shithub: libvpx

Download patch

ref: d7a2451d48ca3b6a01afb88d775f8d0614211b88
parent: e4096639ff0e034cb59c13760727b2e6d4fbe831
author: Dan Zhu <zxdan@google.com>
date: Wed Jul 17 15:43:56 EDT 2019

Add Exhaust Search (Neighbor Constrain) Estimator

Change-Id: I1e306979a0d308285155c152837125fb2036091a

--- /dev/null
+++ b/tools/3D-Reconstruction/MotionEST/Exhaust.py
@@ -1,0 +1,132 @@
+#!/usr/bin/env python
+# coding: utf-8
+import numpy as np
+import numpy.linalg as LA
+from Util import MSE
+from MotionEST import MotionEST
+"""Exhaust Search:"""
+
+
+class Exhaust(MotionEST):
+  """
+    Constructor:
+        cur_f: current frame
+        ref_f: reference frame
+        blk_sz: block size
+        wnd_size: search window size
+        metric: metric to compare the blocks distrotion
+    """
+
+  def __init__(self, cur_f, ref_f, blk_size, wnd_size, metric=MSE):
+    self.name = 'exhaust'
+    self.wnd_sz = wnd_size
+    self.metric = metric
+    super(Exhaust, self).__init__(cur_f, ref_f, blk_size)
+
+  """
+    search method:
+        cur_r: start row
+        cur_c: start column
+    """
+
+  def search(self, cur_r, cur_c):
+    min_loss = self.dist(cur_r, cur_c, [0, 0], self.metric)
+    cur_x = cur_c * self.blk_sz
+    cur_y = cur_r * self.blk_sz
+    ref_x = cur_x
+    ref_y = cur_y
+    #search all validate positions and select the one with minimum distortion
+    for y in xrange(cur_y - self.wnd_sz, cur_y + self.wnd_sz):
+      for x in xrange(cur_x - self.wnd_sz, cur_x + self.wnd_sz):
+        if 0 <= x < self.width - self.blk_sz and 0 <= y < self.height - self.blk_sz:
+          loss = self.dist(cur_r, cur_c, [y - cur_y, x - cur_x], self.metric)
+          if loss < min_loss:
+            min_loss = loss
+            ref_x = x
+            ref_y = y
+    return ref_x, ref_y
+
+  def est(self):
+    for i in xrange(self.num_row):
+      for j in xrange(self.num_col):
+        ref_x, ref_y = self.search(i, j)
+        self.mf[i, j] = np.array(
+            [ref_y - i * self.blk_sz, ref_x - j * self.blk_sz])
+
+
+"""Exhaust with Neighbor Constraint"""
+
+
+class ExhaustNeighbor(MotionEST):
+  """
+    Constructor:
+        cur_f: current frame
+        ref_f: reference frame
+        blk_sz: block size
+        wnd_size: search window size
+        beta: neigbor loss weight
+        metric: metric to compare the blocks distrotion
+    """
+
+  def __init__(self, cur_f, ref_f, blk_size, wnd_size, beta, metric=MSE):
+    self.name = 'exhaust + neighbor'
+    self.wnd_sz = wnd_size
+    self.beta = beta
+    self.metric = metric
+    super(ExhaustNeighbor, self).__init__(cur_f, ref_f, blk_size)
+    self.assign = np.zeros((self.num_row, self.num_col), dtype=np.bool)
+
+  """
+    estimate neighbor loss:
+        cur_r: current row
+        cur_c: current column
+        mv: current motion vector
+    """
+
+  def neighborLoss(self, cur_r, cur_c, mv):
+    loss = 0
+    #accumulate difference between current block's motion vector with neighbors'
+    for i, j in {(-1, 0), (1, 0), (0, 1), (0, -1)}:
+      nb_r = cur_r + i
+      nb_c = cur_c + j
+      if 0 <= nb_r < self.num_row and 0 <= nb_c < self.num_col and self.assign[
+          nb_r, nb_c]:
+        loss += LA.norm(mv - self.mf[nb_r, nb_c])
+    return loss
+
+  """
+    search method:
+        cur_r: start row
+        cur_c: start column
+    """
+
+  def search(self, cur_r, cur_c):
+    dist_loss = self.dist(cur_r, cur_c, [0, 0], self.metric)
+    nb_loss = self.neighborLoss(cur_r, cur_c, np.array([0, 0]))
+    min_loss = dist_loss + self.beta * nb_loss
+    cur_x = cur_c * self.blk_sz
+    cur_y = cur_r * self.blk_sz
+    ref_x = cur_x
+    ref_y = cur_y
+    #search all validate positions and select the one with minimum distortion
+    # as well as weighted neighbor loss
+    for y in xrange(cur_y - self.wnd_sz, cur_y + self.wnd_sz):
+      for x in xrange(cur_x - self.wnd_sz, cur_x + self.wnd_sz):
+        if 0 <= x < self.width - self.blk_sz and 0 <= y < self.height - self.blk_sz:
+          dist_loss = self.dist(cur_r, cur_c, [y - cur_y, x - cur_x],
+                                self.metric)
+          nb_loss = self.neighborLoss(cur_r, cur_c, [y - cur_y, x - cur_x])
+          loss = dist_loss + self.beta * nb_loss
+          if loss < min_loss:
+            min_loss = loss
+            ref_x = x
+            ref_y = y
+    return ref_x, ref_y
+
+  def est(self):
+    for i in xrange(self.num_row):
+      for j in xrange(self.num_col):
+        ref_x, ref_y = self.search(i, j)
+        self.mf[i, j] = np.array(
+            [ref_y - i * self.blk_sz, ref_x - j * self.blk_sz])
+        self.assign[i, j] = True