ref: 60d213d2a215dc1c764507b51a065d81b6a2a8d7
dir: /src/mixer/ft2_windowed_sinc.c/
// 8-point/16-point windowed-sinc interpolation LUT generator
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <math.h>
#include "ft2_windowed_sinc.h" // SINCx_WIDTH, SINCx_PHASES
#include "../ft2_header.h" // PI
#include "../ft2_video.h" // showErrorMsgBox()
// globalized
float *fSinc8_1 = NULL, *fSinc8_2 = NULL, *fSinc8_3 = NULL;
float *fSinc16_1 = NULL, *fSinc16_2 = NULL, *fSinc16_3 = NULL;
float *fSinc_1 = NULL, *fSinc_2 = NULL, *fSinc_3 = NULL;
uint64_t sincRatio1, sincRatio2;
// zeroth-order modified Bessel function of the first kind (series approximation)
static inline double besselI0(double z)
{
#define EPSILON (1E-12) /* verified: lower than this makes no change when LUT output is single-precision float */
double s = 1.0, ds = 1.0, d = 2.0;
const double zz = z * z;
do
{
ds *= zz / (d * d);
s += ds;
d += 2.0;
}
while (ds > s*EPSILON);
return s;
}
static inline double sinc(double x)
{
if (x == 0.0)
{
return 1.0;
}
else
{
x *= PI;
return sin(x) / x;
}
}
static inline double sincWithCutoff(double x, const double cutoff)
{
if (x == 0.0)
{
return cutoff;
}
else
{
x *= PI;
return sin(cutoff * x) / x;
}
}
static void generateWindowedSinc(float *fOutput, const int32_t filterWidth, const int32_t filterPhases, const double beta, const double cutoff)
{
const int32_t filterWidthBits = (int32_t)log2(filterWidth);
const int32_t filterWidthMask = filterWidth - 1;
const int32_t filterCenter = (filterWidth / 2) - 1;
const double besselI0Beta = 1.0 / besselI0(beta);
const double phaseMul = 1.0 / filterPhases;
const double xMul = 1.0 / (filterWidth / 2);
if (cutoff < 1.0)
{
// windowed-sinc with frequency cutoff
for (int32_t i = 0; i < filterPhases * filterWidth; i++)
{
const double x = ((i & filterWidthMask) - filterCenter) - ((i >> filterWidthBits) * phaseMul);
// Kaiser-Bessel window
const double n = x * xMul;
const double window = besselI0(beta * sqrt(1.0 - n * n)) * besselI0Beta;
fOutput[i] = (float)(sincWithCutoff(x, cutoff) * window);
}
}
else
{
// windowed-sinc with no frequency cutoff
for (int32_t i = 0; i < filterPhases * filterWidth; i++)
{
const double x = ((i & filterWidthMask) - filterCenter) - ((i >> filterWidthBits) * phaseMul);
// Kaiser-Bessel window
const double n = x * xMul;
const double window = besselI0(beta * sqrt(1.0 - n * n)) * besselI0Beta;
fOutput[i] = (float)(sinc(x) * window);
}
}
}
bool setupWindowedSincTables(void)
{
fSinc8_1 = (float *)malloc(SINC1_WIDTH*SINC1_PHASES * sizeof (float));
fSinc8_2 = (float *)malloc(SINC1_WIDTH*SINC1_PHASES * sizeof (float));
fSinc8_3 = (float *)malloc(SINC1_WIDTH*SINC1_PHASES * sizeof (float));
fSinc16_1 = (float *)malloc(SINC2_WIDTH*SINC2_PHASES * sizeof (float));
fSinc16_2 = (float *)malloc(SINC2_WIDTH*SINC2_PHASES * sizeof (float));
fSinc16_3 = (float *)malloc(SINC2_WIDTH*SINC2_PHASES * sizeof (float));
if (fSinc8_1 == NULL || fSinc8_2 == NULL || fSinc8_3 == NULL ||
fSinc16_1 == NULL || fSinc16_2 == NULL || fSinc16_3 == NULL)
{
showErrorMsgBox("Not enough memory!");
return false;
}
// LUT-select resampling ratios
const double ratio1 = 1.1875; // fSinc_1 if <=
const double ratio2 = 1.5; // fSinc_2 if <=, fSinc_3 if >
// calculate mixer delta limits for LUT-selector
sincRatio1 = (uint64_t)(ratio1 * MIXER_FRAC_SCALE);
sincRatio2 = (uint64_t)(ratio2 * MIXER_FRAC_SCALE);
/* Kaiser-Bessel beta parameter
**
** Basically;
** Lower beta = less treble cut off, but more aliasing (shorter main lobe, more side lobe ripple)
** Higher beta = more treble cut off, but less aliasing (wider main lobe, less side lobe ripple)
**
** There simply isn't any optimal value here, it has to be tweaked to personal preference.
*/
const double b1 = 3.0 * M_PI; // alpha = 3.00 (beta = ~9.425)
const double b2 = 8.5;
const double b3 = 7.3;
// sinc low-pass cutoff (could maybe use some further tweaking)
const double c1 = 1.000;
const double c2 = 0.500;
const double c3 = 0.425;
// 8 point
generateWindowedSinc(fSinc8_1, SINC1_WIDTH, SINC1_PHASES, b1, c1);
generateWindowedSinc(fSinc8_2, SINC1_WIDTH, SINC1_PHASES, b2, c2);
generateWindowedSinc(fSinc8_3, SINC1_WIDTH, SINC1_PHASES, b3, c3);
// 16 point
generateWindowedSinc(fSinc16_1, SINC2_WIDTH, SINC2_PHASES, b1, c1);
generateWindowedSinc(fSinc16_2, SINC2_WIDTH, SINC2_PHASES, b2, c2);
generateWindowedSinc(fSinc16_3, SINC2_WIDTH, SINC2_PHASES, b3, c3);
return true;
}
void freeWindowedSincTables(void)
{
if (fSinc8_1 != NULL)
{
free(fSinc8_1);
fSinc8_1 = NULL;
}
if (fSinc8_2 != NULL)
{
free(fSinc8_2);
fSinc8_2 = NULL;
}
if (fSinc8_3 != NULL)
{
free(fSinc8_3);
fSinc8_3 = NULL;
}
if (fSinc16_1 != NULL)
{
free(fSinc16_1);
fSinc16_1 = NULL;
}
if (fSinc16_2 != NULL)
{
free(fSinc16_2);
fSinc16_2 = NULL;
}
if (fSinc16_3 != NULL)
{
free(fSinc16_3);
fSinc16_3 = NULL;
}
}