shithub: libvpx

Download patch

ref: 8d3d2b76f304f622a5e2d2e54416e1188a697f61
parent: 904070ca64089030404f05716a512db20952871b
author: Deb Mukherjee <debargha@google.com>
date: Fri Jun 21 12:31:12 EDT 2013

Tx size selection enhancements

(1) Refines the modeling function and uses that to add some speed
features. Specifically, intead of using a flag use_largest_txfm as
a speed feature, an enum tx_size_search_method is used, of which
two of the types are USE_FULL_RD and USE_LARGESTALL. Two other
new types are added:
USE_LARGESTINTRA (use largest only for intra)
USE_LARGESTINTRA_MODELINTER (use largest for intra, and model for
inter)

(2) Another change is that the framework for deciding transform type
is simplified to use a heuristic count based method rather than
an rd based method using txfm_cache. In practice the new method
is found to work just as well - with derf only -0.01 down.
The new method is more compatible with the new framework where
certain rd costs are based on full rd and certain others are
based on modeled rd or are not computed. In this patch the existing
rd based method is still kept for use in the USE_FULL_RD mode.
In the other modes, the count based method is used.
However the recommendation is to remove it eventually since the
benefit is limited, and will remove a lot of complications in
the code

(3) Finally a bug is fixed with the existing use_largest_txfm speed feature
that causes mismatches when the lossless mode and 4x4 WH transform is
forced.

Results on derf:
USE_FULL_RD: +0.03% (due to change in the tables), 0% encode time reduction
USE_LARGESTINTRA: -0.21%, 15% encode time reduction (this one is a
pretty good compromise)
USE_LARGESTINTRA_MODELINTER: -0.98%, 22% encode time reduction
(currently the benefit of modeling is limited for txfm size selection,
but keeping this enum as a placeholder) .
USE_LARGESTALL: -1.05%, 27% encode-time reduction (same as existing
use_largest_txfm speed feature).

Change-Id: I4d60a5f9ce78fbc90cddf2f97ed91d8bc0d4f936

--- a/vp9/common/vp9_blockd.h
+++ b/vp9/common/vp9_blockd.h
@@ -122,13 +122,6 @@
 
 #define WHT_UPSCALE_FACTOR 2
 
-#define TX_SIZE_PROBS  6  // (TX_SIZE_MAX_SB * (TX_SIZE_MAX_SB - 1) / 2)
-
-#define get_tx_probs(c, b) ((b) < BLOCK_SIZE_MB16X16 ? \
-                            (c)->fc.tx_probs_8x8p :    \
-                            (b) < BLOCK_SIZE_SB32X32 ? \
-                            (c)->fc.tx_probs_16x16p : (c)->fc.tx_probs_32x32p)
-
 /* For keyframes, intra block modes are predicted by the (already decoded)
    modes for the Y blocks to the left and above us; for interframes, there
    is a single probability table. */
--- a/vp9/encoder/vp9_encodeframe.c
+++ b/vp9/encoder/vp9_encodeframe.c
@@ -1678,6 +1678,7 @@
 
 static void switch_lossless_mode(VP9_COMP *cpi, int lossless) {
   if (lossless) {
+    // printf("Switching to lossless\n");
     cpi->mb.fwd_txm8x4 = vp9_short_walsh8x4;
     cpi->mb.fwd_txm4x4 = vp9_short_walsh4x4;
     cpi->mb.e_mbd.inv_txm4x4_1_add = vp9_short_iwalsh4x4_1_add;
@@ -1687,6 +1688,7 @@
     cpi->zbin_mode_boost_enabled = 0;
     cpi->common.txfm_mode = ONLY_4X4;
   } else {
+    // printf("Not lossless\n");
     cpi->mb.fwd_txm8x4 = vp9_short_fdct8x4;
     cpi->mb.fwd_txm4x4 = vp9_short_fdct4x4;
     cpi->mb.e_mbd.inv_txm4x4_1_add = vp9_short_idct4x4_1_add;
@@ -1695,7 +1697,7 @@
 }
 
 static void switch_txfm_mode(VP9_COMP *cpi) {
-  if (cpi->sf.use_largest_txform &&
+  if (cpi->sf.tx_size_search_method == USE_LARGESTALL &&
       cpi->common.txfm_mode >= ALLOW_32X32)
     cpi->common.txfm_mode = ALLOW_32X32;
 }
@@ -1728,6 +1730,7 @@
 
   vp9_zero(cm->fc.switchable_interp_count);
   vp9_zero(cpi->best_switchable_interp_count);
+  vp9_zero(cpi->txfm_stepdown_count);
 
   xd->mode_info_context = cm->mi;
   xd->prev_mode_info_context = cm->prev_mi;
@@ -1930,6 +1933,47 @@
   }
 }
 
+static int get_frame_type(VP9_COMP *cpi) {
+  int frame_type;
+  if (cpi->common.frame_type == KEY_FRAME)
+    frame_type = 0;
+  else if (cpi->is_src_frame_alt_ref && cpi->refresh_golden_frame)
+    frame_type = 3;
+  else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
+    frame_type = 1;
+  else
+    frame_type = 2;
+  return frame_type;
+}
+
+static void select_txfm_mode(VP9_COMP *cpi) {
+  if (cpi->oxcf.lossless) {
+    cpi->common.txfm_mode = ONLY_4X4;
+  } else if (cpi->common.current_video_frame == 0) {
+    cpi->common.txfm_mode = TX_MODE_SELECT;
+  } else {
+    if (cpi->sf.tx_size_search_method == USE_FULL_RD) {
+      int frame_type = get_frame_type(cpi);
+      cpi->common.txfm_mode =
+          cpi->rd_tx_select_threshes[frame_type][ALLOW_32X32]
+          > cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] ?
+          ALLOW_32X32 : TX_MODE_SELECT;
+    } else if (cpi->sf.tx_size_search_method == USE_LARGESTALL) {
+      cpi->common.txfm_mode = ALLOW_32X32;
+    } else {
+      unsigned int total = 0;
+      int i;
+      for (i = 0; i < TX_SIZE_MAX_SB; ++i)
+        total += cpi->txfm_stepdown_count[i];
+      if (total) {
+        double fraction = (double)cpi->txfm_stepdown_count[0] / total;
+        cpi->common.txfm_mode = fraction > 0.90 ? ALLOW_32X32 : TX_MODE_SELECT;
+        // printf("fraction = %f\n", fraction);
+      }  // else keep unchanged
+    }
+  }
+}
+
 void vp9_encode_frame(VP9_COMP *cpi) {
   VP9_COMMON * const cm = &cpi->common;
 
@@ -1940,7 +1984,7 @@
   // side behaviour is where the ALT ref buffer has oppositie sign bias to
   // the other two.
   if ((cm->ref_frame_sign_bias[ALTREF_FRAME]
-      == cm->ref_frame_sign_bias[GOLDEN_FRAME])
+       == cm->ref_frame_sign_bias[GOLDEN_FRAME])
       || (cm->ref_frame_sign_bias[ALTREF_FRAME]
           == cm->ref_frame_sign_bias[LAST_FRAME])) {
     cm->allow_comp_inter_inter = 0;
@@ -1952,9 +1996,7 @@
   }
 
   if (cpi->sf.RD) {
-    int i, frame_type, pred_type;
-    TXFM_MODE txfm_type;
-
+    int i, pred_type;
     /*
      * This code does a single RD pass over the whole frame assuming
      * either compound, single or hybrid prediction as per whatever has
@@ -1964,26 +2006,19 @@
      * that for subsequent frames.
      * It does the same analysis for transform size selection also.
      */
-    if (cpi->common.frame_type == KEY_FRAME)
-      frame_type = 0;
-    else if (cpi->is_src_frame_alt_ref && cpi->refresh_golden_frame)
-      frame_type = 3;
-    else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
-      frame_type = 1;
-    else
-      frame_type = 2;
+    int frame_type = get_frame_type(cpi);
 
     /* prediction (compound, single or hybrid) mode selection */
     if (frame_type == 3 || !cm->allow_comp_inter_inter)
       pred_type = SINGLE_PREDICTION_ONLY;
     else if (cpi->rd_prediction_type_threshes[frame_type][1]
-        > cpi->rd_prediction_type_threshes[frame_type][0]
-        && cpi->rd_prediction_type_threshes[frame_type][1]
-            > cpi->rd_prediction_type_threshes[frame_type][2]
-        && check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
+             > cpi->rd_prediction_type_threshes[frame_type][0]
+             && cpi->rd_prediction_type_threshes[frame_type][1]
+             > cpi->rd_prediction_type_threshes[frame_type][2]
+             && check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
       pred_type = COMP_PREDICTION_ONLY;
     else if (cpi->rd_prediction_type_threshes[frame_type][0]
-        > cpi->rd_prediction_type_threshes[frame_type][2])
+             > cpi->rd_prediction_type_threshes[frame_type][2])
       pred_type = SINGLE_PREDICTION_ONLY;
     else
       pred_type = HYBRID_PREDICTION;
@@ -1992,43 +2027,10 @@
 
     cpi->mb.e_mbd.lossless = 0;
     if (cpi->oxcf.lossless) {
-      txfm_type = ONLY_4X4;
       cpi->mb.e_mbd.lossless = 1;
-    } else
-#if 0
-      /* FIXME (rbultje): this code is disabled until we support cost updates
-       * while a frame is being encoded; the problem is that each time we
-       * "revert" to 4x4 only (or even 8x8 only), the coefficient probabilities
-       * for 16x16 (and 8x8) start lagging behind, thus leading to them lagging
-       * further behind and not being chosen for subsequent frames either. This
-       * is essentially a local minimum problem that we can probably fix by
-       * estimating real costs more closely within a frame, perhaps by re-
-       * calculating costs on-the-fly as frame encoding progresses. */
-      if (cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] >
-          cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] &&
-          cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] >
-          cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16] &&
-          cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] >
-          cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]) {
-        txfm_type = TX_MODE_SELECT;
-      } else if (cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] >
-          cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]
-          && cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] >
-          cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16]
-      ) {
-        txfm_type = ONLY_4X4;
-      } else if (cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16] >=
-          cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]) {
-        txfm_type = ALLOW_16X16;
-      } else
-      txfm_type = ALLOW_8X8;
-#else
-      txfm_type =
-          cpi->rd_tx_select_threshes[frame_type][ALLOW_32X32]
-              > cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] ?
-              ALLOW_32X32 : TX_MODE_SELECT;
-#endif
-    cpi->common.txfm_mode = txfm_type;
+    }
+
+    select_txfm_mode(cpi);
     cpi->common.comp_pred_mode = pred_type;
     encode_frame_internal(cpi);
 
@@ -2043,7 +2045,7 @@
       int diff;
       if (i == TX_MODE_SELECT)
         pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv,
-            2048 * (TX_SIZE_MAX_SB - 1), 0);
+                     2048 * (TX_SIZE_MAX_SB - 1), 0);
       diff = (int) (pd / cpi->common.MBs);
       cpi->rd_tx_select_threshes[frame_type][i] += diff;
       cpi->rd_tx_select_threshes[frame_type][i] /= 2;
@@ -2102,7 +2104,7 @@
         cpi->common.txfm_mode = ALLOW_8X8;
         reset_skip_txfm_size(cpi, TX_8X8);
       } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0
-          && count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
+                 && count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
         cpi->common.txfm_mode = ONLY_4X4;
         reset_skip_txfm_size(cpi, TX_4X4);
       } else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
--- a/vp9/encoder/vp9_onyx_if.c
+++ b/vp9/encoder/vp9_onyx_if.c
@@ -701,7 +701,7 @@
   sf->comp_inter_joint_search_thresh = BLOCK_SIZE_AB4X4;
   sf->adaptive_rd_thresh = 0;
   sf->use_lastframe_partitioning = 0;
-  sf->use_largest_txform = 0;
+  sf->tx_size_search_method = USE_FULL_RD;
   sf->use_8tap_always = 0;
   sf->use_avoid_tested_higherror = 0;
   sf->skip_lots_of_modes = 0;
@@ -744,17 +744,15 @@
       if (speed == 1) {
         sf->comp_inter_joint_search_thresh = BLOCK_SIZE_TYPES;
         sf->less_rectangular_check  = 1;
-        sf->use_largest_txform        = !(cpi->common.frame_type == KEY_FRAME ||
-                                          cpi->common.intra_only ||
-                                          cpi->common.show_frame == 0);
-
+        sf->tx_size_search_method = ((cpi->common.frame_type == KEY_FRAME ||
+                                      cpi->common.intra_only ||
+                                      cpi->common.show_frame == 0) ?
+                                     USE_FULL_RD :
+                                     USE_LARGESTINTRA);
         sf->disable_splitmv =
             (MIN(cpi->common.width, cpi->common.height) >= 720)? 1 : 0;
       }
       if (speed == 2) {
-        sf->use_largest_txform        = !(cpi->common.frame_type == KEY_FRAME ||
-                                                  cpi->common.intra_only ||
-                                                  cpi->common.show_frame == 0);
         sf->adjust_thresholds_by_speed = 1;
         sf->less_rectangular_check  = 1;
         sf->comp_inter_joint_search_thresh = BLOCK_SIZE_TYPES;
@@ -763,15 +761,30 @@
         sf->use_lastframe_partitioning = 1;
         sf->adjust_partitioning_from_last_frame = 1;
         sf->last_partitioning_redo_frequency = 3;
+        sf->tx_size_search_method = ((cpi->common.frame_type == KEY_FRAME ||
+                                      cpi->common.intra_only ||
+                                      cpi->common.show_frame == 0) ?
+                                     USE_FULL_RD :
+                                     USE_LARGESTALL);
       }
       if (speed == 3) {
         sf->comp_inter_joint_search_thresh = BLOCK_SIZE_TYPES;
         sf->partition_by_variance = 1;
+        sf->tx_size_search_method = ((cpi->common.frame_type == KEY_FRAME ||
+                                      cpi->common.intra_only ||
+                                      cpi->common.show_frame == 0) ?
+                                     USE_FULL_RD :
+                                     USE_LARGESTALL);
       }
       if (speed == 4) {
         sf->comp_inter_joint_search_thresh = BLOCK_SIZE_TYPES;
         sf->use_one_partition_size_always = 1;
         sf->always_this_block_size = BLOCK_SIZE_MB16X16;
+        sf->tx_size_search_method = ((cpi->common.frame_type == KEY_FRAME ||
+                                      cpi->common.intra_only ||
+                                      cpi->common.show_frame == 0) ?
+                                     USE_FULL_RD :
+                                     USE_LARGESTALL);
       }
       /*
       if (speed == 2) {
@@ -788,7 +801,7 @@
       }
       */
 
-     break;
+      break;
 
   }; /* switch */
 
--- a/vp9/encoder/vp9_onyx_int.h
+++ b/vp9/encoder/vp9_onyx_int.h
@@ -200,6 +200,13 @@
   HEX = 2
 } SEARCH_METHODS;
 
+typedef enum {
+  USE_FULL_RD = 0,
+  USE_LARGESTINTRA,
+  USE_LARGESTINTRA_MODELINTER,
+  USE_LARGESTALL
+} TX_SIZE_SEARCH_METHOD;
+
 typedef struct {
   int RD;
   SEARCH_METHODS search_method;
@@ -219,7 +226,7 @@
   int adaptive_rd_thresh;
   int skip_encode_sb;
   int use_lastframe_partitioning;
-  int use_largest_txform;
+  TX_SIZE_SEARCH_METHOD tx_size_search_method;
   int use_8tap_always;
   int use_avoid_tested_higherror;
   int skip_lots_of_modes;
@@ -588,6 +595,8 @@
   unsigned int switchable_interp_count[VP9_SWITCHABLE_FILTERS + 1]
                                       [VP9_SWITCHABLE_FILTERS];
   unsigned int best_switchable_interp_count[VP9_SWITCHABLE_FILTERS];
+
+  unsigned int txfm_stepdown_count[TX_SIZE_MAX_SB];
 
   int initial_width;
   int initial_height;
--- a/vp9/encoder/vp9_rdopt.c
+++ b/vp9/encoder/vp9_rdopt.c
@@ -279,6 +279,242 @@
   }
 }
 
+static enum BlockSize get_block_size(int bw, int bh) {
+  if (bw == 4 && bh == 4)
+    return BLOCK_4X4;
+
+  if (bw == 4 && bh == 8)
+    return BLOCK_4X8;
+
+  if (bw == 8 && bh == 4)
+    return BLOCK_8X4;
+
+  if (bw == 8 && bh == 8)
+    return BLOCK_8X8;
+
+  if (bw == 8 && bh == 16)
+    return BLOCK_8X16;
+
+  if (bw == 16 && bh == 8)
+    return BLOCK_16X8;
+
+  if (bw == 16 && bh == 16)
+    return BLOCK_16X16;
+
+  if (bw == 32 && bh == 32)
+    return BLOCK_32X32;
+
+  if (bw == 32 && bh == 16)
+    return BLOCK_32X16;
+
+  if (bw == 16 && bh == 32)
+    return BLOCK_16X32;
+
+  if (bw == 64 && bh == 32)
+    return BLOCK_64X32;
+
+  if (bw == 32 && bh == 64)
+    return BLOCK_32X64;
+
+  if (bw == 64 && bh == 64)
+    return BLOCK_64X64;
+
+  assert(0);
+  return -1;
+}
+
+static enum BlockSize get_plane_block_size(BLOCK_SIZE_TYPE bsize,
+                                           struct macroblockd_plane *pd) {
+  return get_block_size(plane_block_width(bsize, pd),
+                        plane_block_height(bsize, pd));
+}
+
+static double linear_interpolate(double x, int ntab, int inv_step,
+                                 const double *tab) {
+  double y = x * inv_step;
+  int d = (int) y;
+  if (d >= ntab - 1) {
+    return tab[ntab - 1];
+  } else {
+    double a = y - d;
+    return tab[d] * (1 - a) + tab[d + 1] * a;
+  }
+}
+
+static double model_rate_norm(double x) {
+  // Normalized rate
+  // This function models the rate for a Laplacian source
+  // source with given variance when quantized with a uniform quantizer
+  // with given stepsize. The closed form expression is:
+  // Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)],
+  // where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance),
+  // and H(x) is the binary entropy function.
+  static const int inv_rate_tab_step = 8;
+  static const double rate_tab[] = {
+    64.00, 4.944, 3.949, 3.372, 2.966, 2.655, 2.403, 2.194,
+    2.014, 1.858, 1.720, 1.596, 1.485, 1.384, 1.291, 1.206,
+    1.127, 1.054, 0.986, 0.923, 0.863, 0.808, 0.756, 0.708,
+    0.662, 0.619, 0.579, 0.541, 0.506, 0.473, 0.442, 0.412,
+    0.385, 0.359, 0.335, 0.313, 0.291, 0.272, 0.253, 0.236,
+    0.220, 0.204, 0.190, 0.177, 0.165, 0.153, 0.142, 0.132,
+    0.123, 0.114, 0.106, 0.099, 0.091, 0.085, 0.079, 0.073,
+    0.068, 0.063, 0.058, 0.054, 0.050, 0.047, 0.043, 0.040,
+    0.037, 0.034, 0.032, 0.029, 0.027, 0.025, 0.023, 0.022,
+    0.020, 0.019, 0.017, 0.016, 0.015, 0.014, 0.013, 0.012,
+    0.011, 0.010, 0.009, 0.008, 0.008, 0.007, 0.007, 0.006,
+    0.006, 0.005, 0.005, 0.005, 0.004, 0.004, 0.004, 0.003,
+    0.003, 0.003, 0.003, 0.002, 0.002, 0.002, 0.002, 0.002,
+    0.002, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001,
+    0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.000,
+  };
+  const int rate_tab_num = sizeof(rate_tab)/sizeof(rate_tab[0]);
+  assert(x >= 0.0);
+  return linear_interpolate(x, rate_tab_num, inv_rate_tab_step, rate_tab);
+}
+
+static double model_dist_norm(double x) {
+  // Normalized distortion
+  // This function models the normalized distortion for a Laplacian source
+  // source with given variance when quantized with a uniform quantizer
+  // with given stepsize. The closed form expression is:
+  // Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2))
+  // where x = qpstep / sqrt(variance)
+  // Note the actual distortion is Dn * variance.
+  static const int inv_dist_tab_step = 8;
+  static const double dist_tab[] = {
+    0.000, 0.001, 0.005, 0.012, 0.021, 0.032, 0.045, 0.061,
+    0.079, 0.098, 0.119, 0.142, 0.166, 0.190, 0.216, 0.242,
+    0.269, 0.296, 0.324, 0.351, 0.378, 0.405, 0.432, 0.458,
+    0.484, 0.509, 0.534, 0.557, 0.580, 0.603, 0.624, 0.645,
+    0.664, 0.683, 0.702, 0.719, 0.735, 0.751, 0.766, 0.780,
+    0.794, 0.807, 0.819, 0.830, 0.841, 0.851, 0.861, 0.870,
+    0.878, 0.886, 0.894, 0.901, 0.907, 0.913, 0.919, 0.925,
+    0.930, 0.935, 0.939, 0.943, 0.947, 0.951, 0.954, 0.957,
+    0.960, 0.963, 0.966, 0.968, 0.971, 0.973, 0.975, 0.976,
+    0.978, 0.980, 0.981, 0.982, 0.984, 0.985, 0.986, 0.987,
+    0.988, 0.989, 0.990, 0.990, 0.991, 0.992, 0.992, 0.993,
+    0.993, 0.994, 0.994, 0.995, 0.995, 0.996, 0.996, 0.996,
+    0.996, 0.997, 0.997, 0.997, 0.997, 0.998, 0.998, 0.998,
+    0.998, 0.998, 0.998, 0.999, 0.999, 0.999, 0.999, 0.999,
+    0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 1.000,
+  };
+  const int dist_tab_num = sizeof(dist_tab)/sizeof(dist_tab[0]);
+  assert(x >= 0.0);
+  return linear_interpolate(x, dist_tab_num, inv_dist_tab_step, dist_tab);
+}
+
+static void model_rd_from_var_lapndz(int var, int n, int qstep,
+                                     int *rate, int64_t *dist) {
+  // This function models the rate and distortion for a Laplacian
+  // source with given variance when quantized with a uniform quantizer
+  // with given stepsize. The closed form expressions are in:
+  // Hang and Chen, "Source Model for transform video coder and its
+  // application - Part I: Fundamental Theory", IEEE Trans. Circ.
+  // Sys. for Video Tech., April 1997.
+  vp9_clear_system_state();
+  if (var == 0 || n == 0) {
+    *rate = 0;
+    *dist = 0;
+  } else {
+    double D, R;
+    double s2 = (double) var / n;
+    double x = qstep / sqrt(s2);
+    D = model_dist_norm(x);
+    R = model_rate_norm(x);
+    if (R < 0) {
+      R = 0;
+      D = var;
+    }
+    *rate = (n * R * 256 + 0.5);
+    *dist = (n * D * s2 + 0.5);
+  }
+  vp9_clear_system_state();
+}
+
+static void model_rd_for_sb(VP9_COMP *cpi, BLOCK_SIZE_TYPE bsize,
+                            MACROBLOCK *x, MACROBLOCKD *xd,
+                            int *out_rate_sum, int64_t *out_dist_sum) {
+  // Note our transform coeffs are 8 times an orthogonal transform.
+  // Hence quantizer step is also 8 times. To get effective quantizer
+  // we need to divide by 8 before sending to modeling function.
+  int i, rate_sum = 0, dist_sum = 0;
+
+  for (i = 0; i < MAX_MB_PLANE; ++i) {
+    struct macroblock_plane *const p = &x->plane[i];
+    struct macroblockd_plane *const pd = &xd->plane[i];
+
+    // TODO(dkovalev) the same code in get_plane_block_size
+    const int bw = plane_block_width(bsize, pd);
+    const int bh = plane_block_height(bsize, pd);
+    const enum BlockSize bs = get_block_size(bw, bh);
+    unsigned int sse;
+    int rate;
+    int64_t dist;
+    (void) cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride,
+                              pd->dst.buf, pd->dst.stride, &sse);
+    // sse works better than var, since there is no dc prediction used
+    model_rd_from_var_lapndz(sse, bw * bh, pd->dequant[1] >> 3, &rate, &dist);
+
+    rate_sum += rate;
+    dist_sum += dist;
+  }
+
+  *out_rate_sum = rate_sum;
+  *out_dist_sum = dist_sum << 4;
+}
+
+static void model_rd_for_sb_y_tx(VP9_COMP *cpi, BLOCK_SIZE_TYPE bsize,
+                                 TX_SIZE tx_size,
+                                 MACROBLOCK *x, MACROBLOCKD *xd,
+                                 int *out_rate_sum, int64_t *out_dist_sum,
+                                 int *out_skip) {
+  int t, j, k;
+  enum BlockSize bs;
+  struct macroblock_plane *const p = &x->plane[0];
+  struct macroblockd_plane *const pd = &xd->plane[0];
+  const int bw = plane_block_width(bsize, pd);
+  const int bh = plane_block_height(bsize, pd);
+  int rate_sum = 0;
+  int64_t dist_sum = 0;
+
+  if (tx_size == TX_4X4) {
+    bs = BLOCK_4X4;
+    t = 4;
+  } else if (tx_size == TX_8X8) {
+    bs = BLOCK_8X8;
+    t = 8;
+  } else if (tx_size == TX_16X16) {
+    bs = BLOCK_16X16;
+    t = 16;
+  } else if (tx_size == TX_32X32) {
+    bs = BLOCK_32X32;
+    t = 32;
+  } else {
+    assert(0);
+  }
+  assert(bs <= get_block_size(bw, bh));
+  *out_skip = 1;
+  for (j = 0; j < bh; j+=t) {
+    for (k = 0; k < bw; k+=t) {
+      int rate;
+      int64_t dist;
+      unsigned int sse;
+      (void) cpi->fn_ptr[bs].vf(p->src.buf + j * p->src.stride + k,
+                                p->src.stride,
+                                pd->dst.buf + j * pd->dst.stride + k,
+                                pd->dst.stride, &sse);
+      // sse works better than var, since there is no dc prediction used
+      model_rd_from_var_lapndz(sse, t * t, pd->dequant[1] >> 3,
+                               &rate, &dist);
+      rate_sum += rate;
+      dist_sum += dist;
+      *out_skip &= (rate < 1024);
+    }
+  }
+  *out_rate_sum = rate_sum;
+  *out_dist_sum = (dist_sum << 4);
+}
+
 int64_t vp9_block_error_c(int16_t *coeff, int16_t *dqcoeff,
                           intptr_t block_size, int64_t *ssz) {
   int i;
@@ -423,105 +659,6 @@
   return cost;
 }
 
-static void choose_txfm_size_from_rd(VP9_COMP *cpi, MACROBLOCK *x,
-                                     int (*r)[2], int *rate,
-                                     int64_t *d, int64_t *distortion,
-                                     int *s, int *skip,
-                                     int64_t txfm_cache[NB_TXFM_MODES],
-                                     TX_SIZE max_txfm_size) {
-  VP9_COMMON *const cm = &cpi->common;
-  MACROBLOCKD *const xd = &x->e_mbd;
-  MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
-  vp9_prob skip_prob = vp9_get_pred_prob(cm, xd, PRED_MBSKIP);
-  int64_t rd[TX_SIZE_MAX_SB][2];
-  int n, m;
-  int s0, s1;
-
-  const vp9_prob *tx_probs = vp9_get_pred_probs(cm, xd, PRED_TX_SIZE);
-
-  for (n = TX_4X4; n <= max_txfm_size; n++) {
-    r[n][1] = r[n][0];
-    for (m = 0; m <= n - (n == max_txfm_size); m++) {
-      if (m == n)
-        r[n][1] += vp9_cost_zero(tx_probs[m]);
-      else
-        r[n][1] += vp9_cost_one(tx_probs[m]);
-    }
-  }
-
-  assert(skip_prob > 0);
-  s0 = vp9_cost_bit(skip_prob, 0);
-  s1 = vp9_cost_bit(skip_prob, 1);
-
-  for (n = TX_4X4; n <= max_txfm_size; n++) {
-    if (s[n]) {
-      rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, d[n]);
-    } else {
-      rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]);
-      rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]);
-    }
-  }
-
-  if (max_txfm_size == TX_32X32 &&
-      (cm->txfm_mode == ALLOW_32X32 ||
-       (cm->txfm_mode == TX_MODE_SELECT &&
-        rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] &&
-        rd[TX_32X32][1] < rd[TX_4X4][1]))) {
-    mbmi->txfm_size = TX_32X32;
-  } else if (max_txfm_size >= TX_16X16 &&
-             (cm->txfm_mode == ALLOW_16X16 ||
-              cm->txfm_mode == ALLOW_32X32 ||
-              (cm->txfm_mode == TX_MODE_SELECT &&
-               rd[TX_16X16][1] < rd[TX_8X8][1] &&
-               rd[TX_16X16][1] < rd[TX_4X4][1]))) {
-    mbmi->txfm_size = TX_16X16;
-  } else if (cm->txfm_mode == ALLOW_8X8 ||
-             cm->txfm_mode == ALLOW_16X16 ||
-             cm->txfm_mode == ALLOW_32X32 ||
-           (cm->txfm_mode == TX_MODE_SELECT && rd[TX_8X8][1] < rd[TX_4X4][1])) {
-    mbmi->txfm_size = TX_8X8;
-  } else {
-    mbmi->txfm_size = TX_4X4;
-  }
-
-  *distortion = d[mbmi->txfm_size];
-  *rate       = r[mbmi->txfm_size][cm->txfm_mode == TX_MODE_SELECT];
-  *skip       = s[mbmi->txfm_size];
-
-  txfm_cache[ONLY_4X4] = rd[TX_4X4][0];
-  txfm_cache[ALLOW_8X8] = rd[TX_8X8][0];
-  txfm_cache[ALLOW_16X16] = rd[MIN(max_txfm_size, TX_16X16)][0];
-  txfm_cache[ALLOW_32X32] = rd[MIN(max_txfm_size, TX_32X32)][0];
-  if (max_txfm_size == TX_32X32 &&
-      rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] &&
-      rd[TX_32X32][1] < rd[TX_4X4][1])
-    txfm_cache[TX_MODE_SELECT] = rd[TX_32X32][1];
-  else if (max_txfm_size >= TX_16X16 &&
-           rd[TX_16X16][1] < rd[TX_8X8][1] && rd[TX_16X16][1] < rd[TX_4X4][1])
-    txfm_cache[TX_MODE_SELECT] = rd[TX_16X16][1];
-  else
-    txfm_cache[TX_MODE_SELECT] = rd[TX_4X4][1] < rd[TX_8X8][1] ?
-                                 rd[TX_4X4][1] : rd[TX_8X8][1];
-}
-
-static int64_t block_error_sbuv(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize,
-                                int shift, int64_t *sse) {
-  int64_t sum = 0, this_sse;
-  int plane;
-
-  *sse = 0;
-  for (plane = 1; plane < MAX_MB_PLANE; plane++) {
-    struct macroblockd_plane *p = &x->e_mbd.plane[plane];
-    const int bw = plane_block_width(bsize, p);
-    const int bh = plane_block_height(bsize, p);
-    sum += vp9_block_error(x->plane[plane].coeff, x->e_mbd.plane[plane].dqcoeff,
-                           bw * bh, &this_sse);
-    *sse += this_sse;
-  }
-  *sse >>= shift;
-  return sum >> shift;
-}
-
 struct rdcost_block_args {
   VP9_COMMON *cm;
   MACROBLOCK *x;
@@ -568,6 +705,7 @@
                             args->bw * args->bh);
 }
 
+
 static int rdcost_plane(VP9_COMMON * const cm, MACROBLOCK *x, int plane,
                         BLOCK_SIZE_TYPE bsize, TX_SIZE tx_size) {
   MACROBLOCKD * const xd = &x->e_mbd;
@@ -575,7 +713,7 @@
   const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y;
   const int bw = 1 << bwl, bh = 1 << bhl;
   struct rdcost_block_args args = { cm, x, { 0 }, { 0 }, tx_size, bw, bh,
-                                    0, 0, 0, 0, 0 };
+    0, 0, 0, 0, 0 };
 
   vpx_memcpy(&args.t_above, xd->plane[plane].above_context,
              sizeof(ENTROPY_CONTEXT) * bw);
@@ -583,7 +721,6 @@
              sizeof(ENTROPY_CONTEXT) * bh);
 
   foreach_transformed_block_in_plane(xd, bsize, plane, rate_block, &args);
-
   return args.rate;
 }
 
@@ -597,6 +734,49 @@
   return cost;
 }
 
+static int block_error(int16_t *coeff, int16_t *dqcoeff,
+                       int block_size, int shift) {
+  int i;
+  int64_t error = 0;
+
+  for (i = 0; i < block_size; i++) {
+    int this_diff = coeff[i] - dqcoeff[i];
+    error += (unsigned)this_diff * this_diff;
+  }
+  error >>= shift;
+
+  return error > INT_MAX ? INT_MAX : (int)error;
+}
+
+static int block_error_sby(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize,
+                           int shift, int64_t *sse) {
+  struct macroblockd_plane *p = &x->e_mbd.plane[0];
+  const int bw = plane_block_width(bsize, p);
+  const int bh = plane_block_height(bsize, p);
+  int64_t e = vp9_block_error(x->plane[0].coeff, x->e_mbd.plane[0].dqcoeff,
+                              bw * bh, sse) >> shift;
+  *sse >>= shift;
+  return e;
+}
+
+static int64_t block_error_sbuv(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize,
+                                int shift, int64_t *sse) {
+  int64_t sum = 0, this_sse;
+  int plane;
+
+  *sse = 0;
+  for (plane = 1; plane < MAX_MB_PLANE; plane++) {
+    struct macroblockd_plane *p = &x->e_mbd.plane[plane];
+    const int bw = plane_block_width(bsize, p);
+    const int bh = plane_block_height(bsize, p);
+    sum += vp9_block_error(x->plane[plane].coeff, x->e_mbd.plane[plane].dqcoeff,
+                           bw * bh, &this_sse);
+    *sse += this_sse;
+  }
+  *sse >>= shift;
+  return sum >> shift;
+}
+
 static void block_yrd_txfm(int plane, int block, BLOCK_SIZE_TYPE bsize,
                            int ss_txfrm_size, void *arg) {
   struct rdcost_block_args *args = arg;
@@ -635,6 +815,234 @@
   *skippable  = vp9_sby_is_skippable(xd, bsize);
 }
 
+static void choose_largest_txfm_size(VP9_COMP *cpi, MACROBLOCK *x,
+                                     int *rate, int64_t *distortion,
+                                     int *skip, int64_t *sse,
+                                     BLOCK_SIZE_TYPE bs) {
+  const TX_SIZE max_txfm_size = TX_32X32
+      - (bs < BLOCK_SIZE_SB32X32) - (bs < BLOCK_SIZE_MB16X16);
+  VP9_COMMON *const cm = &cpi->common;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
+  if (max_txfm_size == TX_32X32 &&
+      (cm->txfm_mode == ALLOW_32X32 ||
+       cm->txfm_mode == TX_MODE_SELECT)) {
+    mbmi->txfm_size = TX_32X32;
+  } else if (max_txfm_size >= TX_16X16 &&
+             (cm->txfm_mode == ALLOW_16X16 ||
+              cm->txfm_mode == ALLOW_32X32 ||
+              cm->txfm_mode == TX_MODE_SELECT)) {
+    mbmi->txfm_size = TX_16X16;
+  } else if (cm->txfm_mode != ONLY_4X4) {
+    mbmi->txfm_size = TX_8X8;
+  } else {
+    mbmi->txfm_size = TX_4X4;
+  }
+  super_block_yrd_for_txfm(cm, x, rate, distortion, skip,
+                           &sse[mbmi->txfm_size], bs,
+                           mbmi->txfm_size);
+  cpi->txfm_stepdown_count[0]++;
+}
+
+static void choose_txfm_size_from_rd(VP9_COMP *cpi, MACROBLOCK *x,
+                                     int (*r)[2], int *rate,
+                                     int64_t *d, int64_t *distortion,
+                                     int *s, int *skip,
+                                     int64_t txfm_cache[NB_TXFM_MODES],
+                                     BLOCK_SIZE_TYPE bs) {
+  const TX_SIZE max_txfm_size = TX_32X32
+      - (bs < BLOCK_SIZE_SB32X32) - (bs < BLOCK_SIZE_MB16X16);
+  VP9_COMMON *const cm = &cpi->common;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
+  vp9_prob skip_prob = vp9_get_pred_prob(cm, xd, PRED_MBSKIP);
+  int64_t rd[TX_SIZE_MAX_SB][2];
+  int n, m;
+  int s0, s1;
+
+  const vp9_prob *tx_probs = vp9_get_pred_probs(cm, xd, PRED_TX_SIZE);
+
+  for (n = TX_4X4; n <= max_txfm_size; n++) {
+    r[n][1] = r[n][0];
+    for (m = 0; m <= n - (n == max_txfm_size); m++) {
+      if (m == n)
+        r[n][1] += vp9_cost_zero(tx_probs[m]);
+      else
+        r[n][1] += vp9_cost_one(tx_probs[m]);
+    }
+  }
+
+  assert(skip_prob > 0);
+  s0 = vp9_cost_bit(skip_prob, 0);
+  s1 = vp9_cost_bit(skip_prob, 1);
+
+  for (n = TX_4X4; n <= max_txfm_size; n++) {
+    if (s[n]) {
+      rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, d[n]);
+    } else {
+      rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]);
+      rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]);
+    }
+  }
+
+  if (max_txfm_size == TX_32X32 &&
+      (cm->txfm_mode == ALLOW_32X32 ||
+       (cm->txfm_mode == TX_MODE_SELECT &&
+        rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] &&
+        rd[TX_32X32][1] < rd[TX_4X4][1]))) {
+    mbmi->txfm_size = TX_32X32;
+  } else if (max_txfm_size >= TX_16X16 &&
+             (cm->txfm_mode == ALLOW_16X16 ||
+              cm->txfm_mode == ALLOW_32X32 ||
+              (cm->txfm_mode == TX_MODE_SELECT &&
+               rd[TX_16X16][1] < rd[TX_8X8][1] &&
+               rd[TX_16X16][1] < rd[TX_4X4][1]))) {
+    mbmi->txfm_size = TX_16X16;
+  } else if (cm->txfm_mode == ALLOW_8X8 ||
+             cm->txfm_mode == ALLOW_16X16 ||
+             cm->txfm_mode == ALLOW_32X32 ||
+           (cm->txfm_mode == TX_MODE_SELECT && rd[TX_8X8][1] < rd[TX_4X4][1])) {
+    mbmi->txfm_size = TX_8X8;
+  } else {
+    mbmi->txfm_size = TX_4X4;
+  }
+
+  *distortion = d[mbmi->txfm_size];
+  *rate       = r[mbmi->txfm_size][cm->txfm_mode == TX_MODE_SELECT];
+  *skip       = s[mbmi->txfm_size];
+
+  txfm_cache[ONLY_4X4] = rd[TX_4X4][0];
+  txfm_cache[ALLOW_8X8] = rd[TX_8X8][0];
+  txfm_cache[ALLOW_16X16] = rd[MIN(max_txfm_size, TX_16X16)][0];
+  txfm_cache[ALLOW_32X32] = rd[MIN(max_txfm_size, TX_32X32)][0];
+  if (max_txfm_size == TX_32X32 &&
+      rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] &&
+      rd[TX_32X32][1] < rd[TX_4X4][1])
+    txfm_cache[TX_MODE_SELECT] = rd[TX_32X32][1];
+  else if (max_txfm_size >= TX_16X16 &&
+           rd[TX_16X16][1] < rd[TX_8X8][1] && rd[TX_16X16][1] < rd[TX_4X4][1])
+    txfm_cache[TX_MODE_SELECT] = rd[TX_16X16][1];
+  else
+    txfm_cache[TX_MODE_SELECT] = rd[TX_4X4][1] < rd[TX_8X8][1] ?
+                                 rd[TX_4X4][1] : rd[TX_8X8][1];
+
+  if (max_txfm_size == TX_32X32 &&
+      rd[TX_32X32][1] < rd[TX_16X16][1] &&
+      rd[TX_32X32][1] < rd[TX_8X8][1] &&
+      rd[TX_32X32][1] < rd[TX_4X4][1]) {
+    cpi->txfm_stepdown_count[0]++;
+  } else if (max_txfm_size >= TX_16X16 &&
+             rd[TX_16X16][1] < rd[TX_8X8][1] &&
+             rd[TX_16X16][1] < rd[TX_4X4][1]) {
+    cpi->txfm_stepdown_count[max_txfm_size - TX_16X16]++;
+  } else if (rd[TX_8X8][1] < rd[TX_4X4][1]) {
+    cpi->txfm_stepdown_count[max_txfm_size - TX_8X8]++;
+  } else {
+    cpi->txfm_stepdown_count[max_txfm_size - TX_4X4]++;
+  }
+}
+
+static void choose_txfm_size_from_modelrd(VP9_COMP *cpi, MACROBLOCK *x,
+                                          int (*r)[2], int *rate,
+                                          int64_t *d, int64_t *distortion,
+                                          int *s, int *skip, int64_t *sse,
+                                          BLOCK_SIZE_TYPE bs,
+                                          int *model_used) {
+  const TX_SIZE max_txfm_size = TX_32X32
+      - (bs < BLOCK_SIZE_SB32X32) - (bs < BLOCK_SIZE_MB16X16);
+  VP9_COMMON *const cm = &cpi->common;
+  MACROBLOCKD *const xd = &x->e_mbd;
+  MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
+  vp9_prob skip_prob = vp9_get_pred_prob(cm, xd, PRED_MBSKIP);
+  int64_t rd[TX_SIZE_MAX_SB][2];
+  int n, m;
+  int s0, s1;
+  double scale_rd[TX_SIZE_MAX_SB] = {1.73, 1.44, 1.20, 1.00};
+  // double scale_r[TX_SIZE_MAX_SB] = {2.82, 2.00, 1.41, 1.00};
+
+  const vp9_prob *tx_probs = vp9_get_pred_probs(cm, xd, PRED_TX_SIZE);
+
+  // for (n = TX_4X4; n <= max_txfm_size; n++)
+  //   r[n][0] = (r[n][0] * scale_r[n]);
+
+  for (n = TX_4X4; n <= max_txfm_size; n++) {
+    r[n][1] = r[n][0];
+    for (m = 0; m <= n - (n == max_txfm_size); m++) {
+      if (m == n)
+        r[n][1] += vp9_cost_zero(tx_probs[m]);
+      else
+        r[n][1] += vp9_cost_one(tx_probs[m]);
+    }
+  }
+
+  assert(skip_prob > 0);
+  s0 = vp9_cost_bit(skip_prob, 0);
+  s1 = vp9_cost_bit(skip_prob, 1);
+
+  for (n = TX_4X4; n <= max_txfm_size; n++) {
+    if (s[n]) {
+      rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, d[n]);
+    } else {
+      rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]);
+      rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]);
+    }
+  }
+  for (n = TX_4X4; n <= max_txfm_size; n++) {
+    rd[n][0] = (scale_rd[n] * rd[n][0]);
+    rd[n][1] = (scale_rd[n] * rd[n][1]);
+  }
+
+  if (max_txfm_size == TX_32X32 &&
+      (cm->txfm_mode == ALLOW_32X32 ||
+       (cm->txfm_mode == TX_MODE_SELECT &&
+        rd[TX_32X32][1] <= rd[TX_16X16][1] &&
+        rd[TX_32X32][1] <= rd[TX_8X8][1] &&
+        rd[TX_32X32][1] <= rd[TX_4X4][1]))) {
+    mbmi->txfm_size = TX_32X32;
+  } else if (max_txfm_size >= TX_16X16 &&
+             (cm->txfm_mode == ALLOW_16X16 ||
+              cm->txfm_mode == ALLOW_32X32 ||
+              (cm->txfm_mode == TX_MODE_SELECT &&
+               rd[TX_16X16][1] <= rd[TX_8X8][1] &&
+               rd[TX_16X16][1] <= rd[TX_4X4][1]))) {
+    mbmi->txfm_size = TX_16X16;
+  } else if (cm->txfm_mode == ALLOW_8X8 ||
+             cm->txfm_mode == ALLOW_16X16 ||
+             cm->txfm_mode == ALLOW_32X32 ||
+           (cm->txfm_mode == TX_MODE_SELECT &&
+            rd[TX_8X8][1] <= rd[TX_4X4][1])) {
+    mbmi->txfm_size = TX_8X8;
+  } else {
+    mbmi->txfm_size = TX_4X4;
+  }
+
+  if (model_used[mbmi->txfm_size]) {
+    // Actually encode using the chosen mode if a model was used, but do not
+    // update the r, d costs
+    super_block_yrd_for_txfm(cm, x, rate, distortion, skip,
+                             &sse[mbmi->txfm_size], bs, mbmi->txfm_size);
+  } else {
+    *distortion = d[mbmi->txfm_size];
+    *rate       = r[mbmi->txfm_size][cm->txfm_mode == TX_MODE_SELECT];
+    *skip       = s[mbmi->txfm_size];
+  }
+
+  if (max_txfm_size == TX_32X32 &&
+      rd[TX_32X32][1] <= rd[TX_16X16][1] &&
+      rd[TX_32X32][1] <= rd[TX_8X8][1] &&
+      rd[TX_32X32][1] <= rd[TX_4X4][1]) {
+    cpi->txfm_stepdown_count[0]++;
+  } else if (max_txfm_size >= TX_16X16 &&
+             rd[TX_16X16][1] <= rd[TX_8X8][1] &&
+             rd[TX_16X16][1] <= rd[TX_4X4][1]) {
+    cpi->txfm_stepdown_count[max_txfm_size - TX_16X16]++;
+  } else if (rd[TX_8X8][1] <= rd[TX_4X4][1]) {
+    cpi->txfm_stepdown_count[max_txfm_size - TX_8X8]++;
+  } else {
+    cpi->txfm_stepdown_count[max_txfm_size - TX_4X4]++;
+  }
+}
+
 static void super_block_yrd(VP9_COMP *cpi,
                             MACROBLOCK *x, int *rate, int64_t *distortion,
                             int *skip, int64_t *psse, BLOCK_SIZE_TYPE bs,
@@ -649,38 +1057,67 @@
   if (mbmi->ref_frame[0] > INTRA_FRAME)
     vp9_subtract_sby(x, bs);
 
-  if (cpi->sf.use_largest_txform) {
-    if (bs >= BLOCK_SIZE_SB32X32) {
-      mbmi->txfm_size = TX_32X32;
-    } else if (bs >= BLOCK_SIZE_MB16X16) {
-      mbmi->txfm_size = TX_16X16;
-    } else if (bs >= BLOCK_SIZE_SB8X8) {
-      mbmi->txfm_size = TX_8X8;
-    } else {
-      mbmi->txfm_size = TX_4X4;
-    }
+  if (cpi->sf.tx_size_search_method == USE_LARGESTALL ||
+      (cpi->sf.tx_size_search_method != USE_FULL_RD &&
+       mbmi->ref_frame[0] == INTRA_FRAME)) {
     vpx_memset(txfm_cache, 0, NB_TXFM_MODES * sizeof(int64_t));
-    super_block_yrd_for_txfm(cm, x, rate, distortion, skip, &sse[0], bs,
-                             mbmi->txfm_size);
+    choose_largest_txfm_size(cpi, x, rate, distortion, skip, sse, bs);
     if (psse)
-      *psse = sse[0];
+      *psse = sse[mbmi->txfm_size];
     return;
   }
-  if (bs >= BLOCK_SIZE_SB32X32)
-    super_block_yrd_for_txfm(cm, x, &r[TX_32X32][0], &d[TX_32X32], &s[TX_32X32],
-                             &sse[TX_32X32], bs, TX_32X32);
-  if (bs >= BLOCK_SIZE_MB16X16)
-    super_block_yrd_for_txfm(cm, x, &r[TX_16X16][0], &d[TX_16X16], &s[TX_16X16],
-                             &sse[TX_16X16], bs, TX_16X16);
-  super_block_yrd_for_txfm(cm, x, &r[TX_8X8][0], &d[TX_8X8], &s[TX_8X8],
-                           &sse[TX_8X8], bs, TX_8X8);
-  super_block_yrd_for_txfm(cm, x, &r[TX_4X4][0], &d[TX_4X4], &s[TX_4X4],
-                           &sse[TX_4X4], bs, TX_4X4);
 
-  choose_txfm_size_from_rd(cpi, x, r, rate, d, distortion, s,
-                           skip, txfm_cache,
-                           TX_32X32 - (bs < BLOCK_SIZE_SB32X32)
-                           - (bs < BLOCK_SIZE_MB16X16));
+  if (cpi->sf.tx_size_search_method == USE_LARGESTINTRA_MODELINTER &&
+      mbmi->ref_frame[0] > INTRA_FRAME) {
+    int model_used[TX_SIZE_MAX_SB] = {1, 1, 1, 1};
+    if (bs >= BLOCK_SIZE_SB32X32) {
+      if (model_used[TX_32X32]) {
+        model_rd_for_sb_y_tx(cpi, bs, TX_32X32, x, xd,
+                             &r[TX_32X32][0], &d[TX_32X32], &s[TX_32X32]);
+      } else {
+        super_block_yrd_for_txfm(cm, x, &r[TX_32X32][0], &d[TX_32X32],
+                                 &s[TX_32X32], &sse[TX_32X32], bs, TX_32X32);
+      }
+    }
+    if (bs >= BLOCK_SIZE_MB16X16) {
+      if (model_used[TX_16X16]) {
+        model_rd_for_sb_y_tx(cpi, bs, TX_16X16, x, xd,
+                             &r[TX_16X16][0], &d[TX_16X16], &s[TX_16X16]);
+      } else {
+        super_block_yrd_for_txfm(cm, x, &r[TX_16X16][0], &d[TX_16X16],
+                                 &s[TX_16X16], &sse[TX_16X16], bs, TX_16X16);
+      }
+    }
+    if (model_used[TX_8X8]) {
+      model_rd_for_sb_y_tx(cpi, bs, TX_8X8, x, xd,
+                           &r[TX_8X8][0], &d[TX_8X8], &s[TX_8X8]);
+    } else {
+      super_block_yrd_for_txfm(cm, x, &r[TX_8X8][0], &d[TX_8X8], &s[TX_8X8],
+                               &sse[TX_8X8], bs, TX_8X8);
+    }
+    if (model_used[TX_4X4]) {
+      model_rd_for_sb_y_tx(cpi, bs, TX_4X4, x, xd,
+                           &r[TX_4X4][0], &d[TX_4X4], &s[TX_4X4]);
+    } else {
+      super_block_yrd_for_txfm(cm, x, &r[TX_4X4][0], &d[TX_4X4], &s[TX_4X4],
+                               &sse[TX_4X4], bs, TX_4X4);
+    }
+    choose_txfm_size_from_modelrd(cpi, x, r, rate, d, distortion, s,
+                                  skip, sse, bs, model_used);
+  } else {
+    if (bs >= BLOCK_SIZE_SB32X32)
+      super_block_yrd_for_txfm(cm, x, &r[TX_32X32][0], &d[TX_32X32],
+                               &s[TX_32X32], &sse[TX_32X32], bs, TX_32X32);
+    if (bs >= BLOCK_SIZE_MB16X16)
+      super_block_yrd_for_txfm(cm, x, &r[TX_16X16][0], &d[TX_16X16],
+                               &s[TX_16X16], &sse[TX_16X16], bs, TX_16X16);
+    super_block_yrd_for_txfm(cm, x, &r[TX_8X8][0], &d[TX_8X8], &s[TX_8X8],
+                             &sse[TX_8X8], bs, TX_8X8);
+    super_block_yrd_for_txfm(cm, x, &r[TX_4X4][0], &d[TX_4X4], &s[TX_4X4],
+                             &sse[TX_4X4], bs, TX_4X4);
+    choose_txfm_size_from_rd(cpi, x, r, rate, d, distortion, s,
+                             skip, txfm_cache, bs);
+  }
   if (psse)
     *psse = sse[mbmi->txfm_size];
 }
@@ -909,8 +1346,10 @@
     return best_rd;
   }
 
-  for (i = 0; i < NB_TXFM_MODES; i++)
-    txfm_cache[i] = INT64_MAX;
+  if (cpi->sf.tx_size_search_method == USE_FULL_RD) {
+    for (i = 0; i < NB_TXFM_MODES; i++)
+      txfm_cache[i] = INT64_MAX;
+  }
 
   /* Y Search for 32x32 intra prediction mode */
   for (mode = DC_PRED; mode <= TM_PRED; mode++) {
@@ -943,11 +1382,13 @@
       *skippable      = s;
     }
 
-    for (i = 0; i < NB_TXFM_MODES; i++) {
-      int64_t adj_rd = this_rd + local_txfm_cache[i] -
-                       local_txfm_cache[cpi->common.txfm_mode];
-      if (adj_rd < txfm_cache[i]) {
-        txfm_cache[i] = adj_rd;
+    if (cpi->sf.tx_size_search_method == USE_FULL_RD) {
+      for (i = 0; i < NB_TXFM_MODES; i++) {
+        int64_t adj_rd = this_rd + local_txfm_cache[i] -
+            local_txfm_cache[cpi->common.txfm_mode];
+        if (adj_rd < txfm_cache[i]) {
+          txfm_cache[i] = adj_rd;
+        }
       }
     }
   }
@@ -1246,50 +1687,6 @@
   return r;
 }
 
-static enum BlockSize get_block_size(int bw, int bh) {
-  if (bw == 4 && bh == 4)
-    return BLOCK_4X4;
-
-  if (bw == 4 && bh == 8)
-    return BLOCK_4X8;
-
-  if (bw == 8 && bh == 4)
-    return BLOCK_8X4;
-
-  if (bw == 8 && bh == 8)
-    return BLOCK_8X8;
-
-  if (bw == 8 && bh == 16)
-    return BLOCK_8X16;
-
-  if (bw == 16 && bh == 8)
-    return BLOCK_16X8;
-
-  if (bw == 16 && bh == 16)
-    return BLOCK_16X16;
-
-  if (bw == 32 && bh == 32)
-    return BLOCK_32X32;
-
-  if (bw == 32 && bh == 16)
-    return BLOCK_32X16;
-
-  if (bw == 16 && bh == 32)
-    return BLOCK_16X32;
-
-  if (bw == 64 && bh == 32)
-    return BLOCK_64X32;
-
-  if (bw == 32 && bh == 64)
-    return BLOCK_32X64;
-
-  if (bw == 64 && bh == 64)
-    return BLOCK_64X64;
-
-  assert(0);
-  return -1;
-}
-
 static INLINE void mi_buf_shift(MACROBLOCK *x, int i) {
   MB_MODE_INFO *mbmi = &x->e_mbd.mode_info_context->mbmi;
   x->plane[0].src.buf =
@@ -1837,195 +2234,6 @@
   return scaled_ref_frame;
 }
 
-static double linear_interpolate(double x, int ntab, double step,
-                                 const double *tab) {
-  double y = x / step;
-  int d = (int) y;
-  double a = y - d;
-  if (d >= ntab - 1)
-    return tab[ntab - 1];
-  else
-    return tab[d] * (1 - a) + tab[d + 1] * a;
-}
-
-static double model_rate_norm(double x) {
-  // Normalized rate
-  // This function models the rate for a Laplacian source
-  // source with given variance when quantized with a uniform quantizer
-  // with given stepsize. The closed form expressions are in:
-  // Hang and Chen, "Source Model for transform video coder and its
-  // application - Part I: Fundamental Theory", IEEE Trans. Circ.
-  // Sys. for Video Tech., April 1997.
-  static const double rate_tab_step = 0.125;
-  static const double rate_tab[] = {
-    256.0000, 4.944453, 3.949276, 3.371593,
-    2.965771, 2.654550, 2.403348, 2.193612,
-    2.014208, 1.857921, 1.719813, 1.596364,
-    1.484979, 1.383702, 1.291025, 1.205767,
-    1.126990, 1.053937, 0.985991, 0.922644,
-    0.863472, 0.808114, 0.756265, 0.707661,
-    0.662070, 0.619287, 0.579129, 0.541431,
-    0.506043, 0.472828, 0.441656, 0.412411,
-    0.384980, 0.359260, 0.335152, 0.312563,
-    0.291407, 0.271600, 0.253064, 0.235723,
-    0.219508, 0.204351, 0.190189, 0.176961,
-    0.164611, 0.153083, 0.142329, 0.132298,
-    0.122945, 0.114228, 0.106106, 0.098541,
-    0.091496, 0.084937, 0.078833, 0.073154,
-    0.067872, 0.062959, 0.058392, 0.054147,
-    0.050202, 0.046537, 0.043133, 0.039971,
-    0.037036, 0.034312, 0.031783, 0.029436,
-    0.027259, 0.025240, 0.023367, 0.021631,
-    0.020021, 0.018528, 0.017145, 0.015863,
-    0.014676, 0.013575, 0.012556, 0.011612,
-    0.010738, 0.009929, 0.009180, 0.008487,
-    0.007845, 0.007251, 0.006701, 0.006193,
-    0.005722, 0.005287, 0.004884, 0.004512,
-    0.004168, 0.003850, 0.003556, 0.003284,
-    0.003032, 0.002800, 0.002585, 0.002386,
-    0.002203, 0.002034, 0.001877, 0.001732,
-    0.001599, 0.001476, 0.001362, 0.001256,
-    0.001159, 0.001069, 0.000987, 0.000910,
-    0.000840, 0.000774, 0.000714, 0.000659,
-    0.000608, 0.000560, 0.000517, 0.000476,
-    0.000439, 0.000405, 0.000373, 0.000344,
-    0.000317, 0.000292, 0.000270, 0.000248,
-    0.000229, 0.000211, 0.000195, 0.000179,
-    0.000165, 0.000152, 0.000140, 0.000129,
-    0.000119, 0.000110, 0.000101, 0.000093,
-    0.000086, 0.000079, 0.000073, 0.000067,
-    0.000062, 0.000057, 0.000052, 0.000048,
-    0.000044, 0.000041, 0.000038, 0.000035,
-    0.000032, 0.000029, 0.000027, 0.000025,
-    0.000023, 0.000021, 0.000019, 0.000018,
-    0.000016, 0.000015, 0.000014, 0.000013,
-    0.000012, 0.000011, 0.000010, 0.000009,
-    0.000008, 0.000008, 0.000007, 0.000007,
-    0.000006, 0.000006, 0.000005, 0.000005,
-    0.000004, 0.000004, 0.000004, 0.000003,
-    0.000003, 0.000003, 0.000003, 0.000002,
-    0.000002, 0.000002, 0.000002, 0.000002,
-    0.000002, 0.000001, 0.000001, 0.000001,
-    0.000001, 0.000001, 0.000001, 0.000001,
-    0.000001, 0.000001, 0.000001, 0.000001,
-    0.000001, 0.000001, 0.000000, 0.000000,
-  };
-  const int rate_tab_num = sizeof(rate_tab)/sizeof(rate_tab[0]);
-  assert(x >= 0.0);
-  return linear_interpolate(x, rate_tab_num, rate_tab_step, rate_tab);
-}
-
-static double model_dist_norm(double x) {
-  // Normalized distortion
-  // This function models the normalized distortion for a Laplacian source
-  // source with given variance when quantized with a uniform quantizer
-  // with given stepsize. The closed form expression is:
-  // Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2))
-  // where x = qpstep / sqrt(variance)
-  // Note the actual distortion is Dn * variance.
-  static const double dist_tab_step = 0.25;
-  static const double dist_tab[] = {
-    0.000000, 0.005189, 0.020533, 0.045381,
-    0.078716, 0.119246, 0.165508, 0.215979,
-    0.269166, 0.323686, 0.378318, 0.432034,
-    0.484006, 0.533607, 0.580389, 0.624063,
-    0.664475, 0.701581, 0.735418, 0.766092,
-    0.793751, 0.818575, 0.840761, 0.860515,
-    0.878045, 0.893554, 0.907238, 0.919281,
-    0.929857, 0.939124, 0.947229, 0.954306,
-    0.960475, 0.965845, 0.970512, 0.974563,
-    0.978076, 0.981118, 0.983750, 0.986024,
-    0.987989, 0.989683, 0.991144, 0.992402,
-    0.993485, 0.994417, 0.995218, 0.995905,
-    0.996496, 0.997002, 0.997437, 0.997809,
-    0.998128, 0.998401, 0.998635, 0.998835,
-    0.999006, 0.999152, 0.999277, 0.999384,
-    0.999475, 0.999553, 0.999619, 0.999676,
-    0.999724, 0.999765, 0.999800, 0.999830,
-    0.999855, 0.999877, 0.999895, 0.999911,
-    0.999924, 0.999936, 0.999945, 0.999954,
-    0.999961, 0.999967, 0.999972, 0.999976,
-    0.999980, 0.999983, 0.999985, 0.999988,
-    0.999989, 0.999991, 0.999992, 0.999994,
-    0.999995, 0.999995, 0.999996, 0.999997,
-    0.999997, 0.999998, 0.999998, 0.999998,
-    0.999999, 0.999999, 0.999999, 0.999999,
-    0.999999, 0.999999, 0.999999, 1.000000,
-  };
-  const int dist_tab_num = sizeof(dist_tab)/sizeof(dist_tab[0]);
-  assert(x >= 0.0);
-  return linear_interpolate(x, dist_tab_num, dist_tab_step, dist_tab);
-}
-
-static void model_rd_from_var_lapndz(int var, int n, int qstep,
-                                     int *rate, int64_t *dist) {
-  // This function models the rate and distortion for a Laplacian
-  // source with given variance when quantized with a uniform quantizer
-  // with given stepsize. The closed form expression is:
-  // Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)],
-  // where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance)
-  vp9_clear_system_state();
-  if (var == 0 || n == 0) {
-    *rate = 0;
-    *dist = 0;
-  } else {
-    double D, R;
-    double s2 = (double) var / n;
-    double x = qstep / sqrt(s2);
-    // TODO(debargha): Make the modeling functions take (qstep^2 / s2)
-    // as argument rather than qstep / sqrt(s2) to obviate the need for
-    // the sqrt() operation.
-    D = model_dist_norm(x);
-    R = model_rate_norm(x);
-    if (R < 0) {
-      R = 0;
-      D = var;
-    }
-    *rate = (n * R * 256 + 0.5);
-    *dist = (n * D * s2 + 0.5);
-  }
-  vp9_clear_system_state();
-}
-
-static enum BlockSize get_plane_block_size(BLOCK_SIZE_TYPE bsize,
-                                           struct macroblockd_plane *pd) {
-  return get_block_size(plane_block_width(bsize, pd),
-                        plane_block_height(bsize, pd));
-}
-
-static void model_rd_for_sb(VP9_COMP *cpi, BLOCK_SIZE_TYPE bsize,
-                            MACROBLOCK *x, MACROBLOCKD *xd,
-                            int *out_rate_sum, int64_t *out_dist_sum) {
-  // Note our transform coeffs are 8 times an orthogonal transform.
-  // Hence quantizer step is also 8 times. To get effective quantizer
-  // we need to divide by 8 before sending to modeling function.
-  unsigned int sse;
-  int i, rate_sum = 0;
-  int64_t dist_sum = 0;
-
-  for (i = 0; i < MAX_MB_PLANE; ++i) {
-    struct macroblock_plane *const p = &x->plane[i];
-    struct macroblockd_plane *const pd = &xd->plane[i];
-
-    // TODO(dkovalev) the same code in get_plane_block_size
-    const int bw = plane_block_width(bsize, pd);
-    const int bh = plane_block_height(bsize, pd);
-    const enum BlockSize bs = get_block_size(bw, bh);
-    int rate;
-    int64_t dist;
-    cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride,
-                       pd->dst.buf, pd->dst.stride, &sse);
-
-    model_rd_from_var_lapndz(sse, bw * bh, pd->dequant[1] >> 3, &rate, &dist);
-
-    rate_sum += rate;
-    dist_sum += dist;
-  }
-
-  *out_rate_sum = rate_sum;
-  *out_dist_sum = dist_sum << 4;
-}
-
 static INLINE int get_switchable_rate(VP9_COMMON *cm, MACROBLOCK *x) {
   MACROBLOCKD *xd = &x->e_mbd;
   MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
@@ -2564,7 +2772,6 @@
   int rate4x4_y, rate4x4_y_tokenonly;
   int64_t dist4x4_y;
   int64_t err4x4 = INT64_MAX;
-  int i;
 
   vpx_memset(&txfm_cache,0,sizeof(txfm_cache));
   ctx->skip = 0;
@@ -2597,11 +2804,14 @@
     vpx_memset(ctx->txfm_rd_diff, 0, sizeof(ctx->txfm_rd_diff));
     xd->mode_info_context->mbmi.txfm_size = TX_4X4;
   } else {
+    int i;
     *returnrate = rate_y + rate_uv +
         vp9_cost_bit(vp9_get_pred_prob(cm, xd, PRED_MBSKIP), 0);
     *returndist = dist_y + (dist_uv >> 2);
-    for (i = 0; i < NB_TXFM_MODES; i++) {
-      ctx->txfm_rd_diff[i] = txfm_cache[i] - txfm_cache[cm->txfm_mode];
+    if (cpi->sf.tx_size_search_method == USE_FULL_RD) {
+      for (i = 0; i < NB_TXFM_MODES; i++) {
+        ctx->txfm_rd_diff[i] = txfm_cache[i] - txfm_cache[cm->txfm_mode];
+      }
     }
     xd->mode_info_context->mbmi.txfm_size = txfm_size;
     xd->mode_info_context->mbmi.mode = mode;