ref: 7947a33d727af01020a12600c577f10b1c90cecb
parent: 9f2a1ae23e03e2a327e797286f4d02cbedb8e90d
author: Deb Mukherjee <debargha@google.com>
date: Wed Jun 19 12:23:21 EDT 2013
Improving model rd with variance and quant step Improves the rd modeling function and implements them using interpolation from a table which is a little faster. Also uses sse as input to the modeling function rather than var - since there is no dc prediction used and as a result the sse works a little better. derfraw300: +0.05% Speedup: ~1% Change-Id: I151353c6451e0e8fe3ae18ab9842f8f67e5151ff
--- a/vp9/encoder/vp9_rdopt.c
+++ b/vp9/encoder/vp9_rdopt.c
@@ -1800,18 +1800,133 @@
return scaled_ref_frame;
}
-static void model_rd_from_var_lapndz(int var, int n, int qstep,
- int *rate, int *dist) {
- // This function models the rate and distortion for a Laplacian
+static double linear_interpolate(double x, int ntab, double step,
+ const double *tab) {
+ double y = x / step;
+ int d = (int) y;
+ double a = y - d;
+ if (d >= ntab - 1)
+ return tab[ntab - 1];
+ else
+ return tab[d] * (1 - a) + tab[d + 1] * a;
+}
+
+static double model_rate_norm(double x) {
+ // Normalized rate
+ // This function models the rate for a Laplacian source
// source with given variance when quantized with a uniform quantizer
// with given stepsize. The closed form expressions are in:
// Hang and Chen, "Source Model for transform video coder and its
// application - Part I: Fundamental Theory", IEEE Trans. Circ.
// Sys. for Video Tech., April 1997.
- // The function is implemented as piecewise approximation to the
- // exact computation.
- // TODO(debargha): Implement the functions by interpolating from a
- // look-up table
+ static const double rate_tab_step = 0.125;
+ static const double rate_tab[] = {
+ 256.0000, 4.944453, 3.949276, 3.371593,
+ 2.965771, 2.654550, 2.403348, 2.193612,
+ 2.014208, 1.857921, 1.719813, 1.596364,
+ 1.484979, 1.383702, 1.291025, 1.205767,
+ 1.126990, 1.053937, 0.985991, 0.922644,
+ 0.863472, 0.808114, 0.756265, 0.707661,
+ 0.662070, 0.619287, 0.579129, 0.541431,
+ 0.506043, 0.472828, 0.441656, 0.412411,
+ 0.384980, 0.359260, 0.335152, 0.312563,
+ 0.291407, 0.271600, 0.253064, 0.235723,
+ 0.219508, 0.204351, 0.190189, 0.176961,
+ 0.164611, 0.153083, 0.142329, 0.132298,
+ 0.122945, 0.114228, 0.106106, 0.098541,
+ 0.091496, 0.084937, 0.078833, 0.073154,
+ 0.067872, 0.062959, 0.058392, 0.054147,
+ 0.050202, 0.046537, 0.043133, 0.039971,
+ 0.037036, 0.034312, 0.031783, 0.029436,
+ 0.027259, 0.025240, 0.023367, 0.021631,
+ 0.020021, 0.018528, 0.017145, 0.015863,
+ 0.014676, 0.013575, 0.012556, 0.011612,
+ 0.010738, 0.009929, 0.009180, 0.008487,
+ 0.007845, 0.007251, 0.006701, 0.006193,
+ 0.005722, 0.005287, 0.004884, 0.004512,
+ 0.004168, 0.003850, 0.003556, 0.003284,
+ 0.003032, 0.002800, 0.002585, 0.002386,
+ 0.002203, 0.002034, 0.001877, 0.001732,
+ 0.001599, 0.001476, 0.001362, 0.001256,
+ 0.001159, 0.001069, 0.000987, 0.000910,
+ 0.000840, 0.000774, 0.000714, 0.000659,
+ 0.000608, 0.000560, 0.000517, 0.000476,
+ 0.000439, 0.000405, 0.000373, 0.000344,
+ 0.000317, 0.000292, 0.000270, 0.000248,
+ 0.000229, 0.000211, 0.000195, 0.000179,
+ 0.000165, 0.000152, 0.000140, 0.000129,
+ 0.000119, 0.000110, 0.000101, 0.000093,
+ 0.000086, 0.000079, 0.000073, 0.000067,
+ 0.000062, 0.000057, 0.000052, 0.000048,
+ 0.000044, 0.000041, 0.000038, 0.000035,
+ 0.000032, 0.000029, 0.000027, 0.000025,
+ 0.000023, 0.000021, 0.000019, 0.000018,
+ 0.000016, 0.000015, 0.000014, 0.000013,
+ 0.000012, 0.000011, 0.000010, 0.000009,
+ 0.000008, 0.000008, 0.000007, 0.000007,
+ 0.000006, 0.000006, 0.000005, 0.000005,
+ 0.000004, 0.000004, 0.000004, 0.000003,
+ 0.000003, 0.000003, 0.000003, 0.000002,
+ 0.000002, 0.000002, 0.000002, 0.000002,
+ 0.000002, 0.000001, 0.000001, 0.000001,
+ 0.000001, 0.000001, 0.000001, 0.000001,
+ 0.000001, 0.000001, 0.000001, 0.000001,
+ 0.000001, 0.000001, 0.000000, 0.000000,
+ };
+ const int rate_tab_num = sizeof(rate_tab)/sizeof(rate_tab[0]);
+ assert(x >= 0.0);
+ return linear_interpolate(x, rate_tab_num, rate_tab_step, rate_tab);
+}
+
+static double model_dist_norm(double x) {
+ // Normalized distortion
+ // This function models the normalized distortion for a Laplacian source
+ // source with given variance when quantized with a uniform quantizer
+ // with given stepsize. The closed form expression is:
+ // Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2))
+ // where x = qpstep / sqrt(variance)
+ // Note the actual distortion is Dn * variance.
+ static const double dist_tab_step = 0.25;
+ static const double dist_tab[] = {
+ 0.000000, 0.005189, 0.020533, 0.045381,
+ 0.078716, 0.119246, 0.165508, 0.215979,
+ 0.269166, 0.323686, 0.378318, 0.432034,
+ 0.484006, 0.533607, 0.580389, 0.624063,
+ 0.664475, 0.701581, 0.735418, 0.766092,
+ 0.793751, 0.818575, 0.840761, 0.860515,
+ 0.878045, 0.893554, 0.907238, 0.919281,
+ 0.929857, 0.939124, 0.947229, 0.954306,
+ 0.960475, 0.965845, 0.970512, 0.974563,
+ 0.978076, 0.981118, 0.983750, 0.986024,
+ 0.987989, 0.989683, 0.991144, 0.992402,
+ 0.993485, 0.994417, 0.995218, 0.995905,
+ 0.996496, 0.997002, 0.997437, 0.997809,
+ 0.998128, 0.998401, 0.998635, 0.998835,
+ 0.999006, 0.999152, 0.999277, 0.999384,
+ 0.999475, 0.999553, 0.999619, 0.999676,
+ 0.999724, 0.999765, 0.999800, 0.999830,
+ 0.999855, 0.999877, 0.999895, 0.999911,
+ 0.999924, 0.999936, 0.999945, 0.999954,
+ 0.999961, 0.999967, 0.999972, 0.999976,
+ 0.999980, 0.999983, 0.999985, 0.999988,
+ 0.999989, 0.999991, 0.999992, 0.999994,
+ 0.999995, 0.999995, 0.999996, 0.999997,
+ 0.999997, 0.999998, 0.999998, 0.999998,
+ 0.999999, 0.999999, 0.999999, 0.999999,
+ 0.999999, 0.999999, 0.999999, 1.000000,
+ };
+ const int dist_tab_num = sizeof(dist_tab)/sizeof(dist_tab[0]);
+ assert(x >= 0.0);
+ return linear_interpolate(x, dist_tab_num, dist_tab_step, dist_tab);
+}
+
+static void model_rd_from_var_lapndz(int var, int n, int qstep,
+ int *rate, int *dist) {
+ // This function models the rate and distortion for a Laplacian
+ // source with given variance when quantized with a uniform quantizer
+ // with given stepsize. The closed form expression is:
+ // Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)],
+ // where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance)
vp9_clear_system_state();
if (var == 0 || n == 0) {
*rate = 0;
@@ -1819,29 +1934,18 @@
} else {
double D, R;
double s2 = (double) var / n;
- double s = sqrt(s2);
- double x = qstep / s;
- if (x > 1.0) {
- double y = exp(-x / 2);
- double y2 = y * y;
- D = 2.069981728764738 * y2 - 2.764286806516079 * y + 1.003956960819275;
- R = 0.924056758535089 * y2 + 2.738636469814024 * y - 0.005169662030017;
- } else {
- double x2 = x * x;
- D = 0.075303187668830 * x2 + 0.004296954321112 * x - 0.000413209252807;
- if (x > 0.125)
- R = 1 / (-0.03459733614226 * x2 + 0.36561675733603 * x +
- 0.1626989668625);
- else
- R = -1.442252874826093 * log(x) + 1.944647760719664;
- }
+ double x = qstep / sqrt(s2);
+ // TODO(debargha): Make the modeling functions take (qstep^2 / s2)
+ // as argument rather than qstep / sqrt(s2) to obviate the need for
+ // the sqrt() operation.
+ D = model_dist_norm(x);
+ R = model_rate_norm(x);
if (R < 0) {
- *rate = 0;
- *dist = var;
- } else {
- *rate = (n * R * 256 + 0.5);
- *dist = (n * D * s2 + 0.5);
+ R = 0;
+ D = var;
}
+ *rate = (n * R * 256 + 0.5);
+ *dist = (n * D * s2 + 0.5);
}
vp9_clear_system_state();
}
@@ -1872,7 +1976,8 @@
int rate, dist;
var = cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride, &sse);
- model_rd_from_var_lapndz(var, bw * bh, pd->dequant[1] >> 3, &rate, &dist);
+ // sse works better than var, since there is no dc prediction used
+ model_rd_from_var_lapndz(sse, bw * bh, pd->dequant[1] >> 3, &rate, &dist);
rate_sum += rate;
dist_sum += dist;
@@ -1879,7 +1984,7 @@
}
*out_rate_sum = rate_sum;
- *out_dist_sum = dist_sum;
+ *out_dist_sum = dist_sum << 4;
}
static INLINE int get_switchable_rate(VP9_COMMON *cm, MACROBLOCK *x) {
--
⑨