = sr & 0x3;  sr >>= 2;
-			Mc[0] = sr & 0x3;  sr >>= 2;
-			sr |= (uword)*c++ << 1;
-			xmaxc[0] = sr & 0x3f;  sr >>= 6;
-			xmc[0] = sr & 0x7;  sr >>= 3;
-			sr = *c++;
-			xmc[1] = sr & 0x7;  sr >>= 3;
-			xmc[2] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 2;
-			xmc[3] = sr & 0x7;  sr >>= 3;
-			xmc[4] = sr & 0x7;  sr >>= 3;
-			xmc[5] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 1;			/* 10 */
-			xmc[6] = sr & 0x7;  sr >>= 3;
-			xmc[7] = sr & 0x7;  sr >>= 3;
-			xmc[8] = sr & 0x7;  sr >>= 3;
-			sr = *c++;
-			xmc[9] = sr & 0x7;  sr >>= 3;
-			xmc[10] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 2;
-			xmc[11] = sr & 0x7;  sr >>= 3;
-			xmc[12] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 4;
-			Nc[1] = sr & 0x7f;  sr >>= 7;
-			bc[1] = sr & 0x3;  sr >>= 2;
-			Mc[1] = sr & 0x3;  sr >>= 2;
-			sr |= (uword)*c++ << 1;
-			xmaxc[1] = sr & 0x3f;  sr >>= 6;
-			xmc[13] = sr & 0x7;  sr >>= 3;
-			sr = *c++;				/* 15 */
-			xmc[14] = sr & 0x7;  sr >>= 3;
-			xmc[15] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 2;
-			xmc[16] = sr & 0x7;  sr >>= 3;
-			xmc[17] = sr & 0x7;  sr >>= 3;
-			xmc[18] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 1;
-			xmc[19] = sr & 0x7;  sr >>= 3;
-			xmc[20] = sr & 0x7;  sr >>= 3;
-			xmc[21] = sr & 0x7;  sr >>= 3;
-			sr = *c++;
-			xmc[22] = sr & 0x7;  sr >>= 3;
-			xmc[23] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 2;
-			xmc[24] = sr & 0x7;  sr >>= 3;
-			xmc[25] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 4;			/* 20 */
-			Nc[2] = sr & 0x7f;  sr >>= 7;
-			bc[2] = sr & 0x3;  sr >>= 2;
-			Mc[2] = sr & 0x3;  sr >>= 2;
-			sr |= (uword)*c++ << 1;
-			xmaxc[2] = sr & 0x3f;  sr >>= 6;
-			xmc[26] = sr & 0x7;  sr >>= 3;
-			sr = *c++;
-			xmc[27] = sr & 0x7;  sr >>= 3;
-			xmc[28] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 2;
-			xmc[29] = sr & 0x7;  sr >>= 3;
-			xmc[30] = sr & 0x7;  sr >>= 3;
-			xmc[31] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 1;
-			xmc[32] = sr & 0x7;  sr >>= 3;
-			xmc[33] = sr & 0x7;  sr >>= 3;
-			xmc[34] = sr & 0x7;  sr >>= 3;
-			sr = *c++;				/* 25 */
-			xmc[35] = sr & 0x7;  sr >>= 3;
-			xmc[36] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 2;
-			xmc[37] = sr & 0x7;  sr >>= 3;
-			xmc[38] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 4;
-			Nc[3] = sr & 0x7f;  sr >>= 7;
-			bc[3] = sr & 0x3;  sr >>= 2;
-			Mc[3] = sr & 0x3;  sr >>= 2;
-			sr |= (uword)*c++ << 1;
-			xmaxc[3] = sr & 0x3f;  sr >>= 6;
-			xmc[39] = sr & 0x7;  sr >>= 3;
-			sr = *c++;
-			xmc[40] = sr & 0x7;  sr >>= 3;
-			xmc[41] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 2;			/* 30 */
-			xmc[42] = sr & 0x7;  sr >>= 3;
-			xmc[43] = sr & 0x7;  sr >>= 3;
-			xmc[44] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 1;
-			xmc[45] = sr & 0x7;  sr >>= 3;
-			xmc[46] = sr & 0x7;  sr >>= 3;
-			xmc[47] = sr & 0x7;  sr >>= 3;
-			sr = *c++;
-			xmc[48] = sr & 0x7;  sr >>= 3;
-			xmc[49] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 2;
-			xmc[50] = sr & 0x7;  sr >>= 3;
-			xmc[51] = sr & 0x7;  sr >>= 3;
-
-			s->frame_chain = sr & 0xf;
-		}
-		else {
-			sr = s->frame_chain;
-			sr |= (uword)*c++ << 4;			/* 1 */
-			LARc[0] = sr & 0x3f;  sr >>= 6;
-			LARc[1] = sr & 0x3f;  sr >>= 6;
-			sr = *c++;
-			LARc[2] = sr & 0x1f;  sr >>= 5;
-			sr |= (uword)*c++ << 3;
-			LARc[3] = sr & 0x1f;  sr >>= 5;
-			LARc[4] = sr & 0xf;  sr >>= 4;
-			sr |= (uword)*c++ << 2;
-			LARc[5] = sr & 0xf;  sr >>= 4;
-			LARc[6] = sr & 0x7;  sr >>= 3;
-			LARc[7] = sr & 0x7;  sr >>= 3;
-			sr = *c++;				/* 5 */
-			Nc[0] = sr & 0x7f;  sr >>= 7;
-			sr |= (uword)*c++ << 1;
-			bc[0] = sr & 0x3;  sr >>= 2;
-			Mc[0] = sr & 0x3;  sr >>= 2;
-			sr |= (uword)*c++ << 5;
-			xmaxc[0] = sr & 0x3f;  sr >>= 6;
-			xmc[0] = sr & 0x7;  sr >>= 3;
-			xmc[1] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 1;
-			xmc[2] = sr & 0x7;  sr >>= 3;
-			xmc[3] = sr & 0x7;  sr >>= 3;
-			xmc[4] = sr & 0x7;  sr >>= 3;
-			sr = *c++;
-			xmc[5] = sr & 0x7;  sr >>= 3;
-			xmc[6] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 2;			/* 10 */
-			xmc[7] = sr & 0x7;  sr >>= 3;
-			xmc[8] = sr & 0x7;  sr >>= 3;
-			xmc[9] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 1;
-			xmc[10] = sr & 0x7;  sr >>= 3;
-			xmc[11] = sr & 0x7;  sr >>= 3;
-			xmc[12] = sr & 0x7;  sr >>= 3;
-			sr = *c++;
-			Nc[1] = sr & 0x7f;  sr >>= 7;
-			sr |= (uword)*c++ << 1;
-			bc[1] = sr & 0x3;  sr >>= 2;
-			Mc[1] = sr & 0x3;  sr >>= 2;
-			sr |= (uword)*c++ << 5;
-			xmaxc[1] = sr & 0x3f;  sr >>= 6;
-			xmc[13] = sr & 0x7;  sr >>= 3;
-			xmc[14] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 1;			/* 15 */
-			xmc[15] = sr & 0x7;  sr >>= 3;
-			xmc[16] = sr & 0x7;  sr >>= 3;
-			xmc[17] = sr & 0x7;  sr >>= 3;
-			sr = *c++;
-			xmc[18] = sr & 0x7;  sr >>= 3;
-			xmc[19] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 2;
-			xmc[20] = sr & 0x7;  sr >>= 3;
-			xmc[21] = sr & 0x7;  sr >>= 3;
-			xmc[22] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 1;
-			xmc[23] = sr & 0x7;  sr >>= 3;
-			xmc[24] = sr & 0x7;  sr >>= 3;
-			xmc[25] = sr & 0x7;  sr >>= 3;
-			sr = *c++;
-			Nc[2] = sr & 0x7f;  sr >>= 7;
-			sr |= (uword)*c++ << 1;			/* 20 */
-			bc[2] = sr & 0x3;  sr >>= 2;
-			Mc[2] = sr & 0x3;  sr >>= 2;
-			sr |= (uword)*c++ << 5;
-			xmaxc[2] = sr & 0x3f;  sr >>= 6;
-			xmc[26] = sr & 0x7;  sr >>= 3;
-			xmc[27] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 1;	
-			xmc[28] = sr & 0x7;  sr >>= 3;
-			xmc[29] = sr & 0x7;  sr >>= 3;
-			xmc[30] = sr & 0x7;  sr >>= 3;
-			sr = *c++;
-			xmc[31] = sr & 0x7;  sr >>= 3;
-			xmc[32] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 2;
-			xmc[33] = sr & 0x7;  sr >>= 3;
-			xmc[34] = sr & 0x7;  sr >>= 3;
-			xmc[35] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 1;			/* 25 */
-			xmc[36] = sr & 0x7;  sr >>= 3;
-			xmc[37] = sr & 0x7;  sr >>= 3;
-			xmc[38] = sr & 0x7;  sr >>= 3;
-			sr = *c++;
-			Nc[3] = sr & 0x7f;  sr >>= 7;
-			sr |= (uword)*c++ << 1;		
-			bc[3] = sr & 0x3;  sr >>= 2;
-			Mc[3] = sr & 0x3;  sr >>= 2;
-			sr |= (uword)*c++ << 5;
-			xmaxc[3] = sr & 0x3f;  sr >>= 6;
-			xmc[39] = sr & 0x7;  sr >>= 3;
-			xmc[40] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 1;
-			xmc[41] = sr & 0x7;  sr >>= 3;
-			xmc[42] = sr & 0x7;  sr >>= 3;
-			xmc[43] = sr & 0x7;  sr >>= 3;
-			sr = *c++;				/* 30 */
-			xmc[44] = sr & 0x7;  sr >>= 3;
-			xmc[45] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 2;
-			xmc[46] = sr & 0x7;  sr >>= 3;
-			xmc[47] = sr & 0x7;  sr >>= 3;
-			xmc[48] = sr & 0x7;  sr >>= 3;
-			sr |= (uword)*c++ << 1;
-			xmc[49] = sr & 0x7;  sr >>= 3;
-			xmc[50] = sr & 0x7;  sr >>= 3;
-			xmc[51] = sr & 0x7;  sr >>= 3;
-		}
-	}
-	else
-#endif
-	{
-		/* GSM_MAGIC  = (*c >> 4) & 0xF; */
-
-		if (((*c >> 4) & 0x0F) != GSM_MAGIC) return -1;
-
-		LARc[0]  = (*c++ & 0xF) << 2;		/* 1 */
-		LARc[0] |= (*c >> 6) & 0x3;
-		LARc[1]  = *c++ & 0x3F;
-		LARc[2]  = (*c >> 3) & 0x1F;
-		LARc[3]  = (*c++ & 0x7) << 2;
-		LARc[3] |= (*c >> 6) & 0x3;
-		LARc[4]  = (*c >> 2) & 0xF;
-		LARc[5]  = (*c++ & 0x3) << 2;
-		LARc[5] |= (*c >> 6) & 0x3;
-		LARc[6]  = (*c >> 3) & 0x7;
-		LARc[7]  = *c++ & 0x7;
-		Nc[0]  = (*c >> 1) & 0x7F;
-		bc[0]  = (*c++ & 0x1) << 1;
-		bc[0] |= (*c >> 7) & 0x1;
-		Mc[0]  = (*c >> 5) & 0x3;
-		xmaxc[0]  = (*c++ & 0x1F) << 1;
-		xmaxc[0] |= (*c >> 7) & 0x1;
-		xmc[0]  = (*c >> 4) & 0x7;
-		xmc[1]  = (*c >> 1) & 0x7;
-		xmc[2]  = (*c++ & 0x1) << 2;
-		xmc[2] |= (*c >> 6) & 0x3;
-		xmc[3]  = (*c >> 3) & 0x7;
-		xmc[4]  = *c++ & 0x7;
-		xmc[5]  = (*c >> 5) & 0x7;
-		xmc[6]  = (*c >> 2) & 0x7;
-		xmc[7]  = (*c++ & 0x3) << 1;		/* 10 */
-		xmc[7] |= (*c >> 7) & 0x1;
-		xmc[8]  = (*c >> 4) & 0x7;
-		xmc[9]  = (*c >> 1) & 0x7;
-		xmc[10]  = (*c++ & 0x1) << 2;
-		xmc[10] |= (*c >> 6) & 0x3;
-		xmc[11]  = (*c >> 3) & 0x7;
-		xmc[12]  = *c++ & 0x7;
-		Nc[1]  = (*c >> 1) & 0x7F;
-		bc[1]  = (*c++ & 0x1) << 1;
-		bc[1] |= (*c >> 7) & 0x1;
-		Mc[1]  = (*c >> 5) & 0x3;
-		xmaxc[1]  = (*c++ & 0x1F) << 1;
-		xmaxc[1] |= (*c >> 7) & 0x1;
-		xmc[13]  = (*c >> 4) & 0x7;
-		xmc[14]  = (*c >> 1) & 0x7;
-		xmc[15]  = (*c++ & 0x1) << 2;
-		xmc[15] |= (*c >> 6) & 0x3;
-		xmc[16]  = (*c >> 3) & 0x7;
-		xmc[17]  = *c++ & 0x7;
-		xmc[18]  = (*c >> 5) & 0x7;
-		xmc[19]  = (*c >> 2) & 0x7;
-		xmc[20]  = (*c++ & 0x3) << 1;
-		xmc[20] |= (*c >> 7) & 0x1;
-		xmc[21]  = (*c >> 4) & 0x7;
-		xmc[22]  = (*c >> 1) & 0x7;
-		xmc[23]  = (*c++ & 0x1) << 2;
-		xmc[23] |= (*c >> 6) & 0x3;
-		xmc[24]  = (*c >> 3) & 0x7;
-		xmc[25]  = *c++ & 0x7;
-		Nc[2]  = (*c >> 1) & 0x7F;
-		bc[2]  = (*c++ & 0x1) << 1;		/* 20 */
-		bc[2] |= (*c >> 7) & 0x1;
-		Mc[2]  = (*c >> 5) & 0x3;
-		xmaxc[2]  = (*c++ & 0x1F) << 1;
-		xmaxc[2] |= (*c >> 7) & 0x1;
-		xmc[26]  = (*c >> 4) & 0x7;
-		xmc[27]  = (*c >> 1) & 0x7;
-		xmc[28]  = (*c++ & 0x1) << 2;
-		xmc[28] |= (*c >> 6) & 0x3;
-		xmc[29]  = (*c >> 3) & 0x7;
-		xmc[30]  = *c++ & 0x7;
-		xmc[31]  = (*c >> 5) & 0x7;
-		xmc[32]  = (*c >> 2) & 0x7;
-		xmc[33]  = (*c++ & 0x3) << 1;
-		xmc[33] |= (*c >> 7) & 0x1;
-		xmc[34]  = (*c >> 4) & 0x7;
-		xmc[35]  = (*c >> 1) & 0x7;
-		xmc[36]  = (*c++ & 0x1) << 2;
-		xmc[36] |= (*c >> 6) & 0x3;
-		xmc[37]  = (*c >> 3) & 0x7;
-		xmc[38]  = *c++ & 0x7;
-		Nc[3]  = (*c >> 1) & 0x7F;
-		bc[3]  = (*c++ & 0x1) << 1;
-		bc[3] |= (*c >> 7) & 0x1;
-		Mc[3]  = (*c >> 5) & 0x3;
-		xmaxc[3]  = (*c++ & 0x1F) << 1;
-		xmaxc[3] |= (*c >> 7) & 0x1;
-		xmc[39]  = (*c >> 4) & 0x7;
-		xmc[40]  = (*c >> 1) & 0x7;
-		xmc[41]  = (*c++ & 0x1) << 2;
-		xmc[41] |= (*c >> 6) & 0x3;
-		xmc[42]  = (*c >> 3) & 0x7;
-		xmc[43]  = *c++ & 0x7;			/* 30  */
-		xmc[44]  = (*c >> 5) & 0x7;
-		xmc[45]  = (*c >> 2) & 0x7;
-		xmc[46]  = (*c++ & 0x3) << 1;
-		xmc[46] |= (*c >> 7) & 0x1;
-		xmc[47]  = (*c >> 4) & 0x7;
-		xmc[48]  = (*c >> 1) & 0x7;
-		xmc[49]  = (*c++ & 0x1) << 2;
-		xmc[49] |= (*c >> 6) & 0x3;
-		xmc[50]  = (*c >> 3) & 0x7;
-		xmc[51]  = *c & 0x7;			/* 33 */
-	}
-
-	Gsm_Decoder(s, LARc, Nc, bc, Mc, xmaxc, xmc, target);
-
-	return 0;
-}
--- a/src/libgsm/gsm_destroy.c
+++ /dev/null
@@ -1,16 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
- * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/gsm_destroy.c,v 1.3 2007/01/29 03:09:33 cbagwell Exp $ */
-
-#include "gsm.h"
-
-#	include	<stdlib.h>
-
-void gsm_destroy (gsm S)
-{
-	if (S) free((char *)S);
-}
--- a/src/libgsm/gsm_encode.c
+++ /dev/null
@@ -1,450 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
- * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/gsm_encode.c,v 1.4 2007/01/29 03:09:33 cbagwell Exp $ */
-
-#include "private.h"
-#include "gsm.h"
-
-void gsm_encode (gsm s, gsm_signal * source, gsm_byte * c)
-{
-	word	 	LARc[8], Nc[4], Mc[4], bc[4], xmaxc[4], xmc[13*4];
-
-	Gsm_Coder(s, source, LARc, Nc, bc, Mc, xmaxc, xmc);
-
-
-	/*	variable	size
-
-		GSM_MAGIC	4
-
-		LARc[0]		6
-		LARc[1]		6
-		LARc[2]		5
-		LARc[3]		5
-		LARc[4]		4
-		LARc[5]		4
-		LARc[6]		3
-		LARc[7]		3
-
-		Nc[0]		7
-		bc[0]		2
-		Mc[0]		2
-		xmaxc[0]	6
-		xmc[0]		3
-		xmc[1]		3
-		xmc[2]		3
-		xmc[3]		3
-		xmc[4]		3
-		xmc[5]		3
-		xmc[6]		3
-		xmc[7]		3
-		xmc[8]		3
-		xmc[9]		3
-		xmc[10]		3
-		xmc[11]		3
-		xmc[12]		3
-
-		Nc[1]		7
-		bc[1]		2
-		Mc[1]		2
-		xmaxc[1]	6
-		xmc[13]		3
-		xmc[14]		3
-		xmc[15]		3
-		xmc[16]		3
-		xmc[17]		3
-		xmc[18]		3
-		xmc[19]		3
-		xmc[20]		3
-		xmc[21]		3
-		xmc[22]		3
-		xmc[23]		3
-		xmc[24]		3
-		xmc[25]		3
-
-		Nc[2]		7
-		bc[2]		2
-		Mc[2]		2
-		xmaxc[2]	6
-		xmc[26]		3
-		xmc[27]		3
-		xmc[28]		3
-		xmc[29]		3
-		xmc[30]		3
-		xmc[31]		3
-		xmc[32]		3
-		xmc[33]		3
-		xmc[34]		3
-		xmc[35]		3
-		xmc[36]		3
-		xmc[37]		3
-		xmc[38]		3
-
-		Nc[3]		7
-		bc[3]		2
-		Mc[3]		2
-		xmaxc[3]	6
-		xmc[39]		3
-		xmc[40]		3
-		xmc[41]		3
-		xmc[42]		3
-		xmc[43]		3
-		xmc[44]		3
-		xmc[45]		3
-		xmc[46]		3
-		xmc[47]		3
-		xmc[48]		3
-		xmc[49]		3
-		xmc[50]		3
-		xmc[51]		3
-	*/
-
-#ifdef WAV49
-
-	if (s->wav_fmt) {
-		s->frame_index = !s->frame_index;
-		if (s->frame_index) {
-
-			uword sr;
-
-			sr = 0;
-			sr = sr >> 6 | LARc[0] << 10;
-			sr = sr >> 6 | LARc[1] << 10;
-			*c++ = sr >> 4;
-			sr = sr >> 5 | LARc[2] << 11;
-			*c++ = sr >> 7;
-			sr = sr >> 5 | LARc[3] << 11;
-			sr = sr >> 4 | LARc[4] << 12;
-			*c++ = sr >> 6;
-			sr = sr >> 4 | LARc[5] << 12;
-			sr = sr >> 3 | LARc[6] << 13;
-			*c++ = sr >> 7;
-			sr = sr >> 3 | LARc[7] << 13;
-			sr = sr >> 7 | Nc[0] << 9;
-			*c++ = sr >> 5;
-			sr = sr >> 2 | bc[0] << 14;
-			sr = sr >> 2 | Mc[0] << 14;
-			sr = sr >> 6 | xmaxc[0] << 10;
-			*c++ = sr >> 3;
-			sr = sr >> 3 | xmc[0] << 13;
-			*c++ = sr >> 8;
-			sr = sr >> 3 | xmc[1] << 13;
-			sr = sr >> 3 | xmc[2] << 13;
-			sr = sr >> 3 | xmc[3] << 13;
-			*c++ = sr >> 7;
-			sr = sr >> 3 | xmc[4] << 13;
-			sr = sr >> 3 | xmc[5] << 13;
-			sr = sr >> 3 | xmc[6] << 13;
-			*c++ = sr >> 6;
-			sr = sr >> 3 | xmc[7] << 13;
-			sr = sr >> 3 | xmc[8] << 13;
-			*c++ = sr >> 8;
-			sr = sr >> 3 | xmc[9] << 13;
-			sr = sr >> 3 | xmc[10] << 13;
-			sr = sr >> 3 | xmc[11] << 13;
-			*c++ = sr >> 7;
-			sr = sr >> 3 | xmc[12] << 13;
-			sr = sr >> 7 | Nc[1] << 9;
-			*c++ = sr >> 5;
-			sr = sr >> 2 | bc[1] << 14;
-			sr = sr >> 2 | Mc[1] << 14;
-			sr = sr >> 6 | xmaxc[1] << 10;
-			*c++ = sr >> 3;
-			sr = sr >> 3 | xmc[13] << 13;
-			*c++ = sr >> 8;
-			sr = sr >> 3 | xmc[14] << 13;
-			sr = sr >> 3 | xmc[15] << 13;
-			sr = sr >> 3 | xmc[16] << 13;
-			*c++ = sr >> 7;
-			sr = sr >> 3 | xmc[17] << 13;
-			sr = sr >> 3 | xmc[18] << 13;
-			sr = sr >> 3 | xmc[19] << 13;
-			*c++ = sr >> 6;
-			sr = sr >> 3 | xmc[20] << 13;
-			sr = sr >> 3 | xmc[21] << 13;
-			*c++ = sr >> 8;
-			sr = sr >> 3 | xmc[22] << 13;
-			sr = sr >> 3 | xmc[23] << 13;
-			sr = sr >> 3 | xmc[24] << 13;
-			*c++ = sr >> 7;
-			sr = sr >> 3 | xmc[25] << 13;
-			sr = sr >> 7 | Nc[2] << 9;
-			*c++ = sr >> 5;
-			sr = sr >> 2 | bc[2] << 14;
-			sr = sr >> 2 | Mc[2] << 14;
-			sr = sr >> 6 | xmaxc[2] << 10;
-			*c++ = sr >> 3;
-			sr = sr >> 3 | xmc[26] << 13;
-			*c++ = sr >> 8;
-			sr = sr >> 3 | xmc[27] << 13;
-			sr = sr >> 3 | xmc[28] << 13;
-			sr = sr >> 3 | xmc[29] << 13;
-			*c++ = sr >> 7;
-			sr = sr >> 3 | xmc[30] << 13;
-			sr = sr >> 3 | xmc[31] << 13;
-			sr = sr >> 3 | xmc[32] << 13;
-			*c++ = sr >> 6;
-			sr = sr >> 3 | xmc[33] << 13;
-			sr = sr >> 3 | xmc[34] << 13;
-			*c++ = sr >> 8;
-			sr = sr >> 3 | xmc[35] << 13;
-			sr = sr >> 3 | xmc[36] << 13;
-			sr = sr >> 3 | xmc[37] << 13;
-			*c++ = sr >> 7;
-			sr = sr >> 3 | xmc[38] << 13;
-			sr = sr >> 7 | Nc[3] << 9;
-			*c++ = sr >> 5;
-			sr = sr >> 2 | bc[3] << 14;
-			sr = sr >> 2 | Mc[3] << 14;
-			sr = sr >> 6 | xmaxc[3] << 10;
-			*c++ = sr >> 3;
-			sr = sr >> 3 | xmc[39] << 13;
-			*c++ = sr >> 8;
-			sr = sr >> 3 | xmc[40] << 13;
-			sr = sr >> 3 | xmc[41] << 13;
-			sr = sr >> 3 | xmc[42] << 13;
-			*c++ = sr >> 7;
-			sr = sr >> 3 | xmc[43] << 13;
-			sr = sr >> 3 | xmc[44] << 13;
-			sr = sr >> 3 | xmc[45] << 13;
-			*c++ = sr >> 6;
-			sr = sr >> 3 | xmc[46] << 13;
-			sr = sr >> 3 | xmc[47] << 13;
-			*c++ = sr >> 8;
-			sr = sr >> 3 | xmc[48] << 13;
-			sr = sr >> 3 | xmc[49] << 13;
-			sr = sr >> 3 | xmc[50] << 13;
-			*c++ = sr >> 7;
-			sr = sr >> 3 | xmc[51] << 13;
-			sr = sr >> 4;
-			*c = sr >> 8;
-			s->frame_chain = *c;
-		}
-		else {
-			uword sr;
-
-			sr = 0;
-			sr = sr >> 4 | s->frame_chain << 12;
-			sr = sr >> 6 | LARc[0] << 10;
-			*c++ = sr >> 6;
-			sr = sr >> 6 | LARc[1] << 10;
-			*c++ = sr >> 8;
-			sr = sr >> 5 | LARc[2] << 11;
-			sr = sr >> 5 | LARc[3] << 11;
-			*c++ = sr >> 6;
-			sr = sr >> 4 | LARc[4] << 12;
-			sr = sr >> 4 | LARc[5] << 12;
-			*c++ = sr >> 6;
-			sr = sr >> 3 | LARc[6] << 13;
-			sr = sr >> 3 | LARc[7] << 13;
-			*c++ = sr >> 8;
-			sr = sr >> 7 | Nc[0] << 9;
-			sr = sr >> 2 | bc[0] << 14;
-			*c++ = sr >> 7;
-			sr = sr >> 2 | Mc[0] << 14;
-			sr = sr >> 6 | xmaxc[0] << 10;
-			*c++ = sr >> 7;
-			sr = sr >> 3 | xmc[0] << 13;
-			sr = sr >> 3 | xmc[1] << 13;
-			sr = sr >> 3 | xmc[2] << 13;
-			*c++ = sr >> 6;
-			sr = sr >> 3 | xmc[3] << 13;
-			sr = sr >> 3 | xmc[4] << 13;
-			*c++ = sr >> 8;
-			sr = sr >> 3 | xmc[5] << 13;
-			sr = sr >> 3 | xmc[6] << 13;
-			sr = sr >> 3 | xmc[7] << 13;
-			*c++ = sr >> 7;
-			sr = sr >> 3 | xmc[8] << 13;
-			sr = sr >> 3 | xmc[9] << 13;
-			sr = sr >> 3 | xmc[10] << 13;
-			*c++ = sr >> 6;
-			sr = sr >> 3 | xmc[11] << 13;
-			sr = sr >> 3 | xmc[12] << 13;
-			*c++ = sr >> 8;
-			sr = sr >> 7 | Nc[1] << 9;
-			sr = sr >> 2 | bc[1] << 14;
-			*c++ = sr >> 7;
-			sr = sr >> 2 | Mc[1] << 14;
-			sr = sr >> 6 | xmaxc[1] << 10;
-			*c++ = sr >> 7;
-			sr = sr >> 3 | xmc[13] << 13;
-			sr = sr >> 3 | xmc[14] << 13;
-			sr = sr >> 3 | xmc[15] << 13;
-			*c++ = sr >> 6;
-			sr = sr >> 3 | xmc[16] << 13;
-			sr = sr >> 3 | xmc[17] << 13;
-			*c++ = sr >> 8;
-			sr = sr >> 3 | xmc[18] << 13;
-			sr = sr >> 3 | xmc[19] << 13;
-			sr = sr >> 3 | xmc[20] << 13;
-			*c++ = sr >> 7;
-			sr = sr >> 3 | xmc[21] << 13;
-			sr = sr >> 3 | xmc[22] << 13;
-			sr = sr >> 3 | xmc[23] << 13;
-			*c++ = sr >> 6;
-			sr = sr >> 3 | xmc[24] << 13;
-			sr = sr >> 3 | xmc[25] << 13;
-			*c++ = sr >> 8;
-			sr = sr >> 7 | Nc[2] << 9;
-			sr = sr >> 2 | bc[2] << 14;
-			*c++ = sr >> 7;
-			sr = sr >> 2 | Mc[2] << 14;
-			sr = sr >> 6 | xmaxc[2] << 10;
-			*c++ = sr >> 7;
-			sr = sr >> 3 | xmc[26] << 13;
-			sr = sr >> 3 | xmc[27] << 13;
-			sr = sr >> 3 | xmc[28] << 13;
-			*c++ = sr >> 6;
-			sr = sr >> 3 | xmc[29] << 13;
-			sr = sr >> 3 | xmc[30] << 13;
-			*c++ = sr >> 8;
-			sr = sr >> 3 | xmc[31] << 13;
-			sr = sr >> 3 | xmc[32] << 13;
-			sr = sr >> 3 | xmc[33] << 13;
-			*c++ = sr >> 7;
-			sr = sr >> 3 | xmc[34] << 13;
-			sr = sr >> 3 | xmc[35] << 13;
-			sr = sr >> 3 | xmc[36] << 13;
-			*c++ = sr >> 6;
-			sr = sr >> 3 | xmc[37] << 13;
-			sr = sr >> 3 | xmc[38] << 13;
-			*c++ = sr >> 8;
-			sr = sr >> 7 | Nc[3] << 9;
-			sr = sr >> 2 | bc[3] << 14;
-			*c++ = sr >> 7;
-			sr = sr >> 2 | Mc[3] << 14;
-			sr = sr >> 6 | xmaxc[3] << 10;
-			*c++ = sr >> 7;
-			sr = sr >> 3 | xmc[39] << 13;
-			sr = sr >> 3 | xmc[40] << 13;
-			sr = sr >> 3 | xmc[41] << 13;
-			*c++ = sr >> 6;
-			sr = sr >> 3 | xmc[42] << 13;
-			sr = sr >> 3 | xmc[43] << 13;
-			*c++ = sr >> 8;
-			sr = sr >> 3 | xmc[44] << 13;
-			sr = sr >> 3 | xmc[45] << 13;
-			sr = sr >> 3 | xmc[46] << 13;
-			*c++ = sr >> 7;
-			sr = sr >> 3 | xmc[47] << 13;
-			sr = sr >> 3 | xmc[48] << 13;
-			sr = sr >> 3 | xmc[49] << 13;
-			*c++ = sr >> 6;
-			sr = sr >> 3 | xmc[50] << 13;
-			sr = sr >> 3 | xmc[51] << 13;
-			*c++ = sr >> 8;
-		}
-	}
-
-	else
-
-#endif	/* WAV49 */
-	{
-
-		*c++ =   ((GSM_MAGIC & 0xF) << 4)		/* 1 */
-		       | ((LARc[0] >> 2) & 0xF);
-		*c++ =   ((LARc[0] & 0x3) << 6)
-		       | (LARc[1] & 0x3F);
-		*c++ =   ((LARc[2] & 0x1F) << 3)
-		       | ((LARc[3] >> 2) & 0x7);
-		*c++ =   ((LARc[3] & 0x3) << 6)
-		       | ((LARc[4] & 0xF) << 2)
-		       | ((LARc[5] >> 2) & 0x3);
-		*c++ =   ((LARc[5] & 0x3) << 6)
-		       | ((LARc[6] & 0x7) << 3)
-		       | (LARc[7] & 0x7);
-		*c++ =   ((Nc[0] & 0x7F) << 1)
-		       | ((bc[0] >> 1) & 0x1);
-		*c++ =   ((bc[0] & 0x1) << 7)
-		       | ((Mc[0] & 0x3) << 5)
-		       | ((xmaxc[0] >> 1) & 0x1F);
-		*c++ =   ((xmaxc[0] & 0x1) << 7)
-		       | ((xmc[0] & 0x7) << 4)
-		       | ((xmc[1] & 0x7) << 1)
-		       | ((xmc[2] >> 2) & 0x1);
-		*c++ =   ((xmc[2] & 0x3) << 6)
-		       | ((xmc[3] & 0x7) << 3)
-		       | (xmc[4] & 0x7);
-		*c++ =   ((xmc[5] & 0x7) << 5)			/* 10 */
-		       | ((xmc[6] & 0x7) << 2)
-		       | ((xmc[7] >> 1) & 0x3);
-		*c++ =   ((xmc[7] & 0x1) << 7)
-		       | ((xmc[8] & 0x7) << 4)
-		       | ((xmc[9] & 0x7) << 1)
-		       | ((xmc[10] >> 2) & 0x1);
-		*c++ =   ((xmc[10] & 0x3) << 6)
-		       | ((xmc[11] & 0x7) << 3)
-		       | (xmc[12] & 0x7);
-		*c++ =   ((Nc[1] & 0x7F) << 1)
-		       | ((bc[1] >> 1) & 0x1);
-		*c++ =   ((bc[1] & 0x1) << 7)
-		       | ((Mc[1] & 0x3) << 5)
-		       | ((xmaxc[1] >> 1) & 0x1F);
-		*c++ =   ((xmaxc[1] & 0x1) << 7)
-		       | ((xmc[13] & 0x7) << 4)
-		       | ((xmc[14] & 0x7) << 1)
-		       | ((xmc[15] >> 2) & 0x1);
-		*c++ =   ((xmc[15] & 0x3) << 6)
-		       | ((xmc[16] & 0x7) << 3)
-		       | (xmc[17] & 0x7);
-		*c++ =   ((xmc[18] & 0x7) << 5)
-		       | ((xmc[19] & 0x7) << 2)
-		       | ((xmc[20] >> 1) & 0x3);
-		*c++ =   ((xmc[20] & 0x1) << 7)
-		       | ((xmc[21] & 0x7) << 4)
-		       | ((xmc[22] & 0x7) << 1)
-		       | ((xmc[23] >> 2) & 0x1);
-		*c++ =   ((xmc[23] & 0x3) << 6)
-		       | ((xmc[24] & 0x7) << 3)
-		       | (xmc[25] & 0x7);
-		*c++ =   ((Nc[2] & 0x7F) << 1)			/* 20 */
-		       | ((bc[2] >> 1) & 0x1);
-		*c++ =   ((bc[2] & 0x1) << 7)
-		       | ((Mc[2] & 0x3) << 5)
-		       | ((xmaxc[2] >> 1) & 0x1F);
-		*c++ =   ((xmaxc[2] & 0x1) << 7)
-		       | ((xmc[26] & 0x7) << 4)
-		       | ((xmc[27] & 0x7) << 1)
-		       | ((xmc[28] >> 2) & 0x1);
-		*c++ =   ((xmc[28] & 0x3) << 6)
-		       | ((xmc[29] & 0x7) << 3)
-		       | (xmc[30] & 0x7);
-		*c++ =   ((xmc[31] & 0x7) << 5)
-		       | ((xmc[32] & 0x7) << 2)
-		       | ((xmc[33] >> 1) & 0x3);
-		*c++ =   ((xmc[33] & 0x1) << 7)
-		       | ((xmc[34] & 0x7) << 4)
-		       | ((xmc[35] & 0x7) << 1)
-		       | ((xmc[36] >> 2) & 0x1);
-		*c++ =   ((xmc[36] & 0x3) << 6)
-		       | ((xmc[37] & 0x7) << 3)
-		       | (xmc[38] & 0x7);
-		*c++ =   ((Nc[3] & 0x7F) << 1)
-		       | ((bc[3] >> 1) & 0x1);
-		*c++ =   ((bc[3] & 0x1) << 7)
-		       | ((Mc[3] & 0x3) << 5)
-		       | ((xmaxc[3] >> 1) & 0x1F);
-		*c++ =   ((xmaxc[3] & 0x1) << 7)
-		       | ((xmc[39] & 0x7) << 4)
-		       | ((xmc[40] & 0x7) << 1)
-		       | ((xmc[41] >> 2) & 0x1);
-		*c++ =   ((xmc[41] & 0x3) << 6)			/* 30 */
-		       | ((xmc[42] & 0x7) << 3)
-		       | (xmc[43] & 0x7);
-		*c++ =   ((xmc[44] & 0x7) << 5)
-		       | ((xmc[45] & 0x7) << 2)
-		       | ((xmc[46] >> 1) & 0x3);
-		*c++ =   ((xmc[46] & 0x1) << 7)
-		       | ((xmc[47] & 0x7) << 4)
-		       | ((xmc[48] & 0x7) << 1)
-		       | ((xmc[49] >> 2) & 0x1);
-		*c++ =   ((xmc[49] & 0x3) << 6)
-		       | ((xmc[50] & 0x7) << 3)
-		       | (xmc[51] & 0x7);
-
-	}
-}
--- a/src/libgsm/gsm_option.3
+++ /dev/null
@@ -1,183 +1,0 @@
-.\"
-.\" Copyright 1992-1995 by Jutta Degener and Carsten Bormann, Technische
-.\" Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
-.\" details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
-.\"
-.PU
-.TH GSM_OPTION 3 
-.SH NAME
-gsm_option \(em customizing the GSM 06.10 implementation
-.SH SYNOPSIS
-#include "gsm.h"
-.PP
-int gsm_option(handle, option, valueP);
-.br
-gsm handle;
-.br
-int option;
-.br
-int * valueP;
-.SH "DESCRIPTION"
-The gsm library is an implementation of the final draft GSM 06.10
-standard for full-rate speech transcoding, a lossy
-speech compression algorithm.
-.PP
-The gsm_option() function can be used to set and query various
-options or flags that are not needed for regular GSM 06.10 encoding
-or decoding, but might be of interest in special cases.
-.PP
-The second argument to gsm_option specifies what parameter
-should be changed or queried.
-The third argument is either a null pointer, in which case
-the current value of that parameter is returned;
-or it is a pointer to an integer containing the value
-you want to set, in which case the previous value will
-be returned.
-.PP
-The following options are defined:
-.PP
-.I GSM_OPT_VERBOSE
-Verbosity level.
-.br
-.in+5
-This option is only supported if the library was compiled
-with debugging turned on, and may be used by developers of
-compression algorithms to aid debugging.
-.br
-The verbosity level can be changed at any time during encoding or decoding.
-.in-5
-.sp
-.PP
-.I GSM_OPT_FAST
-Faster compression algorithm.
-.br
-.in+5
-This implementation offers a not strictly standard-compliant, but
-faster compression algorithm that is compatible with the regular
-method and does not noticably degrade audio quality.
-.br
-The value passed to 
-.br
-.nf
-	gsm_option(handle, GSM_OPT_FAST, & value)
-.fi
-.br 
-functions as a boolean flag; if it is zero, the regular algorithm
-will be used, if not, the faster version will be used.
-.br
-The availability of this option depends on the hardware used;
-if it is not available, gsm_option will return -1 on an attempt
-to set or query it.
-.br
-This option can be set any time during encoding or decoding.
-.in-5
-.ne 5
-.sp
-.PP
-.I GSM_OPT_LTP_CUT
-Enable, disable, or query the LTP cut-off optimization.
-.br
-.in+5
-During encoding, the search for the long-term correlation
-lag forms the bottleneck of the algorithm. 
-The ltp-cut option enables an approximation that disregards most
-of the samples for purposes of finding that correlation,
-and hence speeds up the encoding at a noticable loss in quality.
-.br
-The value passed to 
-.br
-.nf
-	gsm_option(handle, GSM_OPT_LTP_CUT, & value)
-.fi
-.br 
-turns the optimization on if nonzero, and off if zero.
-.br
-This option can be set any time during encoding
-or decoding; it will only affect the encoding pass, not
-the decoding.
-.sp
-.PP
-.I GSM_OPT_WAV49
-WAV-style byte ordering.
-.br
-.in+5
-A WAV file of type #49 contains GSM 06.10-encoded frames.
-Unfortunately, the framing and code ordering of the WAV version
-are incompatible with the native ones of this GSM 06.10 library.
-The GSM_OPT_WAV49 option turns on a different packing
-algorithm that produces alternating frames of 32 and 33 bytes
-(or makes it consume alternating frames of 33 and 32 bytes, note
-the opposite order of the two numbers) which, when concatenated,
-can be used in the body of a WAV #49 frame.
-It is up to the user program to write a WAV header, if any;
-neither the library itself nor the toast program produce
-complete WAV files.
-.br
-The value passed to 
-.br
-.nf
-	gsm_option(handle, GSM_OPT_WAV49, & value)
-.fi
-.br 
-functions as a boolean flag; if it is zero, the library's native
-framing algorithm will be used, if nonzero, WAV-type packing is in effect.
-.br
-This option should be used before any frames are encoded.
-Whether or not it is supported at all depends on a
-compile-time switch, WAV49.
-Both option and compile time switch are new to the library
-as of patchlevel 9, and are considerably less tested than the
-well-worn rest of the it.
-.br
-Thanks to Jeff Chilton for the detective work and first free
-implementation of this version of the GSM 06.10 encoding.
-.sp
-.PP
-.I GSM_OPT_FRAME_CHAIN
-Query or set the chaining byte.
-.br
-.in+5
-Between the two frames of a WAV-style encoding, the GSM 06.10 library
-must keep track of one half-byte that is technically part of the first
-frame, but will be written as the first four bits of the second.
-This half-byte are the lowest four bits of the value returned by,
-and optionally set by,
-.br
-.nf
-	gsm_option(handle, GSM_OPT_FRAME_CHAIN, & value)
-.fi
-.br 
-This option can be queried and set at any time.
-.sp
-.PP
-.I GSM_OPT_FRAME_INDEX
-Query or set the current frame's index in a format's
-alternating list of frames.
-.br
-.in+5
-The WAV #49 framing uses two alternating types of frames.
-Which type the next GSM-coded frame belongs to can be queried, or,
-when decoding, announced, using
-.br
-.nf
-	gsm_option(handle, GSM_OPT_FRAME_INDEX, & value)
-.fi
-.br 
-For WAV-style framing, the value should be 0 or 1; the first frame
-of an encoding has an index of 0. 
-At library initialization, the index is set to zero.
-.br 
-The frame index can be queried and set at any time.
-Used in combination with the
-.IR GSM_OPT_FRAME_CHAIN ,
-option, it can be used to position on arbitrary GSM frames
-within a format like WAV #49 (not accounting for the lost
-internal GSM state).
-.in-5
-.SH "RETURN VALUE"
-gsm_option() returns -1 if an option is not supported, the
-previous value of the option otherwise.
-.SH BUGS
-Please direct bug reports to jutta@cs.tu-berlin.de and cabo@cs.tu-berlin.de.
-.SH "SEE ALSO"
-toast(1), gsm(3), gsm_explode(3), gsm_print(3)
--- a/src/libgsm/gsm_option.c
+++ /dev/null
@@ -1,68 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
- * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/gsm_option.c,v 1.4 2007/01/29 03:09:33 cbagwell Exp $ */
-
-#include "private.h"
-
-#include "gsm.h"
-
-int gsm_option (gsm r, int opt, int * val)
-{
-	int 	result = -1;
-
-	switch (opt) {
-	case GSM_OPT_LTP_CUT:
-#ifdef 	LTP_CUT
-		result = r->ltp_cut;
-		if (val) r->ltp_cut = *val;
-#endif
-		break;
-
-	case GSM_OPT_VERBOSE:
-#ifndef	NDEBUG
-		result = r->verbose;
-		if (val) r->verbose = *val;
-#endif
-		break;
-
-	case GSM_OPT_FAST:
-
-#if	defined(FAST) && defined(USE_FLOAT_MUL)
-		result = r->fast;
-		if (val) r->fast = !!*val;
-#endif
-		break;
-
-	case GSM_OPT_FRAME_CHAIN:
-
-#ifdef WAV49
-		result = r->frame_chain;
-		if (val) r->frame_chain = *val;
-#endif
-		break;
-
-	case GSM_OPT_FRAME_INDEX:
-
-#ifdef WAV49
-		result = r->frame_index;
-		if (val) r->frame_index = *val;
-#endif
-		break;
-
-	case GSM_OPT_WAV49:
-
-#ifdef WAV49 
-		result = r->wav_fmt;
-		if (val) r->wav_fmt = !!*val;
-#endif
-		break;
-
-	default:
-		break;
-	}
-	return result;
-}
--- a/src/libgsm/long_term.c
+++ /dev/null
@@ -1,947 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
- * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/long_term.c,v 1.6 2007/01/29 03:09:33 cbagwell Exp $ */
-
-#include <stdio.h>
-#include <assert.h>
-
-#include "private.h"
-
-#include "gsm.h"
-
-/*
- *  4.2.11 .. 4.2.12 LONG TERM PREDICTOR (LTP) SECTION
- */
-
-
-/*
- * This module computes the LTP gain (bc) and the LTP lag (Nc)
- * for the long term analysis filter.   This is done by calculating a
- * maximum of the cross-correlation function between the current
- * sub-segment short term residual signal d[0..39] (output of
- * the short term analysis filter; for simplification the index
- * of this array begins at 0 and ends at 39 for each sub-segment of the
- * RPE-LTP analysis) and the previous reconstructed short term
- * residual signal dp[ -120 .. -1 ].  A dynamic scaling must be
- * performed to avoid overflow.
- */
-
- /* The next procedure exists in six versions.  First two integer
-  * version (if USE_FLOAT_MUL is not defined); then four floating
-  * point versions, twice with proper scaling (USE_FLOAT_MUL defined),
-  * once without (USE_FLOAT_MUL and FAST defined, and fast run-time
-  * option used).  Every pair has first a Cut version (see the -C
-  * option to toast or the LTP_CUT option to gsm_option()), then the
-  * uncut one.  (For a detailed explanation of why this is altogether
-  * a bad idea, see Henry Spencer and Geoff Collyer, ``#ifdef Considered
-  * Harmful''.)
-  */
-
-#ifndef  USE_FLOAT_MUL
-
-#ifdef	LTP_CUT
-
-static void Cut_Calculation_of_the_LTP_parameters (
-
-	struct gsm_state * st,
-
-	register word	* d,		/* [0..39]	IN	*/
-	register word	* dp,		/* [-120..-1]	IN	*/
-	word		* bc_out,	/* 		OUT	*/
-	word		* Nc_out	/* 		OUT	*/
-)
-{
-	register int  	k, lambda;
-	word		Nc, bc;
-	word		wt[40];
-
-	longword	L_result;
-	longword	L_max, L_power;
-	word		R, S, dmax, scal, best_k;
-	word		ltp_cut;
-
-	register word	temp, wt_k;
-
-	/*  Search of the optimum scaling of d[0..39].
-	 */
-	dmax = 0;
-	for (k = 0; k <= 39; k++) {
-		temp = d[k];
-		temp = GSM_ABS( temp );
-		if (temp > dmax) {
-			dmax = temp;
-			best_k = k;
-		}
-	}
-	temp = 0;
-	if (dmax == 0) scal = 0;
-	else {
-		assert(dmax > 0);
-		temp = gsm_norm( (longword)dmax << 16 );
-	}
-	if (temp > 6) scal = 0;
-	else scal = 6 - temp;
-	assert(scal >= 0);
-
-	/* Search for the maximum cross-correlation and coding of the LTP lag
-	 */
-	L_max = 0;
-	Nc    = 40;	/* index for the maximum cross-correlation */
-	wt_k  = SASR(d[best_k], scal);
-
-	for (lambda = 40; lambda <= 120; lambda++) {
-		L_result = (longword)wt_k * dp[best_k - lambda];
-		if (L_result > L_max) {
-			Nc    = lambda;
-			L_max = L_result;
-		}
-	}
-	*Nc_out = Nc;
-	L_max <<= 1;
-
-	/*  Rescaling of L_max
-	 */
-	assert(scal <= 100 && scal >= -100);
-	L_max = L_max >> (6 - scal);	/* sub(6, scal) */
-
-	assert( Nc <= 120 && Nc >= 40);
-
-	/*   Compute the power of the reconstructed short term residual
-	 *   signal dp[..]
-	 */
-	L_power = 0;
-	for (k = 0; k <= 39; k++) {
-
-		register longword L_temp;
-
-		L_temp   = SASR( dp[k - Nc], 3 );
-		L_power += L_temp * L_temp;
-	}
-	L_power <<= 1;	/* from L_MULT */
-
-	/*  Normalization of L_max and L_power
-	 */
-
-	if (L_max <= 0)  {
-		*bc_out = 0;
-		return;
-	}
-	if (L_max >= L_power) {
-		*bc_out = 3;
-		return;
-	}
-
-	temp = gsm_norm( L_power );
-
-	R = SASR( L_max   << temp, 16 );
-	S = SASR( L_power << temp, 16 );
-
-	/*  Coding of the LTP gain
-	 */
-
-	/*  Table 4.3a must be used to obtain the level DLB[i] for the
-	 *  quantization of the LTP gain b to get the coded version bc.
-	 */
-	for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
-	*bc_out = bc;
-}
-
-#endif 	/* LTP_CUT */
-
-static void Calculation_of_the_LTP_parameters (
-	register word	* d,		/* [0..39]	IN	*/
-	register word	* dp,		/* [-120..-1]	IN	*/
-	word		* bc_out,	/* 		OUT	*/
-	word		* Nc_out	/* 		OUT	*/
-)
-{
-	register int  	k, lambda;
-	word		Nc, bc;
-	word		wt[40];
-
-	longword	L_max, L_power;
-	word		R, S, dmax, scal;
-	register word	temp;
-
-	/*  Search of the optimum scaling of d[0..39].
-	 */
-	dmax = 0;
-
-	for (k = 0; k <= 39; k++) {
-		temp = d[k];
-		temp = GSM_ABS( temp );
-		if (temp > dmax) dmax = temp;
-	}
-
-	temp = 0;
-	if (dmax == 0) scal = 0;
-	else {
-		assert(dmax > 0);
-		temp = gsm_norm( (longword)dmax << 16 );
-	}
-
-	if (temp > 6) scal = 0;
-	else scal = 6 - temp;
-
-	assert(scal >= 0);
-
-	/*  Initialization of a working array wt
-	 */
-
-	for (k = 0; k <= 39; k++) wt[k] = SASR( d[k], scal );
-
-	/* Search for the maximum cross-correlation and coding of the LTP lag
-	 */
-	L_max = 0;
-	Nc    = 40;	/* index for the maximum cross-correlation */
-
-	for (lambda = 40; lambda <= 120; lambda++) {
-
-# undef STEP
-#		define STEP(k) 	(longword)wt[k] * dp[k - lambda]
-
-		register longword L_result;
-
-		L_result  = STEP(0)  ; L_result += STEP(1) ;
-		L_result += STEP(2)  ; L_result += STEP(3) ;
-		L_result += STEP(4)  ; L_result += STEP(5)  ;
-		L_result += STEP(6)  ; L_result += STEP(7)  ;
-		L_result += STEP(8)  ; L_result += STEP(9)  ;
-		L_result += STEP(10) ; L_result += STEP(11) ;
-		L_result += STEP(12) ; L_result += STEP(13) ;
-		L_result += STEP(14) ; L_result += STEP(15) ;
-		L_result += STEP(16) ; L_result += STEP(17) ;
-		L_result += STEP(18) ; L_result += STEP(19) ;
-		L_result += STEP(20) ; L_result += STEP(21) ;
-		L_result += STEP(22) ; L_result += STEP(23) ;
-		L_result += STEP(24) ; L_result += STEP(25) ;
-		L_result += STEP(26) ; L_result += STEP(27) ;
-		L_result += STEP(28) ; L_result += STEP(29) ;
-		L_result += STEP(30) ; L_result += STEP(31) ;
-		L_result += STEP(32) ; L_result += STEP(33) ;
-		L_result += STEP(34) ; L_result += STEP(35) ;
-		L_result += STEP(36) ; L_result += STEP(37) ;
-		L_result += STEP(38) ; L_result += STEP(39) ;
-
-		if (L_result > L_max) {
-
-			Nc    = lambda;
-			L_max = L_result;
-		}
-	}
-
-	*Nc_out = Nc;
-
-	L_max <<= 1;
-
-	/*  Rescaling of L_max
-	 */
-	assert(scal <= 100 && scal >=  -100);
-	L_max = L_max >> (6 - scal);	/* sub(6, scal) */
-
-	assert( Nc <= 120 && Nc >= 40);
-
-	/*   Compute the power of the reconstructed short term residual
-	 *   signal dp[..]
-	 */
-	L_power = 0;
-	for (k = 0; k <= 39; k++) {
-
-		register longword L_temp;
-
-		L_temp   = SASR( dp[k - Nc], 3 );
-		L_power += L_temp * L_temp;
-	}
-	L_power <<= 1;	/* from L_MULT */
-
-	/*  Normalization of L_max and L_power
-	 */
-
-	if (L_max <= 0)  {
-		*bc_out = 0;
-		return;
-	}
-	if (L_max >= L_power) {
-		*bc_out = 3;
-		return;
-	}
-
-	temp = gsm_norm( L_power );
-
-	R = SASR( L_max   << temp, 16 );
-	S = SASR( L_power << temp, 16 );
-
-	/*  Coding of the LTP gain
-	 */
-
-	/*  Table 4.3a must be used to obtain the level DLB[i] for the
-	 *  quantization of the LTP gain b to get the coded version bc.
-	 */
-	for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
-	*bc_out = bc;
-}
-
-#else	/* USE_FLOAT_MUL */
-
-#ifdef	LTP_CUT
-
-static void Cut_Calculation_of_the_LTP_parameters (
-	struct gsm_state * st,		/*              IN 	*/
-	register word	* d,		/* [0..39]	IN	*/
-	register word	* dp,		/* [-120..-1]	IN	*/
-	word		* bc_out,	/* 		OUT	*/
-	word		* Nc_out	/* 		OUT	*/
-)
-{
-	register int  	k, lambda;
-	word		Nc, bc;
-	word		ltp_cut;
-
-	float		wt_float[40];
-	float		dp_float_base[120], * dp_float = dp_float_base + 120;
-
-	longword	L_max, L_power;
-	word		R, S, dmax, scal;
-	register word	temp;
-
-	/*  Search of the optimum scaling of d[0..39].
-	 */
-	dmax = 0;
-
-	for (k = 0; k <= 39; k++) {
-		temp = d[k];
-		temp = GSM_ABS( temp );
-		if (temp > dmax) dmax = temp;
-	}
-
-	temp = 0;
-	if (dmax == 0) scal = 0;
-	else {
-		assert(dmax > 0);
-		temp = gsm_norm( (longword)dmax << 16 );
-	}
-
-	if (temp > 6) scal = 0;
-	else scal = 6 - temp;
-
-	assert(scal >= 0);
-	ltp_cut = (longword)SASR(dmax, scal) * st->ltp_cut / 100; 
-
-
-	/*  Initialization of a working array wt
-	 */
-
-	for (k = 0; k < 40; k++) {
-		register word w = SASR( d[k], scal );
-		if (w < 0 ? w > -ltp_cut : w < ltp_cut) {
-			wt_float[k] = 0.0;
-		}
-		else {
-			wt_float[k] =  w;
-		}
-	}
-	for (k = -120; k <  0; k++) dp_float[k] =  dp[k];
-
-	/* Search for the maximum cross-correlation and coding of the LTP lag
-	 */
-	L_max = 0;
-	Nc    = 40;	/* index for the maximum cross-correlation */
-
-	for (lambda = 40; lambda <= 120; lambda += 9) {
-
-		/*  Calculate L_result for l = lambda .. lambda + 9.
-		 */
-		register float *lp = dp_float - lambda;
-
-		register float	W;
-		register float	a = lp[-8], b = lp[-7], c = lp[-6],
-				d = lp[-5], e = lp[-4], f = lp[-3],
-				g = lp[-2], h = lp[-1];
-		register float  E; 
-		register float  S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0,
-				S5 = 0, S6 = 0, S7 = 0, S8 = 0;
-
-#		undef STEP
-#		define	STEP(K, a, b, c, d, e, f, g, h) \
-			if ((W = wt_float[K]) != 0.0) {	\
-			E = W * a; S8 += E;		\
-			E = W * b; S7 += E;		\
-			E = W * c; S6 += E;		\
-			E = W * d; S5 += E;		\
-			E = W * e; S4 += E;		\
-			E = W * f; S3 += E;		\
-			E = W * g; S2 += E;		\
-			E = W * h; S1 += E;		\
-			a  = lp[K];			\
-			E = W * a; S0 += E; } else (a = lp[K])
-
-#		define	STEP_A(K)	STEP(K, a, b, c, d, e, f, g, h)
-#		define	STEP_B(K)	STEP(K, b, c, d, e, f, g, h, a)
-#		define	STEP_C(K)	STEP(K, c, d, e, f, g, h, a, b)
-#		define	STEP_D(K)	STEP(K, d, e, f, g, h, a, b, c)
-#		define	STEP_E(K)	STEP(K, e, f, g, h, a, b, c, d)
-#		define	STEP_F(K)	STEP(K, f, g, h, a, b, c, d, e)
-#		define	STEP_G(K)	STEP(K, g, h, a, b, c, d, e, f)
-#		define	STEP_H(K)	STEP(K, h, a, b, c, d, e, f, g)
-
-		STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3);
-		STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7);
-
-		STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11);
-		STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15);
-
-		STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19);
-		STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23);
-
-		STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27);
-		STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31);
-
-		STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35);
-		STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39);
-
-		if (S0 > L_max) { L_max = S0; Nc = lambda;     }
-		if (S1 > L_max) { L_max = S1; Nc = lambda + 1; }
-		if (S2 > L_max) { L_max = S2; Nc = lambda + 2; }
-		if (S3 > L_max) { L_max = S3; Nc = lambda + 3; }
-		if (S4 > L_max) { L_max = S4; Nc = lambda + 4; }
-		if (S5 > L_max) { L_max = S5; Nc = lambda + 5; }
-		if (S6 > L_max) { L_max = S6; Nc = lambda + 6; }
-		if (S7 > L_max) { L_max = S7; Nc = lambda + 7; }
-		if (S8 > L_max) { L_max = S8; Nc = lambda + 8; }
-
-	}
-	*Nc_out = Nc;
-
-	L_max <<= 1;
-
-	/*  Rescaling of L_max
-	 */
-	assert(scal <= 100 && scal >=  -100);
-	L_max = L_max >> (6 - scal);	/* sub(6, scal) */
-
-	assert( Nc <= 120 && Nc >= 40);
-
-	/*   Compute the power of the reconstructed short term residual
-	 *   signal dp[..]
-	 */
-	L_power = 0;
-	for (k = 0; k <= 39; k++) {
-
-		register longword L_temp;
-
-		L_temp   = SASR( dp[k - Nc], 3 );
-		L_power += L_temp * L_temp;
-	}
-	L_power <<= 1;	/* from L_MULT */
-
-	/*  Normalization of L_max and L_power
-	 */
-
-	if (L_max <= 0)  {
-		*bc_out = 0;
-		return;
-	}
-	if (L_max >= L_power) {
-		*bc_out = 3;
-		return;
-	}
-
-	temp = gsm_norm( L_power );
-
-	R = SASR( L_max   << temp, 16 );
-	S = SASR( L_power << temp, 16 );
-
-	/*  Coding of the LTP gain
-	 */
-
-	/*  Table 4.3a must be used to obtain the level DLB[i] for the
-	 *  quantization of the LTP gain b to get the coded version bc.
-	 */
-	for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
-	*bc_out = bc;
-}
-
-#endif /* LTP_CUT */
-
-static void Calculation_of_the_LTP_parameters (
-	register word	* d,		/* [0..39]	IN	*/
-	register word	* dp,		/* [-120..-1]	IN	*/
-	word		* bc_out,	/* 		OUT	*/
-	word		* Nc_out	/* 		OUT	*/
-)
-{
-	register int  	k, lambda;
-	word		Nc, bc;
-
-	float		wt_float[40];
-	float		dp_float_base[120], * dp_float = dp_float_base + 120;
-
-	longword	L_max, L_power;
-	word		R, S, dmax, scal;
-	register word	temp;
-
-	/*  Search of the optimum scaling of d[0..39].
-	 */
-	dmax = 0;
-
-	for (k = 0; k <= 39; k++) {
-		temp = d[k];
-		temp = GSM_ABS( temp );
-		if (temp > dmax) dmax = temp;
-	}
-
-	temp = 0;
-	if (dmax == 0) scal = 0;
-	else {
-		assert(dmax > 0);
-		temp = gsm_norm( (longword)dmax << 16 );
-	}
-
-	if (temp > 6) scal = 0;
-	else scal = 6 - temp;
-
-	assert(scal >= 0);
-
-	/*  Initialization of a working array wt
-	 */
-
-	for (k =    0; k < 40; k++) wt_float[k] =  SASR( d[k], scal );
-	for (k = -120; k <  0; k++) dp_float[k] =  dp[k];
-
-	/* Search for the maximum cross-correlation and coding of the LTP lag
-	 */
-	L_max = 0;
-	Nc    = 40;	/* index for the maximum cross-correlation */
-
-	for (lambda = 40; lambda <= 120; lambda += 9) {
-
-		/*  Calculate L_result for l = lambda .. lambda + 9.
-		 */
-		register float *lp = dp_float - lambda;
-
-		register float	W;
-		register float	a = lp[-8], b = lp[-7], c = lp[-6],
-				d = lp[-5], e = lp[-4], f = lp[-3],
-				g = lp[-2], h = lp[-1];
-		register float  E; 
-		register float  S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0,
-				S5 = 0, S6 = 0, S7 = 0, S8 = 0;
-
-#		undef STEP
-#		define	STEP(K, a, b, c, d, e, f, g, h) \
-			W = wt_float[K];		\
-			E = W * a; S8 += E;		\
-			E = W * b; S7 += E;		\
-			E = W * c; S6 += E;		\
-			E = W * d; S5 += E;		\
-			E = W * e; S4 += E;		\
-			E = W * f; S3 += E;		\
-			E = W * g; S2 += E;		\
-			E = W * h; S1 += E;		\
-			a  = lp[K];			\
-			E = W * a; S0 += E
-
-#		define	STEP_A(K)	STEP(K, a, b, c, d, e, f, g, h)
-#		define	STEP_B(K)	STEP(K, b, c, d, e, f, g, h, a)
-#		define	STEP_C(K)	STEP(K, c, d, e, f, g, h, a, b)
-#		define	STEP_D(K)	STEP(K, d, e, f, g, h, a, b, c)
-#		define	STEP_E(K)	STEP(K, e, f, g, h, a, b, c, d)
-#		define	STEP_F(K)	STEP(K, f, g, h, a, b, c, d, e)
-#		define	STEP_G(K)	STEP(K, g, h, a, b, c, d, e, f)
-#		define	STEP_H(K)	STEP(K, h, a, b, c, d, e, f, g)
-
-		STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3);
-		STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7);
-
-		STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11);
-		STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15);
-
-		STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19);
-		STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23);
-
-		STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27);
-		STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31);
-
-		STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35);
-		STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39);
-
-		if (S0 > L_max) { L_max = S0; Nc = lambda;     }
-		if (S1 > L_max) { L_max = S1; Nc = lambda + 1; }
-		if (S2 > L_max) { L_max = S2; Nc = lambda + 2; }
-		if (S3 > L_max) { L_max = S3; Nc = lambda + 3; }
-		if (S4 > L_max) { L_max = S4; Nc = lambda + 4; }
-		if (S5 > L_max) { L_max = S5; Nc = lambda + 5; }
-		if (S6 > L_max) { L_max = S6; Nc = lambda + 6; }
-		if (S7 > L_max) { L_max = S7; Nc = lambda + 7; }
-		if (S8 > L_max) { L_max = S8; Nc = lambda + 8; }
-	}
-	*Nc_out = Nc;
-
-	L_max <<= 1;
-
-	/*  Rescaling of L_max
-	 */
-	assert(scal <= 100 && scal >=  -100);
-	L_max = L_max >> (6 - scal);	/* sub(6, scal) */
-
-	assert( Nc <= 120 && Nc >= 40);
-
-	/*   Compute the power of the reconstructed short term residual
-	 *   signal dp[..]
-	 */
-	L_power = 0;
-	for (k = 0; k <= 39; k++) {
-
-		register longword L_temp;
-
-		L_temp   = SASR( dp[k - Nc], 3 );
-		L_power += L_temp * L_temp;
-	}
-	L_power <<= 1;	/* from L_MULT */
-
-	/*  Normalization of L_max and L_power
-	 */
-
-	if (L_max <= 0)  {
-		*bc_out = 0;
-		return;
-	}
-	if (L_max >= L_power) {
-		*bc_out = 3;
-		return;
-	}
-
-	temp = gsm_norm( L_power );
-
-	R = SASR( L_max   << temp, 16 );
-	S = SASR( L_power << temp, 16 );
-
-	/*  Coding of the LTP gain
-	 */
-
-	/*  Table 4.3a must be used to obtain the level DLB[i] for the
-	 *  quantization of the LTP gain b to get the coded version bc.
-	 */
-	for (bc = 0; bc <= 2; bc++) if (R <= gsm_mult(S, gsm_DLB[bc])) break;
-	*bc_out = bc;
-}
-
-#ifdef	FAST
-#ifdef	LTP_CUT
-
-static void Cut_Fast_Calculation_of_the_LTP_parameters (
-	struct gsm_state * st,		/*              IN	*/
-	register word	* d,		/* [0..39]	IN	*/
-	register word	* dp,		/* [-120..-1]	IN	*/
-	word		* bc_out,	/* 		OUT	*/
-	word		* Nc_out	/* 		OUT	*/
-)
-{
-	register int  	k, lambda;
-	register float	wt_float;
-	word		Nc, bc;
-	word		wt_max, best_k, ltp_cut;
-
-	float		dp_float_base[120], * dp_float = dp_float_base + 120;
-
-	register float	L_result, L_max, L_power;
-
-	wt_max = 0;
-
-	for (k = 0; k < 40; ++k) {
-		if      ( d[k] > wt_max) wt_max =  d[best_k = k];
-		else if (-d[k] > wt_max) wt_max = -d[best_k = k];
-	}
-
-	assert(wt_max >= 0);
-	wt_float = (float)wt_max;
-
-	for (k = -120; k < 0; ++k) dp_float[k] = (float)dp[k];
-
-	/* Search for the maximum cross-correlation and coding of the LTP lag
-	 */
-	L_max = 0;
-	Nc    = 40;	/* index for the maximum cross-correlation */
-
-	for (lambda = 40; lambda <= 120; lambda++) {
-		L_result = wt_float * dp_float[best_k - lambda];
-		if (L_result > L_max) {
-			Nc    = lambda;
-			L_max = L_result;
-		}
-	}
-
-	*Nc_out = Nc;
-	if (L_max <= 0.)  {
-		*bc_out = 0;
-		return;
-	}
-
-	/*  Compute the power of the reconstructed short term residual
-	 *  signal dp[..]
-	 */
-	dp_float -= Nc;
-	L_power = 0;
-	for (k = 0; k < 40; ++k) {
-		register float f = dp_float[k];
-		L_power += f * f;
-	}
-
-	if (L_max >= L_power) {
-		*bc_out = 3;
-		return;
-	}
-
-	/*  Coding of the LTP gain
-	 *  Table 4.3a must be used to obtain the level DLB[i] for the
-	 *  quantization of the LTP gain b to get the coded version bc.
-	 */
-	lambda = L_max / L_power * 32768.;
-	for (bc = 0; bc <= 2; ++bc) if (lambda <= gsm_DLB[bc]) break;
-	*bc_out = bc;
-}
-
-#endif /* LTP_CUT */
-
-static void Fast_Calculation_of_the_LTP_parameters (
-	register word	* d,		/* [0..39]	IN	*/
-	register word	* dp,		/* [-120..-1]	IN	*/
-	word		* bc_out,	/* 		OUT	*/
-	word		* Nc_out	/* 		OUT	*/
-)
-{
-	register int  	k, lambda;
-	word		Nc, bc;
-
-	float		wt_float[40];
-	float		dp_float_base[120], * dp_float = dp_float_base + 120;
-
-	register float	L_max, L_power;
-
-	for (k = 0; k < 40; ++k) wt_float[k] = (float)d[k];
-	for (k = -120; k < 0; ++k) dp_float[k] = (float)dp[k];
-
-	/* Search for the maximum cross-correlation and coding of the LTP lag
-	 */
-	L_max = 0;
-	Nc    = 40;	/* index for the maximum cross-correlation */
-
-	for (lambda = 40; lambda <= 120; lambda += 9) {
-
-		/*  Calculate L_result for l = lambda .. lambda + 9.
-		 */
-		register float *lp = dp_float - lambda;
-
-		register float	W;
-		register float	a = lp[-8], b = lp[-7], c = lp[-6],
-				d = lp[-5], e = lp[-4], f = lp[-3],
-				g = lp[-2], h = lp[-1];
-		register float  E; 
-		register float  S0 = 0, S1 = 0, S2 = 0, S3 = 0, S4 = 0,
-				S5 = 0, S6 = 0, S7 = 0, S8 = 0;
-
-#		undef STEP
-#		define	STEP(K, a, b, c, d, e, f, g, h) \
-			W = wt_float[K];		\
-			E = W * a; S8 += E;		\
-			E = W * b; S7 += E;		\
-			E = W * c; S6 += E;		\
-			E = W * d; S5 += E;		\
-			E = W * e; S4 += E;		\
-			E = W * f; S3 += E;		\
-			E = W * g; S2 += E;		\
-			E = W * h; S1 += E;		\
-			a  = lp[K];			\
-			E = W * a; S0 += E
-
-#		define	STEP_A(K)	STEP(K, a, b, c, d, e, f, g, h)
-#		define	STEP_B(K)	STEP(K, b, c, d, e, f, g, h, a)
-#		define	STEP_C(K)	STEP(K, c, d, e, f, g, h, a, b)
-#		define	STEP_D(K)	STEP(K, d, e, f, g, h, a, b, c)
-#		define	STEP_E(K)	STEP(K, e, f, g, h, a, b, c, d)
-#		define	STEP_F(K)	STEP(K, f, g, h, a, b, c, d, e)
-#		define	STEP_G(K)	STEP(K, g, h, a, b, c, d, e, f)
-#		define	STEP_H(K)	STEP(K, h, a, b, c, d, e, f, g)
-
-		STEP_A( 0); STEP_B( 1); STEP_C( 2); STEP_D( 3);
-		STEP_E( 4); STEP_F( 5); STEP_G( 6); STEP_H( 7);
-
-		STEP_A( 8); STEP_B( 9); STEP_C(10); STEP_D(11);
-		STEP_E(12); STEP_F(13); STEP_G(14); STEP_H(15);
-
-		STEP_A(16); STEP_B(17); STEP_C(18); STEP_D(19);
-		STEP_E(20); STEP_F(21); STEP_G(22); STEP_H(23);
-
-		STEP_A(24); STEP_B(25); STEP_C(26); STEP_D(27);
-		STEP_E(28); STEP_F(29); STEP_G(30); STEP_H(31);
-
-		STEP_A(32); STEP_B(33); STEP_C(34); STEP_D(35);
-		STEP_E(36); STEP_F(37); STEP_G(38); STEP_H(39);
-
-		if (S0 > L_max) { L_max = S0; Nc = lambda;     }
-		if (S1 > L_max) { L_max = S1; Nc = lambda + 1; }
-		if (S2 > L_max) { L_max = S2; Nc = lambda + 2; }
-		if (S3 > L_max) { L_max = S3; Nc = lambda + 3; }
-		if (S4 > L_max) { L_max = S4; Nc = lambda + 4; }
-		if (S5 > L_max) { L_max = S5; Nc = lambda + 5; }
-		if (S6 > L_max) { L_max = S6; Nc = lambda + 6; }
-		if (S7 > L_max) { L_max = S7; Nc = lambda + 7; }
-		if (S8 > L_max) { L_max = S8; Nc = lambda + 8; }
-	}
-	*Nc_out = Nc;
-
-	if (L_max <= 0.)  {
-		*bc_out = 0;
-		return;
-	}
-
-	/*  Compute the power of the reconstructed short term residual
-	 *  signal dp[..]
-	 */
-	dp_float -= Nc;
-	L_power = 0;
-	for (k = 0; k < 40; ++k) {
-		register float f = dp_float[k];
-		L_power += f * f;
-	}
-
-	if (L_max >= L_power) {
-		*bc_out = 3;
-		return;
-	}
-
-	/*  Coding of the LTP gain
-	 *  Table 4.3a must be used to obtain the level DLB[i] for the
-	 *  quantization of the LTP gain b to get the coded version bc.
-	 */
-	lambda = L_max / L_power * 32768.;
-	for (bc = 0; bc <= 2; ++bc) if (lambda <= gsm_DLB[bc]) break;
-	*bc_out = bc;
-}
-
-#endif	/* FAST 	 */
-#endif	/* USE_FLOAT_MUL */
-
-
-/* 4.2.12 */
-
-static void Long_term_analysis_filtering (
-	word		bc,	/* 					IN  */
-	word		Nc,	/* 					IN  */
-	register word	* dp,	/* previous d	[-120..-1]		IN  */
-	register word	* d,	/* d		[0..39]			IN  */
-	register word	* dpp,	/* estimate	[0..39]			OUT */
-	register word	* e	/* long term res. signal [0..39]	OUT */
-)
-/*
- *  In this part, we have to decode the bc parameter to compute
- *  the samples of the estimate dpp[0..39].  The decoding of bc needs the
- *  use of table 4.3b.  The long term residual signal e[0..39]
- *  is then calculated to be fed to the RPE encoding section.
- */
-{
-	register int      k;
-	register longword ltmp;
-
-#	undef STEP
-#	define STEP(BP)					\
-	for (k = 0; k <= 39; k++) {			\
-		dpp[k]  = GSM_MULT_R( BP, dp[k - Nc]);	\
-		e[k]	= GSM_SUB( d[k], dpp[k] );	\
-	}
-
-	switch (bc) {
-	case 0:	STEP(  3277 ); break;
-	case 1:	STEP( 11469 ); break;
-	case 2: STEP( 21299 ); break;
-	case 3: STEP( 32767 ); break; 
-	}
-}
-
-void Gsm_Long_Term_Predictor ( 	/* 4x for 160 samples */
-
-	struct gsm_state	* S,
-
-	word	* d,	/* [0..39]   residual signal	IN	*/
-	word	* dp,	/* [-120..-1] d'		IN	*/
-
-	word	* e,	/* [0..39] 			OUT	*/
-	word	* dpp,	/* [0..39] 			OUT	*/
-	word	* Nc,	/* correlation lag		OUT	*/
-	word	* bc	/* gain factor			OUT	*/
-)
-{
-	assert( d  ); assert( dp ); assert( e  );
-	assert( dpp); assert( Nc ); assert( bc );
-
-#if defined(FAST) && defined(USE_FLOAT_MUL)
-	if (S->fast) 
-#if   defined (LTP_CUT)
-		if (S->ltp_cut)
-			Cut_Fast_Calculation_of_the_LTP_parameters(S,
-				d, dp, bc, Nc);
-		else
-#endif /* LTP_CUT */
-			Fast_Calculation_of_the_LTP_parameters(d, dp, bc, Nc );
-	else 
-#endif /* FAST & USE_FLOAT_MUL */
-#ifdef LTP_CUT
-		if (S->ltp_cut)
-			Cut_Calculation_of_the_LTP_parameters(S, d, dp, bc, Nc);
-		else
-#endif
-			Calculation_of_the_LTP_parameters(d, dp, bc, Nc);
-
-	Long_term_analysis_filtering( *bc, *Nc, dp, d, dpp, e );
-}
-
-/* 4.3.2 */
-void Gsm_Long_Term_Synthesis_Filtering (
-	struct gsm_state	* S,
-
-	word			Ncr,
-	word			bcr,
-	register word		* erp,	   /* [0..39]		  	 IN */
-	register word		* drp	   /* [-120..-1] IN, [-120..40] OUT */
-)
-/*
- *  This procedure uses the bcr and Ncr parameter to realize the
- *  long term synthesis filtering.  The decoding of bcr needs
- *  table 4.3b.
- */
-{
-	register longword	ltmp;	/* for ADD */
-	register int 		k;
-	word			brp, drpp, Nr;
-
-	/*  Check the limits of Nr.
-	 */
-	Nr = Ncr < 40 || Ncr > 120 ? S->nrp : Ncr;
-	S->nrp = Nr;
-	assert(Nr >= 40 && Nr <= 120);
-
-	/*  Decoding of the LTP gain bcr
-	 */
-	brp = gsm_QLB[ bcr ];
-
-	/*  Computation of the reconstructed short term residual 
-	 *  signal drp[0..39]
-	 */
-	assert(brp != MIN_WORD);
-
-	for (k = 0; k <= 39; k++) {
-		drpp   = GSM_MULT_R( brp, drp[ k - Nr ] );
-		drp[k] = GSM_ADD( erp[k], drpp );
-	}
-
-	/*
-	 *  Update of the reconstructed short term residual signal
-	 *  drp[ -1..-120 ]
-	 */
-
-	for (k = 0; k <= 119; k++) drp[ -120 + k ] = drp[ -80 + k ];
-}
--- a/src/libgsm/lpc.c
+++ /dev/null
@@ -1,338 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
- * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/lpc.c,v 1.6 2007/01/29 03:09:33 cbagwell Exp $ */
-
-#include <stdio.h>
-#include <assert.h>
-
-#include "private.h"
-
-#include "gsm.h"
-
-/*
- *  4.2.4 .. 4.2.7 LPC ANALYSIS SECTION
- */
-
-/* 4.2.4 */
-
-
-static void Autocorrelation (
-	word     * s,		/* [0..159]	IN/OUT  */
- 	longword * L_ACF)	/* [0..8]	OUT     */
-/*
- *  The goal is to compute the array L_ACF[k].  The signal s[i] must
- *  be scaled in order to avoid an overflow situation.
- */
-{
-	register int	k, i;
-
-	word		temp, smax, scalauto;
-
-#ifdef	USE_FLOAT_MUL
-	float		float_s[160];
-#endif
-
-	/*  Dynamic scaling of the array  s[0..159]
-	 */
-
-	/*  Search for the maximum.
-	 */
-	smax = 0;
-	for (k = 0; k <= 159; k++) {
-		temp = GSM_ABS( s[k] );
-		if (temp > smax) smax = temp;
-	}
-
-	/*  Computation of the scaling factor.
-	 */
-	if (smax == 0) scalauto = 0;
-	else {
-		assert(smax > 0);
-		scalauto = 4 - gsm_norm( (longword)smax << 16 );/* sub(4,..) */
-	}
-
-	/*  Scaling of the array s[0...159]
-	 */
-
-	if (scalauto > 0) {
-
-# ifdef USE_FLOAT_MUL
-#   define SCALE(n)	\
-	case n: for (k = 0; k <= 159; k++) \
-			float_s[k] = (float)	\
-				(s[k] = GSM_MULT_R(s[k], 16384 >> (n-1)));\
-		break;
-# else 
-#   define SCALE(n)	\
-	case n: for (k = 0; k <= 159; k++) \
-			s[k] = GSM_MULT_R( s[k], 16384 >> (n-1) );\
-		break;
-# endif /* USE_FLOAT_MUL */
-
-		switch (scalauto) {
-		SCALE(1)
-		SCALE(2)
-		SCALE(3)
-		SCALE(4)
-		}
-# undef	SCALE
-	}
-# ifdef	USE_FLOAT_MUL
-	else for (k = 0; k <= 159; k++) float_s[k] = (float) s[k];
-# endif
-
-	/*  Compute the L_ACF[..].
-	 */
-	{
-# ifdef	USE_FLOAT_MUL
-		register float * sp = float_s;
-		register float   sl = *sp;
-
-#		define STEP(k)	 L_ACF[k] += (longword)(sl * sp[ -(k) ]);
-# else
-		word  * sp = s;
-		word    sl = *sp;
-
-#		define STEP(k)	 L_ACF[k] += ((longword)sl * sp[ -(k) ]);
-# endif
-
-#	define NEXTI	 sl = *++sp
-
-
-	for (k = 9; k--; L_ACF[k] = 0) ;
-
-	STEP (0);
-	NEXTI;
-	STEP(0); STEP(1);
-	NEXTI;
-	STEP(0); STEP(1); STEP(2);
-	NEXTI;
-	STEP(0); STEP(1); STEP(2); STEP(3);
-	NEXTI;
-	STEP(0); STEP(1); STEP(2); STEP(3); STEP(4);
-	NEXTI;
-	STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5);
-	NEXTI;
-	STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6);
-	NEXTI;
-	STEP(0); STEP(1); STEP(2); STEP(3); STEP(4); STEP(5); STEP(6); STEP(7);
-
-	for (i = 8; i <= 159; i++) {
-
-		NEXTI;
-
-		STEP(0);
-		STEP(1); STEP(2); STEP(3); STEP(4);
-		STEP(5); STEP(6); STEP(7); STEP(8);
-	}
-
-	for (k = 9; k--; L_ACF[k] <<= 1) ; 
-
-	}
-	/*   Rescaling of the array s[0..159]
-	 */
-	if (scalauto > 0) {
-		assert(scalauto <= 4); 
-		for (k = 160; k--; *s++ <<= scalauto) ;
-	}
-}
-
-#if defined(USE_FLOAT_MUL) && defined(FAST)
-
-static void Fast_Autocorrelation (
-	word * s,		/* [0..159]	IN/OUT  */
- 	longword * L_ACF)	/* [0..8]	OUT     */
-{
-	register int	k, i;
-	float f_L_ACF[9];
-	float scale;
-
-	float          s_f[160];
-	register float *sf = s_f;
-
-	for (i = 0; i < 160; ++i) sf[i] = s[i];
-	for (k = 0; k <= 8; k++) {
-		register float L_temp2 = 0;
-		register float *sfl = sf - k;
-		for (i = k; i < 160; ++i) L_temp2 += sf[i] * sfl[i];
-		f_L_ACF[k] = L_temp2;
-	}
-	scale = MAX_LONGWORD / f_L_ACF[0];
-
-	for (k = 0; k <= 8; k++) {
-		L_ACF[k] = f_L_ACF[k] * scale;
-	}
-}
-#endif	/* defined (USE_FLOAT_MUL) && defined (FAST) */
-
-/* 4.2.5 */
-
-static void Reflection_coefficients (
-	longword	* L_ACF,		/* 0...8	IN	*/
-	register word	* r			/* 0...7	OUT 	*/
-)
-{
-	register int	i, m, n;
-	register word	temp;
-	register longword ltmp;
-	word		ACF[9];	/* 0..8 */
-	word		P[  9];	/* 0..8 */
-	word		K[  9]; /* 2..8 */
-
-	/*  Schur recursion with 16 bits arithmetic.
-	 */
-
-	if (L_ACF[0] == 0) {
-		for (i = 8; i--; *r++ = 0) ;
-		return;
-	}
-
-	assert( L_ACF[0] != 0 );
-	temp = gsm_norm( L_ACF[0] );
-
-	assert(temp >= 0 && temp < 32);
-
-	/* ? overflow ? */
-	for (i = 0; i <= 8; i++) ACF[i] = SASR( L_ACF[i] << temp, 16 );
-
-	/*   Initialize array P[..] and K[..] for the recursion.
-	 */
-
-	for (i = 1; i <= 7; i++) K[ i ] = ACF[ i ];
-	for (i = 0; i <= 8; i++) P[ i ] = ACF[ i ];
-
-	/*   Compute reflection coefficients
-	 */
-	for (n = 1; n <= 8; n++, r++) {
-
-		temp = P[1];
-		temp = GSM_ABS(temp);
-		if (P[0] < temp) {
-			for (i = n; i <= 8; i++) *r++ = 0;
-			return;
-		}
-
-		*r = gsm_div( temp, P[0] );
-
-		assert(*r >= 0);
-		if (P[1] > 0) *r = -*r;		/* r[n] = sub(0, r[n]) */
-		assert (*r != MIN_WORD);
-		if (n == 8) return; 
-
-		/*  Schur recursion
-		 */
-		temp = GSM_MULT_R( P[1], *r );
-		P[0] = GSM_ADD( P[0], temp );
-
-		for (m = 1; m <= 8 - n; m++) {
-			temp     = GSM_MULT_R( K[ m   ],    *r );
-			P[m]     = GSM_ADD(    P[ m+1 ],  temp );
-
-			temp     = GSM_MULT_R( P[ m+1 ],    *r );
-			K[m]     = GSM_ADD(    K[ m   ],  temp );
-		}
-	}
-}
-
-/* 4.2.6 */
-
-static void Transformation_to_Log_Area_Ratios (
-	register word	* r 			/* 0..7	   IN/OUT */
-)
-/*
- *  The following scaling for r[..] and LAR[..] has been used:
- *
- *  r[..]   = integer( real_r[..]*32768. ); -1 <= real_r < 1.
- *  LAR[..] = integer( real_LAR[..] * 16384 );
- *  with -1.625 <= real_LAR <= 1.625
- */
-{
-	register word	temp;
-	register int	i;
-
-
-	/* Computation of the LAR[0..7] from the r[0..7]
-	 */
-	for (i = 1; i <= 8; i++, r++) {
-
-		temp = *r;
-		temp = GSM_ABS(temp);
-		assert(temp >= 0);
-
-		if (temp < 22118) {
-			temp >>= 1;
-		} else if (temp < 31130) {
-			assert( temp >= 11059 );
-			temp -= 11059;
-		} else {
-			assert( temp >= 26112 );
-			temp -= 26112;
-			temp <<= 2;
-		}
-
-		*r = *r < 0 ? -temp : temp;
-		assert( *r != MIN_WORD );
-	}
-}
-
-/* 4.2.7 */
-
-static void Quantization_and_coding (
-	register word * LAR    	/* [0..7]	IN/OUT	*/
-)
-{
-	register word	temp;
-	longword	ltmp;
-
-
-	/*  This procedure needs four tables; the following equations
-	 *  give the optimum scaling for the constants:
-	 *  
-	 *  A[0..7] = integer( real_A[0..7] * 1024 )
-	 *  B[0..7] = integer( real_B[0..7] *  512 )
-	 *  MAC[0..7] = maximum of the LARc[0..7]
-	 *  MIC[0..7] = minimum of the LARc[0..7]
-	 */
-
-#	undef STEP
-#	define	STEP( A, B, MAC, MIC )		\
-		temp = GSM_MULT( A,   *LAR );	\
-		temp = GSM_ADD(  temp,   B );	\
-		temp = GSM_ADD(  temp, 256 );	\
-		temp = SASR(     temp,   9 );	\
-		*LAR  =  temp>MAC ? MAC - MIC : (temp<MIC ? 0 : temp - MIC); \
-		LAR++;
-
-	STEP(  20480,     0,  31, -32 );
-	STEP(  20480,     0,  31, -32 );
-	STEP(  20480,  2048,  15, -16 );
-	STEP(  20480, -2560,  15, -16 );
-
-	STEP(  13964,    94,   7,  -8 );
-	STEP(  15360, -1792,   7,  -8 );
-	STEP(   8534,  -341,   3,  -4 );
-	STEP(   9036, -1144,   3,  -4 );
-
-#	undef	STEP
-}
-
-void Gsm_LPC_Analysis (
-	struct gsm_state *S,
-	word 		 * s,		/* 0..159 signals	IN/OUT	*/
-        word 		 * LARc)	/* 0..7   LARc's	OUT	*/
-{
-	longword	L_ACF[9];
-
-#if defined(USE_FLOAT_MUL) && defined(FAST)
-	if (S->fast) Fast_Autocorrelation (s,	  L_ACF );
-	else
-#endif
-	Autocorrelation			  (s,	  L_ACF	);
-	Reflection_coefficients		  (L_ACF, LARc	);
-	Transformation_to_Log_Area_Ratios (LARc);
-	Quantization_and_coding		  (LARc);
-}
--- a/src/libgsm/preprocess.c
+++ /dev/null
@@ -1,112 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
- * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/preprocess.c,v 1.4 2007/01/29 03:09:33 cbagwell Exp $ */
-
-#include	<stdio.h>
-#include	<assert.h>
-
-#include "private.h"
-
-#include	"gsm.h"
-
-/*	4.2.0 .. 4.2.3	PREPROCESSING SECTION
- *  
- *  	After A-law to linear conversion (or directly from the
- *   	Ato D converter) the following scaling is assumed for
- * 	input to the RPE-LTP algorithm:
- *
- *      in:  0.1.....................12
- *	     S.v.v.v.v.v.v.v.v.v.v.v.v.*.*.*
- *
- *	Where S is the sign bit, v a valid bit, and * a "don't care" bit.
- * 	The original signal is called sop[..]
- *
- *      out:   0.1................... 12 
- *	     S.S.v.v.v.v.v.v.v.v.v.v.v.v.0.0
- */
-
-
-void Gsm_Preprocess (
-	struct gsm_state * S,
-	word		 * s,
-	word 		 * so )		/* [0..159] 	IN/OUT	*/
-{
-
-	word       z1 = S->z1;
-	longword L_z2 = S->L_z2;
-	word 	   mp = S->mp;
-
-	word 	   	s1;
-	longword      L_s2;
-
-	longword      L_temp;
-
-	word		msp, lsp;
-	word		SO;
-
-	longword	ltmp;		/* for   ADD */
-	ulongword	utmp;		/* for L_ADD */
-
-	register int		k = 160;
-
-	while (k--) {
-
-	/*  4.2.1   Downscaling of the input signal
-	 */
-		SO = SASR( *s, 3 ) << 2;
-		s++;
-
-		assert (SO >= -0x4000);	/* downscaled by     */
-		assert (SO <=  0x3FFC);	/* previous routine. */
-
-
-	/*  4.2.2   Offset compensation
-	 * 
-	 *  This part implements a high-pass filter and requires extended
-	 *  arithmetic precision for the recursive part of this filter.
-	 *  The input of this procedure is the array so[0...159] and the
-	 *  output the array sof[ 0...159 ].
-	 */
-		/*   Compute the non-recursive part
-		 */
-
-		s1 = SO - z1;			/* s1 = gsm_sub( *so, z1 ); */
-		z1 = SO;
-
-		assert(s1 != MIN_WORD);
-
-		/*   Compute the recursive part
-		 */
-		L_s2 = s1;
-		L_s2 <<= 15;
-
-		/*   Execution of a 31 bv 16 bits multiplication
-		 */
-
-		msp = SASR( L_z2, 15 );
-		lsp = L_z2-((longword)msp<<15); /* gsm_L_sub(L_z2,(msp<<15)); */
-
-		L_s2  += GSM_MULT_R( lsp, 32735 );
-		L_temp = (longword)msp * 32735; /* GSM_L_MULT(msp,32735) >> 1;*/
-		L_z2   = GSM_L_ADD( L_temp, L_s2 );
-
-		/*    Compute sof[k] with rounding
-		 */
-		L_temp = GSM_L_ADD( L_z2, 16384 );
-
-	/*   4.2.3  Preemphasis
-	 */
-
-		msp   = GSM_MULT_R( mp, -28180 );
-		mp    = SASR( L_temp, 15 );
-		*so++ = GSM_ADD( mp, msp );
-	}
-
-	S->z1   = z1;
-	S->L_z2 = L_z2;
-	S->mp   = mp;
-}
--- a/src/libgsm/private.h
+++ /dev/null
@@ -1,264 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
- * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/*$Header: /cvsroot/sox/sox/src/libgsm/Attic/private.h,v 1.8 2007/01/29 03:09:33 cbagwell Exp $*/
-
-#ifndef	PRIVATE_H
-#define	PRIVATE_H
-
-typedef short			word;		/* 16 bit signed int	*/
-typedef long			longword;	/* 32 bit signed int	*/
-
-typedef unsigned short		uword;		/* unsigned word	*/
-typedef unsigned long		ulongword;	/* unsigned longword	*/
-
-struct gsm_state {
-
-	word		dp0[ 280 ];
-
-	word		z1;		/* preprocessing.c, Offset_com. */
-	longword	L_z2;		/*                  Offset_com. */
-	int		mp;		/*                  Preemphasis	*/
-
-	word		u[8];		/* short_term_aly_filter.c	*/
-	word		LARpp[2][8]; 	/*                              */
-	word		j;		/*                              */
-
-	word            ltp_cut;        /* long_term.c, LTP crosscorr.  */
-	word		nrp; /* 40 */	/* long_term.c, synthesis	*/
-	word		v[9];		/* short_term.c, synthesis	*/
-	word		msr;		/* decoder.c,	Postprocessing	*/
-
-	char		verbose;	/* only used if !NDEBUG		*/
-	char		fast;		/* only used if FAST		*/
-
-	char		wav_fmt;	/* only used if WAV49 defined	*/
-	unsigned char	frame_index;	/*            odd/even chaining	*/
-	unsigned char	frame_chain;	/*   half-byte to carry forward	*/
-};
-
-
-#define	MIN_WORD	(-32767 - 1)
-#define	MAX_WORD	  32767
-
-#define	MIN_LONGWORD	(-2147483647 - 1)
-#define	MAX_LONGWORD	  2147483647
-
-#ifdef	SASR		/* flag: >> is a signed arithmetic shift right */
-#undef	SASR
-#define	SASR(x, by)	((x) >> (by))
-#else
-#define	SASR(x, by)	((x) >= 0 ? (x) >> (by) : (~(-((x) + 1) >> (by))))
-#endif	/* SASR */
-
-/*
- *	Prototypes from add.c
- */
-extern word	gsm_mult 	(word a, word b);
-extern longword gsm_L_mult 	(word a, word b);
-extern word	gsm_mult_r	(word a, word b);
-
-extern word	gsm_div  	(word num, word denum);
-
-extern word	gsm_add 	( word a, word b );
-extern longword gsm_L_add 	( longword a, longword b );
-
-extern word	gsm_sub 	(word a, word b);
-extern longword gsm_L_sub 	(longword a, longword b);
-
-extern word	gsm_abs 	(word a);
-
-extern word	gsm_norm 	( longword a );
-
-extern longword gsm_L_asl  	(longword a, int n);
-extern word	gsm_asl 	(word a, int n);
-
-extern longword gsm_L_asr  	(longword a, int n);
-extern word	gsm_asr  	(word a, int n);
-
-/*
- *  Inlined functions from add.h 
- */
-
-/* 
- * #define GSM_MULT_R(a, b) (* word a, word b, !(a == b == MIN_WORD) *)	\
- *	(0x0FFFF & SASR(((longword)(a) * (longword)(b) + 16384), 15))
- */
-#define GSM_MULT_R(a, b) /* word a, word b, !(a == b == MIN_WORD) */	\
-	(SASR( ((longword)(a) * (longword)(b) + 16384), 15 ))
-
-# define GSM_MULT(a,b)	 /* word a, word b, !(a == b == MIN_WORD) */	\
-	(SASR( ((longword)(a) * (longword)(b)), 15 ))
-
-# define GSM_L_MULT(a, b) /* word a, word b */	\
-	(((longword)(a) * (longword)(b)) << 1)
-
-# define GSM_L_ADD(a, b)	\
-	( (a) <  0 ? ( (b) >= 0 ? (a) + (b)	\
-		 : (utmp = (ulongword)-((a) + 1) + (ulongword)-((b) + 1)) \
-		   >= MAX_LONGWORD ? MIN_LONGWORD : -(longword)utmp-2 )   \
-	: ((b) <= 0 ? (a) + (b)   \
-	          : (utmp = (ulongword)(a) + (ulongword)(b)) >= MAX_LONGWORD \
-		    ? MAX_LONGWORD : utmp))
-
-/*
- * # define GSM_ADD(a, b)	\
- * 	((ltmp = (longword)(a) + (longword)(b)) >= MAX_WORD \
- * 	? MAX_WORD : ltmp <= MIN_WORD ? MIN_WORD : ltmp)
- */
-/* Nonportable, but faster: */
-
-#define	GSM_ADD(a, b)	\
-	((ulongword)((ltmp = (longword)(a) + (longword)(b)) - MIN_WORD) > \
-		MAX_WORD - MIN_WORD ? (ltmp > 0 ? MAX_WORD : MIN_WORD) : ltmp)
-
-# define GSM_SUB(a, b)	\
-	((ltmp = (longword)(a) - (longword)(b)) >= MAX_WORD \
-	? MAX_WORD : ltmp <= MIN_WORD ? MIN_WORD : ltmp)
-
-# define GSM_ABS(a)	((a) < 0 ? ((a) == MIN_WORD ? MAX_WORD : -(a)) : (a))
-
-/* Use these if necessary:
-
-# define GSM_MULT_R(a, b)	gsm_mult_r(a, b)
-# define GSM_MULT(a, b)		gsm_mult(a, b)
-# define GSM_L_MULT(a, b)	gsm_L_mult(a, b)
-
-# define GSM_L_ADD(a, b)	gsm_L_add(a, b)
-# define GSM_ADD(a, b)		gsm_add(a, b)
-# define GSM_SUB(a, b)		gsm_sub(a, b)
-
-# define GSM_ABS(a)		gsm_abs(a)
-
-*/
-
-/*
- *  More prototypes from implementations..
- */
-extern void Gsm_Coder (
-		struct gsm_state	* S,
-		word	* s,	/* [0..159] samples		IN	*/
-		word	* LARc,	/* [0..7] LAR coefficients	OUT	*/
-		word	* Nc,	/* [0..3] LTP lag		OUT 	*/
-		word	* bc,	/* [0..3] coded LTP gain	OUT 	*/
-		word	* Mc,	/* [0..3] RPE grid selection	OUT     */
-		word	* xmaxc,/* [0..3] Coded maximum amplitude OUT	*/
-		word	* xMc	/* [13*4] normalized RPE samples OUT	*/);
-
-extern void Gsm_Long_Term_Predictor (		/* 4x for 160 samples */
-		struct gsm_state * S,
-		word	* d,	/* [0..39]   residual signal	IN	*/
-		word	* dp,	/* [-120..-1] d'		IN	*/
-		word	* e,	/* [0..40] 			OUT	*/
-		word	* dpp,	/* [0..40] 			OUT	*/
-		word	* Nc,	/* correlation lag		OUT	*/
-		word	* bc	/* gain factor			OUT	*/);
-
-extern void Gsm_LPC_Analysis (
-		struct gsm_state * S,
-		word * s,	 /* 0..159 signals	IN/OUT	*/
-	        word * LARc);   /* 0..7   LARc's	OUT	*/
-
-extern void Gsm_Preprocess (
-		struct gsm_state * S,
-		word * s, word * so);
-
-extern void Gsm_Encoding (
-		struct gsm_state * S,
-		word	* e,	
-		word	* ep,	
-		word	* xmaxc,
-		word	* Mc,	
-		word	* xMc);
-
-extern void Gsm_Short_Term_Analysis_Filter (
-		struct gsm_state * S,
-		word	* LARc,	/* coded log area ratio [0..7]  IN	*/
-		word	* d	/* st res. signal [0..159]	IN/OUT	*/);
-
-extern void Gsm_Decoder (
-		struct gsm_state * S,
-		word	* LARcr,	/* [0..7]		IN	*/
-		word	* Ncr,		/* [0..3] 		IN 	*/
-		word	* bcr,		/* [0..3]		IN	*/
-		word	* Mcr,		/* [0..3] 		IN 	*/
-		word	* xmaxcr,	/* [0..3]		IN 	*/
-		word	* xMcr,		/* [0..13*4]		IN	*/
-		word	* s);		/* [0..159]		OUT 	*/
-
-extern void Gsm_Decoding (
-		struct gsm_state * S,
-		word 	xmaxcr,
-		word	Mcr,
-		word	* xMcr,  	/* [0..12]		IN	*/
-		word	* erp); 	/* [0..39]		OUT 	*/
-
-extern void Gsm_Long_Term_Synthesis_Filtering (
-		struct gsm_state* S,
-		word	Ncr,
-		word	bcr,
-		word	* erp,		/* [0..39]		  IN 	*/
-		word	* drp); 	/* [-120..-1] IN, [0..40] OUT 	*/
-
-void Gsm_RPE_Decoding (
-	struct gsm_state *S,
-		word xmaxcr,
-		word Mcr,
-		word * xMcr,  /* [0..12], 3 bits             IN      */
-		word * erp); /* [0..39]                     OUT     */
-
-void Gsm_RPE_Encoding (
-		struct gsm_state * S,
-		word    * e,            /* -5..-1][0..39][40..44     IN/OUT  */
-		word    * xmaxc,        /*                              OUT */
-		word    * Mc,           /*                              OUT */
-		word    * xMc);        /* [0..12]                      OUT */
-
-extern void Gsm_Short_Term_Synthesis_Filter (
-		struct gsm_state * S,
-		word	* LARcr, 	/* log area ratios [0..7]  IN	*/
-		word	* drp,		/* received d [0...39]	   IN	*/
-		word	* s);		/* signal   s [0..159]	  OUT	*/
-
-extern void Gsm_Update_of_reconstructed_short_time_residual_signal (
-		word	* dpp,		/* [0...39]	IN	*/
-		word	* ep,		/* [0...39]	IN	*/
-		word	* dp);		/* [-120...-1]  IN/OUT 	*/
-
-/*
- *  Tables from table.c
- */
-#ifndef	GSM_TABLE_C
-
-extern word gsm_A[8], gsm_B[8], gsm_MIC[8], gsm_MAC[8];
-extern word gsm_INVA[8];
-extern word gsm_DLB[4], gsm_QLB[4];
-extern word gsm_H[11];
-extern word gsm_NRFAC[8];
-extern word gsm_FAC[8];
-
-#endif	/* GSM_TABLE_C */
-
-/*
- *  Debugging
- */
-#ifdef NDEBUG
-
-#	define	gsm_debug_words(a, b, c, d)		/* nil */
-#	define	gsm_debug_longwords(a, b, c, d)		/* nil */
-#	define	gsm_debug_word(a, b)			/* nil */
-#	define	gsm_debug_longword(a, b)		/* nil */
-
-#else	/* !NDEBUG => DEBUG */
-
-	extern void  gsm_debug_words     (char * name, int, int, word *);
-	extern void  gsm_debug_longwords (char * name, int, int, longword *);
-	extern void  gsm_debug_longword  (char * name, longword);
-	extern void  gsm_debug_word      (char * name, word);
-
-#endif /* !NDEBUG */
-
-#endif	/* PRIVATE_H */
--- a/src/libgsm/rpe.c
+++ /dev/null
@@ -1,487 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
- * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/rpe.c,v 1.5 2007/01/29 03:09:33 cbagwell Exp $ */
-
-#include <stdio.h>
-#include <assert.h>
-
-#include "private.h"
-
-#include "gsm.h"
-
-/*  4.2.13 .. 4.2.17  RPE ENCODING SECTION
- */
-
-/* 4.2.13 */
-
-static void Weighting_filter (
-	register word	* e,		/* signal [-5..0.39.44]	IN  */
-	word		* x		/* signal [0..39]	OUT */
-)
-/*
- *  The coefficients of the weighting filter are stored in a table
- *  (see table 4.4).  The following scaling is used:
- *
- *	H[0..10] = integer( real_H[ 0..10] * 8192 ); 
- */
-{
-	/* word			wt[ 50 ]; */
-
-	register longword	L_result;
-	register int		k /* , i */ ;
-
-	/*  Initialization of a temporary working array wt[0...49]
-	 */
-
-	/* for (k =  0; k <=  4; k++) wt[k] = 0;
-	 * for (k =  5; k <= 44; k++) wt[k] = *e++;
-	 * for (k = 45; k <= 49; k++) wt[k] = 0;
-	 *
-	 *  (e[-5..-1] and e[40..44] are allocated by the caller,
-	 *  are initially zero and are not written anywhere.)
-	 */
-	e -= 5;
-
-	/*  Compute the signal x[0..39]
-	 */ 
-	for (k = 0; k <= 39; k++) {
-
-		L_result = 8192 >> 1;
-
-		/* for (i = 0; i <= 10; i++) {
-		 *	L_temp   = GSM_L_MULT( wt[k+i], gsm_H[i] );
-		 *	L_result = GSM_L_ADD( L_result, L_temp );
-		 * }
-		 */
-
-#undef	STEP
-#define	STEP( i, H )	(e[ k + i ] * (longword)H)
-
-		/*  Every one of these multiplications is done twice --
-		 *  but I don't see an elegant way to optimize this. 
-		 *  Do you?
-		 */
-
-#ifdef	STUPID_COMPILER
-		L_result += STEP(	0, 	-134 ) ;
-		L_result += STEP(	1, 	-374 )  ;
-	               /* + STEP(	2, 	0    )  */
-		L_result += STEP(	3, 	2054 ) ;
-		L_result += STEP(	4, 	5741 ) ;
-		L_result += STEP(	5, 	8192 ) ;
-		L_result += STEP(	6, 	5741 ) ;
-		L_result += STEP(	7, 	2054 ) ;
-	 	       /* + STEP(	8, 	0    )  */
-		L_result += STEP(	9, 	-374 ) ;
-		L_result += STEP(	10, 	-134 ) ;
-#else
-		L_result +=
-		  STEP(	0, 	-134 ) 
-		+ STEP(	1, 	-374 ) 
-	     /* + STEP(	2, 	0    )  */
-		+ STEP(	3, 	2054 ) 
-		+ STEP(	4, 	5741 ) 
-		+ STEP(	5, 	8192 ) 
-		+ STEP(	6, 	5741 ) 
-		+ STEP(	7, 	2054 ) 
-	     /* + STEP(	8, 	0    )  */
-		+ STEP(	9, 	-374 ) 
-		+ STEP(10, 	-134 )
-		;
-#endif
-
-		/* L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x2) *)
-		 * L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x4) *)
-		 *
-		 * x[k] = SASR( L_result, 16 );
-		 */
-
-		/* 2 adds vs. >>16 => 14, minus one shift to compensate for
-		 * those we lost when replacing L_MULT by '*'.
-		 */
-
-		L_result = SASR( L_result, 13 );
-		x[k] =  (  L_result < MIN_WORD ? MIN_WORD
-			: (L_result > MAX_WORD ? MAX_WORD : L_result ));
-	}
-}
-
-/* 4.2.14 */
-
-static void RPE_grid_selection (
-	word		* x,		/* [0..39]		IN  */ 
-	word		* xM,		/* [0..12]		OUT */
-	word		* Mc_out	/*			OUT */
-)
-/*
- *  The signal x[0..39] is used to select the RPE grid which is
- *  represented by Mc.
- */
-{
-	/* register word	temp1;	*/
-	register int		/* m, */  i;
-	register longword	L_result, L_temp;
-	longword		EM;	/* xxx should be L_EM? */
-	word			Mc;
-
-	longword		L_common_0_3;
-
-	EM = 0;
-	Mc = 0;
-
-	/* for (m = 0; m <= 3; m++) {
-	 *	L_result = 0;
-	 *
-	 *
-	 *	for (i = 0; i <= 12; i++) {
-	 *
-	 *		temp1    = SASR( x[m + 3*i], 2 );
-	 *
-	 *		assert(temp1 != MIN_WORD);
-	 *
-	 *		L_temp   = GSM_L_MULT( temp1, temp1 );
-	 *		L_result = GSM_L_ADD( L_temp, L_result );
-	 *	}
-	 * 
-	 *	if (L_result > EM) {
-	 *		Mc = m;
-	 *		EM = L_result;
-	 *	}
-	 * }
-	 */
-
-#undef	STEP
-#define	STEP( m, i )		L_temp = SASR( x[m + 3 * i], 2 );	\
-				L_result += L_temp * L_temp;
-
-	/* common part of 0 and 3 */
-
-	L_result = 0;
-	STEP( 0, 1 ); STEP( 0, 2 ); STEP( 0, 3 ); STEP( 0, 4 );
-	STEP( 0, 5 ); STEP( 0, 6 ); STEP( 0, 7 ); STEP( 0, 8 );
-	STEP( 0, 9 ); STEP( 0, 10); STEP( 0, 11); STEP( 0, 12);
-	L_common_0_3 = L_result;
-
-	/* i = 0 */
-
-	STEP( 0, 0 );
-	L_result <<= 1;	/* implicit in L_MULT */
-	EM = L_result;
-
-	/* i = 1 */
-
-	L_result = 0;
-	STEP( 1, 0 );
-	STEP( 1, 1 ); STEP( 1, 2 ); STEP( 1, 3 ); STEP( 1, 4 );
-	STEP( 1, 5 ); STEP( 1, 6 ); STEP( 1, 7 ); STEP( 1, 8 );
-	STEP( 1, 9 ); STEP( 1, 10); STEP( 1, 11); STEP( 1, 12);
-	L_result <<= 1;
-	if (L_result > EM) {
-		Mc = 1;
-	 	EM = L_result;
-	}
-
-	/* i = 2 */
-
-	L_result = 0;
-	STEP( 2, 0 );
-	STEP( 2, 1 ); STEP( 2, 2 ); STEP( 2, 3 ); STEP( 2, 4 );
-	STEP( 2, 5 ); STEP( 2, 6 ); STEP( 2, 7 ); STEP( 2, 8 );
-	STEP( 2, 9 ); STEP( 2, 10); STEP( 2, 11); STEP( 2, 12);
-	L_result <<= 1;
-	if (L_result > EM) {
-		Mc = 2;
-	 	EM = L_result;
-	}
-
-	/* i = 3 */
-
-	L_result = L_common_0_3;
-	STEP( 3, 12 );
-	L_result <<= 1;
-	if (L_result > EM) {
-		Mc = 3;
-	 	EM = L_result;
-	}
-
-	/**/
-
-	/*  Down-sampling by a factor 3 to get the selected xM[0..12]
-	 *  RPE sequence.
-	 */
-	for (i = 0; i <= 12; i ++) xM[i] = x[Mc + 3*i];
-	*Mc_out = Mc;
-}
-
-/* 4.12.15 */
-
-static void APCM_quantization_xmaxc_to_exp_mant (
-	word		xmaxc,		/* IN 	*/
-	word		* exp_out,	/* OUT	*/
-	word		* mant_out )	/* OUT  */
-{
-	word	exp, mant;
-
-	/* Compute exponent and mantissa of the decoded version of xmaxc
-	 */
-
-	exp = 0;
-	if (xmaxc > 15) exp = SASR(xmaxc, 3) - 1;
-	mant = xmaxc - (exp << 3);
-
-	if (mant == 0) {
-		exp  = -4;
-		mant = 7;
-	}
-	else {
-		while (mant <= 7) {
-			mant = mant << 1 | 1;
-			exp--;
-		}
-		mant -= 8;
-	}
-
-	assert( exp  >= -4 && exp <= 6 );
-	assert( mant >= 0 && mant <= 7 );
-
-	*exp_out  = exp;
-	*mant_out = mant;
-}
-
-static void APCM_quantization (
-	word		* xM,		/* [0..12]		IN	*/
-
-	word		* xMc,		/* [0..12]		OUT	*/
-	word		* mant_out,	/* 			OUT	*/
-	word		* exp_out,	/*			OUT	*/
-	word		* xmaxc_out	/*			OUT	*/
-)
-{
-	int	i, itest;
-
-	word	xmax, xmaxc, temp, temp1, temp2;
-	word	exp, mant;
-
-
-	/*  Find the maximum absolute value xmax of xM[0..12].
-	 */
-
-	xmax = 0;
-	for (i = 0; i <= 12; i++) {
-		temp = xM[i];
-		temp = GSM_ABS(temp);
-		if (temp > xmax) xmax = temp;
-	}
-
-	/*  Qantizing and coding of xmax to get xmaxc.
-	 */
-
-	exp   = 0;
-	temp  = SASR( xmax, 9 );
-	itest = 0;
-
-	for (i = 0; i <= 5; i++) {
-
-		itest |= (temp <= 0);
-		temp = SASR( temp, 1 );
-
-		assert(exp <= 5);
-		if (itest == 0) exp++;		/* exp = add (exp, 1) */
-	}
-
-	assert(exp <= 6 && exp >= 0);
-	temp = exp + 5;
-
-	assert(temp <= 11 && temp >= 0);
-	xmaxc = gsm_add( SASR(xmax, temp), exp << 3 );
-
-	/*   Quantizing and coding of the xM[0..12] RPE sequence
-	 *   to get the xMc[0..12]
-	 */
-
-	APCM_quantization_xmaxc_to_exp_mant( xmaxc, &exp, &mant );
-
-	/*  This computation uses the fact that the decoded version of xmaxc
-	 *  can be calculated by using the exponent and the mantissa part of
-	 *  xmaxc (logarithmic table).
-	 *  So, this method avoids any division and uses only a scaling
-	 *  of the RPE samples by a function of the exponent.  A direct 
-	 *  multiplication by the inverse of the mantissa (NRFAC[0..7]
-	 *  found in table 4.5) gives the 3 bit coded version xMc[0..12]
-	 *  of the RPE samples.
-	 */
-
-
-	/* Direct computation of xMc[0..12] using table 4.5
-	 */
-
-	assert( exp <= 4096 && exp >= -4096);
-	assert( mant >= 0 && mant <= 7 ); 
-
-	temp1 = 6 - exp;		/* normalization by the exponent */
-	temp2 = gsm_NRFAC[ mant ];  	/* inverse mantissa 		 */
-
-	for (i = 0; i <= 12; i++) {
-
-		assert(temp1 >= 0 && temp1 < 16);
-
-		temp = xM[i] << temp1;
-		temp = GSM_MULT( temp, temp2 );
-		temp = SASR(temp, 12);
-		xMc[i] = temp + 4;		/* see note below */
-	}
-
-	/*  NOTE: This equation is used to make all the xMc[i] positive.
-	 */
-
-	*mant_out  = mant;
-	*exp_out   = exp;
-	*xmaxc_out = xmaxc;
-}
-
-/* 4.2.16 */
-
-static void APCM_inverse_quantization (
-	register word	* xMc,	/* [0..12]			IN 	*/
-	word		mant,
-	word		exp,
-	register word	* xMp)	/* [0..12]			OUT 	*/
-/* 
- *  This part is for decoding the RPE sequence of coded xMc[0..12]
- *  samples to obtain the xMp[0..12] array.  Table 4.6 is used to get
- *  the mantissa of xmaxc (FAC[0..7]).
- */
-{
-	int	i;
-	word	temp, temp1, temp2, temp3;
-	longword	ltmp;
-
-	assert( mant >= 0 && mant <= 7 ); 
-
-	temp1 = gsm_FAC[ mant ];	/* see 4.2-15 for mant */
-	temp2 = gsm_sub( 6, exp );	/* see 4.2-15 for exp  */
-	temp3 = gsm_asl( 1, gsm_sub( temp2, 1 ));
-
-	for (i = 13; i--;) {
-
-		assert( *xMc <= 7 && *xMc >= 0 ); 	/* 3 bit unsigned */
-
-		/* temp = gsm_sub( *xMc++ << 1, 7 ); */
-		temp = (*xMc++ << 1) - 7;	        /* restore sign   */
-		assert( temp <= 7 && temp >= -7 ); 	/* 4 bit signed   */
-
-		temp <<= 12;				/* 16 bit signed  */
-		temp = GSM_MULT_R( temp1, temp );
-		temp = GSM_ADD( temp, temp3 );
-		*xMp++ = gsm_asr( temp, temp2 );
-	}
-}
-
-/* 4.2.17 */
-
-static void RPE_grid_positioning (
-	word		Mc,		/* grid position	IN	*/
-	register word	* xMp,		/* [0..12]		IN	*/
-	register word	* ep		/* [0..39]		OUT	*/
-)
-/*
- *  This procedure computes the reconstructed long term residual signal
- *  ep[0..39] for the LTP analysis filter.  The inputs are the Mc
- *  which is the grid position selection and the xMp[0..12] decoded
- *  RPE samples which are upsampled by a factor of 3 by inserting zero
- *  values.
- */
-{
-	int	i = 13;
-
-	assert(0 <= Mc && Mc <= 3);
-
-        switch (Mc) {
-                case 3: *ep++ = 0;
-                case 2:  do {
-                                *ep++ = 0;
-                case 1:         *ep++ = 0;
-                case 0:         *ep++ = *xMp++;
-                         } while (--i);
-        }
-        while (++Mc < 4) *ep++ = 0;
-
-	/*
-
-	int i, k;
-	for (k = 0; k <= 39; k++) ep[k] = 0;
-	for (i = 0; i <= 12; i++) {
-		ep[ Mc + (3*i) ] = xMp[i];
-	}
-	*/
-}
-
-/* 4.2.18 */
-
-/*  This procedure adds the reconstructed long term residual signal
- *  ep[0..39] to the estimated signal dpp[0..39] from the long term
- *  analysis filter to compute the reconstructed short term residual
- *  signal dp[-40..-1]; also the reconstructed short term residual
- *  array dp[-120..-41] is updated.
- */
-
-#if 0	/* Has been inlined in code.c */
-void Gsm_Update_of_reconstructed_short_time_residual_signal P3((dpp, ep, dp),
-	word	* dpp,		/* [0...39]	IN	*/
-	word	* ep,		/* [0...39]	IN	*/
-	word	* dp)		/* [-120...-1]  IN/OUT 	*/
-{
-	int 		k;
-
-	for (k = 0; k <= 79; k++) 
-		dp[ -120 + k ] = dp[ -80 + k ];
-
-	for (k = 0; k <= 39; k++)
-		dp[ -40 + k ] = gsm_add( ep[k], dpp[k] );
-}
-#endif	/* Has been inlined in code.c */
-
-void Gsm_RPE_Encoding (
-
-	struct gsm_state * S,
-
-	word	* e,		/* -5..-1][0..39][40..44	IN/OUT  */
-	word	* xmaxc,	/* 				OUT */
-	word	* Mc,		/* 			  	OUT */
-	word	* xMc)		/* [0..12]			OUT */
-{
-	word	x[40];
-	word	xM[13], xMp[13];
-	word	mant, exp;
-
-	Weighting_filter(e, x);
-	RPE_grid_selection(x, xM, Mc);
-
-	APCM_quantization(	xM, xMc, &mant, &exp, xmaxc);
-	APCM_inverse_quantization(  xMc,  mant,  exp, xMp);
-
-	RPE_grid_positioning( *Mc, xMp, e );
-
-}
-
-void Gsm_RPE_Decoding (
-	struct gsm_state	* S,
-
-	word 		xmaxcr,
-	word		Mcr,
-	word		* xMcr,  /* [0..12], 3 bits 		IN	*/
-	word		* erp	 /* [0..39]			OUT 	*/
-)
-{
-	word	exp, mant;
-	word	xMp[ 13 ];
-
-	APCM_quantization_xmaxc_to_exp_mant( xmaxcr, &exp, &mant );
-	APCM_inverse_quantization( xMcr, mant, exp, xMp );
-	RPE_grid_positioning( Mcr, xMp, erp );
-
-}
--- a/src/libgsm/short_term.c
+++ /dev/null
@@ -1,428 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
- * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/short_term.c,v 1.4 2007/01/29 03:09:33 cbagwell Exp $ */
-
-#include <stdio.h>
-#include <assert.h>
-
-#include "private.h"
-
-#include "gsm.h"
-
-/*
- *  SHORT TERM ANALYSIS FILTERING SECTION
- */
-
-/* 4.2.8 */
-
-static void Decoding_of_the_coded_Log_Area_Ratios (
-	word 	* LARc,		/* coded log area ratio	[0..7] 	IN	*/
-	word	* LARpp)	/* out: decoded ..			*/
-{
-	register word	temp1 /* , temp2 */;
-	register long	ltmp;	/* for GSM_ADD */
-
-	/*  This procedure requires for efficient implementation
-	 *  two tables.
- 	 *
-	 *  INVA[1..8] = integer( (32768 * 8) / real_A[1..8])
-	 *  MIC[1..8]  = minimum value of the LARc[1..8]
-	 */
-
-	/*  Compute the LARpp[1..8]
-	 */
-
-	/* 	for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) {
-	 *
-	 *		temp1  = GSM_ADD( *LARc, *MIC ) << 10;
-	 *		temp2  = *B << 1;
-	 *		temp1  = GSM_SUB( temp1, temp2 );
-	 *
-	 *		assert(*INVA != MIN_WORD);
-	 *
-	 *		temp1  = GSM_MULT_R( *INVA, temp1 );
-	 *		*LARpp = GSM_ADD( temp1, temp1 );
-	 *	}
-	 */
-
-#undef	STEP
-#define	STEP( B, MIC, INVA )	\
-		temp1    = GSM_ADD( *LARc++, MIC ) << 10;	\
-		temp1    = GSM_SUB( temp1, B << 1 );		\
-		temp1    = GSM_MULT_R( INVA, temp1 );		\
-		*LARpp++ = GSM_ADD( temp1, temp1 );
-
-	STEP(      0,  -32,  13107 );
-	STEP(      0,  -32,  13107 );
-	STEP(   2048,  -16,  13107 );
-	STEP(  -2560,  -16,  13107 );
-
-	STEP(     94,   -8,  19223 );
-	STEP(  -1792,   -8,  17476 );
-	STEP(   -341,   -4,  31454 );
-	STEP(  -1144,   -4,  29708 );
-
-	/* NOTE: the addition of *MIC is used to restore
-	 * 	 the sign of *LARc.
-	 */
-}
-
-/* 4.2.9 */
-/* Computation of the quantized reflection coefficients 
- */
-
-/* 4.2.9.1  Interpolation of the LARpp[1..8] to get the LARp[1..8]
- */
-
-/*
- *  Within each frame of 160 analyzed speech samples the short term
- *  analysis and synthesis filters operate with four different sets of
- *  coefficients, derived from the previous set of decoded LARs(LARpp(j-1))
- *  and the actual set of decoded LARs (LARpp(j))
- *
- * (Initial value: LARpp(j-1)[1..8] = 0.)
- */
-
-static void Coefficients_0_12 (
-	register word * LARpp_j_1,
-	register word * LARpp_j,
-	register word * LARp)
-{
-	register int 	i;
-	register longword ltmp;
-
-	for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) {
-		*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
-		*LARp = GSM_ADD( *LARp,  SASR( *LARpp_j_1, 1));
-	}
-}
-
-static void Coefficients_13_26 (
-	register word * LARpp_j_1,
-	register word * LARpp_j,
-	register word * LARp)
-{
-	register int i;
-	register longword ltmp;
-	for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
-		*LARp = GSM_ADD( SASR( *LARpp_j_1, 1), SASR( *LARpp_j, 1 ));
-	}
-}
-
-static void Coefficients_27_39 (
-	register word * LARpp_j_1,
-	register word * LARpp_j,
-	register word * LARp)
-{
-	register int i;
-	register longword ltmp;
-
-	for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
-		*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
-		*LARp = GSM_ADD( *LARp, SASR( *LARpp_j, 1 ));
-	}
-}
-
-
-static void Coefficients_40_159 (
-	register word * LARpp_j,
-	register word * LARp)
-{
-	register int i;
-
-	for (i = 1; i <= 8; i++, LARp++, LARpp_j++)
-		*LARp = *LARpp_j;
-}
-
-/* 4.2.9.2 */
-
-static void LARp_to_rp (
-	register word * LARp)	/* [0..7] IN/OUT  */
-/*
- *  The input of this procedure is the interpolated LARp[0..7] array.
- *  The reflection coefficients, rp[i], are used in the analysis
- *  filter and in the synthesis filter.
- */
-{
-	register int 		i;
-	register word		temp;
-	register longword	ltmp;
-
-	for (i = 1; i <= 8; i++, LARp++) {
-
-		/* temp = GSM_ABS( *LARp );
-	         *
-		 * if (temp < 11059) temp <<= 1;
-		 * else if (temp < 20070) temp += 11059;
-		 * else temp = GSM_ADD( temp >> 2, 26112 );
-		 *
-		 * *LARp = *LARp < 0 ? -temp : temp;
-		 */
-
-		if (*LARp < 0) {
-			temp = *LARp == MIN_WORD ? MAX_WORD : -(*LARp);
-			*LARp = - ((temp < 11059) ? temp << 1
-				: ((temp < 20070) ? temp + 11059
-				:  GSM_ADD( temp >> 2, 26112 )));
-		} else {
-			temp  = *LARp;
-			*LARp =    (temp < 11059) ? temp << 1
-				: ((temp < 20070) ? temp + 11059
-				:  GSM_ADD( temp >> 2, 26112 ));
-		}
-	}
-}
-
-
-/* 4.2.10 */
-static void Short_term_analysis_filtering (
-	struct gsm_state * S,
-	register word	* rp,	/* [0..7]	IN	*/
-	register int 	k_n, 	/*   k_end - k_start	*/
-	register word	* s	/* [0..n-1]	IN/OUT	*/
-)
-/*
- *  This procedure computes the short term residual signal d[..] to be fed
- *  to the RPE-LTP loop from the s[..] signal and from the local rp[..]
- *  array (quantized reflection coefficients).  As the call of this
- *  procedure can be done in many ways (see the interpolation of the LAR
- *  coefficient), it is assumed that the computation begins with index
- *  k_start (for arrays d[..] and s[..]) and stops with index k_end
- *  (k_start and k_end are defined in 4.2.9.1).  This procedure also
- *  needs to keep the array u[0..7] in memory for each call.
- */
-{
-	register word		* u = S->u;
-	register int		i;
-	register word		di, zzz, ui, sav, rpi;
-	register longword 	ltmp;
-
-	for (; k_n--; s++) {
-
-		di = sav = *s;
-
-		for (i = 0; i < 8; i++) {		/* YYY */
-
-			ui    = u[i];
-			rpi   = rp[i];
-			u[i]  = sav;
-
-			zzz   = GSM_MULT_R(rpi, di);
-			sav   = GSM_ADD(   ui,  zzz);
-
-			zzz   = GSM_MULT_R(rpi, ui);
-			di    = GSM_ADD(   di,  zzz );
-		}
-
-		*s = di;
-	}
-}
-
-#if defined(USE_FLOAT_MUL) && defined(FAST)
-
-static void Fast_Short_term_analysis_filtering (
-	struct gsm_state * S,
-	register word	* rp,	/* [0..7]	IN	*/
-	register int 	k_n, 	/*   k_end - k_start	*/
-	register word	* s	/* [0..n-1]	IN/OUT	*/
-)
-{
-	register word		* u = S->u;
-	register int		i;
-
-	float 	  uf[8],
-		 rpf[8];
-
-	register float scalef = 3.0517578125e-5;
-	register float		sav, di, temp;
-
-	for (i = 0; i < 8; ++i) {
-		uf[i]  = u[i];
-		rpf[i] = rp[i] * scalef;
-	}
-	for (; k_n--; s++) {
-		sav = di = *s;
-		for (i = 0; i < 8; ++i) {
-			register float rpfi = rpf[i];
-			register float ufi  = uf[i];
-
-			uf[i] = sav;
-			temp  = rpfi * di + ufi;
-			di   += rpfi * ufi;
-			sav   = temp;
-		}
-		*s = di;
-	}
-	for (i = 0; i < 8; ++i) u[i] = uf[i];
-}
-#endif /* ! (defined (USE_FLOAT_MUL) && defined (FAST)) */
-
-static void Short_term_synthesis_filtering (
-	struct gsm_state * S,
-	register word	* rrp,	/* [0..7]	IN	*/
-	register int	k,	/* k_end - k_start	*/
-	register word	* wt,	/* [0..k-1]	IN	*/
-	register word	* sr	/* [0..k-1]	OUT	*/
-)
-{
-	register word		* v = S->v;
-	register int		i;
-	register word		sri, tmp1, tmp2;
-	register longword	ltmp;	/* for GSM_ADD  & GSM_SUB */
-
-	while (k--) {
-		sri = *wt++;
-		for (i = 8; i--;) {
-
-			/* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) );
-			 */
-			tmp1 = rrp[i];
-			tmp2 = v[i];
-			tmp2 =  ( tmp1 == MIN_WORD && tmp2 == MIN_WORD
-				? MAX_WORD
-				: 0x0FFFF & (( (longword)tmp1 * (longword)tmp2
-					     + 16384) >> 15)) ;
-
-			sri  = GSM_SUB( sri, tmp2 );
-
-			/* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) );
-			 */
-			tmp1  = ( tmp1 == MIN_WORD && sri == MIN_WORD
-				? MAX_WORD
-				: 0x0FFFF & (( (longword)tmp1 * (longword)sri
-					     + 16384) >> 15)) ;
-
-			v[i+1] = GSM_ADD( v[i], tmp1);
-		}
-		*sr++ = v[0] = sri;
-	}
-}
-
-
-#if defined(FAST) && defined(USE_FLOAT_MUL)
-
-static void Fast_Short_term_synthesis_filtering (
-	struct gsm_state * S,
-	register word	* rrp,	/* [0..7]	IN	*/
-	register int	k,	/* k_end - k_start	*/
-	register word	* wt,	/* [0..k-1]	IN	*/
-	register word	* sr	/* [0..k-1]	OUT	*/
-)
-{
-	register word		* v = S->v;
-	register int		i;
-
-	float va[9], rrpa[8];
-	register float scalef = 3.0517578125e-5, temp;
-
-	for (i = 0; i < 8; ++i) {
-		va[i]   = v[i];
-		rrpa[i] = (float)rrp[i] * scalef;
-	}
-	while (k--) {
-		register float sri = *wt++;
-		for (i = 8; i--;) {
-			sri -= rrpa[i] * va[i];
-			if     (sri < -32768.) sri = -32768.;
-			else if (sri > 32767.) sri =  32767.;
-
-			temp = va[i] + rrpa[i] * sri;
-			if     (temp < -32768.) temp = -32768.;
-			else if (temp > 32767.) temp =  32767.;
-			va[i+1] = temp;
-		}
-		*sr++ = va[0] = sri;
-	}
-	for (i = 0; i < 9; ++i) v[i] = va[i];
-}
-
-#endif /* defined(FAST) && defined(USE_FLOAT_MUL) */
-
-void Gsm_Short_Term_Analysis_Filter (
-
-	struct gsm_state * S,
-
-	word	* LARc,		/* coded log area ratio [0..7]  IN	*/
-	word	* s		/* signal [0..159]		IN/OUT	*/
-)
-{
-	word		* LARpp_j	= S->LARpp[ S->j      ];
-	word		* LARpp_j_1	= S->LARpp[ S->j ^= 1 ];
-
-	word		LARp[8];
-
-#undef	FILTER
-#if 	defined(FAST) && defined(USE_FLOAT_MUL)
-# 	define	FILTER 	(* (S->fast			\
-			   ? Fast_Short_term_analysis_filtering	\
-		    	   : Short_term_analysis_filtering	))
-
-#else
-# 	define	FILTER	Short_term_analysis_filtering
-#endif
-
-	Decoding_of_the_coded_Log_Area_Ratios( LARc, LARpp_j );
-
-	Coefficients_0_12(  LARpp_j_1, LARpp_j, LARp );
-	LARp_to_rp( LARp );
-	FILTER( S, LARp, 13, s);
-
-	Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
-	LARp_to_rp( LARp );
-	FILTER( S, LARp, 14, s + 13);
-
-	Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
-	LARp_to_rp( LARp );
-	FILTER( S, LARp, 13, s + 27);
-
-	Coefficients_40_159( LARpp_j, LARp);
-	LARp_to_rp( LARp );
-	FILTER( S, LARp, 120, s + 40);
-}
-
-void Gsm_Short_Term_Synthesis_Filter (
-	struct gsm_state * S,
-
-	word	* LARcr,	/* received log area ratios [0..7] IN  */
-	word	* wt,		/* received d [0..159]		   IN  */
-
-	word	* s		/* signal   s [0..159]		  OUT  */
-)
-{
-	word		* LARpp_j	= S->LARpp[ S->j     ];
-	word		* LARpp_j_1	= S->LARpp[ S->j ^=1 ];
-
-	word		LARp[8];
-
-#undef	FILTER
-#if 	defined(FAST) && defined(USE_FLOAT_MUL)
-
-# 	define	FILTER 	(* (S->fast			\
-			   ? Fast_Short_term_synthesis_filtering	\
-		    	   : Short_term_synthesis_filtering	))
-#else
-#	define	FILTER	Short_term_synthesis_filtering
-#endif
-
-	Decoding_of_the_coded_Log_Area_Ratios( LARcr, LARpp_j );
-
-	Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
-	LARp_to_rp( LARp );
-	FILTER( S, LARp, 13, wt, s );
-
-	Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
-	LARp_to_rp( LARp );
-	FILTER( S, LARp, 14, wt + 13, s + 13 );
-
-	Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
-	LARp_to_rp( LARp );
-	FILTER( S, LARp, 13, wt + 27, s + 27 );
-
-	Coefficients_40_159( LARpp_j, LARp );
-	LARp_to_rp( LARp );
-	FILTER(S, LARp, 120, wt + 40, s + 40);
-}
--- a/src/libgsm/table.c
+++ /dev/null
@@ -1,63 +1,0 @@
-/*
- * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
- * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
- * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
- */
-
-/* $Header: /cvsroot/sox/sox/src/libgsm/Attic/table.c,v 1.3 2007/01/29 03:09:33 cbagwell Exp $ */
-
-/*  Most of these tables are inlined at their point of use.
- */
-
-/*  4.4 TABLES USED IN THE FIXED POINT IMPLEMENTATION OF THE RPE-LTP
- *      CODER AND DECODER
- *
- *	(Most of them inlined, so watch out.)
- */
-
-#define	GSM_TABLE_C
-#include "private.h"
-#include	"gsm.h"
-
-/*  Table 4.1  Quantization of the Log.-Area Ratios
- */
-/* i 		     1      2      3        4      5      6        7       8 */
-word gsm_A[8]   = {20480, 20480, 20480,  20480,  13964,  15360,   8534,  9036};
-word gsm_B[8]   = {    0,     0,  2048,  -2560,     94,  -1792,   -341, -1144};
-word gsm_MIC[8] = { -32,   -32,   -16,    -16,     -8,     -8,     -4,    -4 };
-word gsm_MAC[8] = {  31,    31,    15,     15,      7,      7,      3,     3 };
-
-
-/*  Table 4.2  Tabulation  of 1/A[1..8]
- */
-word gsm_INVA[8]={ 13107, 13107,  13107, 13107,  19223, 17476,  31454, 29708 };
-
-
-/*   Table 4.3a  Decision level of the LTP gain quantizer
- */
-/*  bc		      0	        1	  2	     3			*/
-word gsm_DLB[4] = {  6554,    16384,	26214,	   32767	};
-
-
-/*   Table 4.3b   Quantization levels of the LTP gain quantizer
- */
-/* bc		      0          1        2          3			*/
-word gsm_QLB[4] = {  3277,    11469,	21299,	   32767	};
-
-
-/*   Table 4.4	 Coefficients of the weighting filter
- */
-/* i		    0      1   2    3   4      5      6     7   8   9    10  */
-word gsm_H[11] = {-134, -374, 0, 2054, 5741, 8192, 5741, 2054, 0, -374, -134 };
-
-
-/*   Table 4.5 	 Normalized inverse mantissa used to compute xM/xmax 
- */
-/* i		 	0        1    2      3      4      5     6      7   */
-word gsm_NRFAC[8] = { 29128, 26215, 23832, 21846, 20165, 18725, 17476, 16384 };
-
-
-/*   Table 4.6	 Normalized direct mantissa used to compute xM/xmax
- */
-/* i                  0      1       2      3      4      5      6      7   */
-word gsm_FAC[8]	= { 18431, 20479, 22527, 24575, 26623, 28671, 30719, 32767 };