ref: e3bc378492992f0d7f8724c374d99b629f671219
parent: 4259e7051e2cc621267fc62d6ea11620ab995122
author: Rangi <remy.oukaour+rangi42@gmail.com>
date: Mon Dec 31 12:17:55 EST 2018
Keep gfx.py with other tools, and remove its dependency on the 'extras' submodule
--- a/gfx.py
+++ /dev/null
@@ -1,264 +1,0 @@
-"""Supplementary scripts for graphics conversion."""
-
-import os
-import argparse
-
-from extras.pokemontools import gfx, lz
-
-
-# Graphics with inverted tilemaps that aren't covered by filepath_rules.
-pics = [
- 'gfx/shrink1',
- 'gfx/shrink2',
-]
-
-def recursive_read(filename):
- def recurse(filename_):
- lines = []
- for line in open(filename_):
- if 'include "' in line.lower():
- lines += recurse(line.split('"')[1])
- else:
- lines += [line]
- return lines
- lines = recurse(filename)
- return ''.join(lines)
-
-base_stats = None
-def get_base_stats():
- global base_stats
- if not base_stats:
- base_stats = recursive_read('data/base_stats.asm')
- return base_stats
-
-def get_pokemon_dimensions(path):
- try:
- byte = bytearray(open(path, 'rb').read())[0]
- width = byte & 0xf
- height = (byte >> 8) & 0xf
- return width, height
- except:
- return None
-
-
-def get_animation_frames(path=None, w=7, h=7, bitmask_path=None, frame_path=None):
- """Retrieve animation frame tilemaps from generated frame/bitmask data."""
- if not path:
- path = bitmask_path
- if not path:
- path = frame_path
- if not path:
- raise Exception("need at least one of path, bitmask_path or frame_path")
-
- if not bitmask_path:
- bitmask_path = os.path.join(os.path.split(path)[0], 'bitmask.asm')
- if not frame_path:
- frame_path = os.path.join(os.path.split(path)[0], 'frames.asm')
- bitmask_lines = open(bitmask_path).readlines()
- frame_lines = open(frame_path).readlines()
-
- bitmask_length = w * h
-
- bitmasks = []
- bitmask = []
- for line in bitmask_lines:
- if '\tdb ' in line:
- value = line.split('\tdb ')[1].strip().replace('%', '0b')
- value = int(value, 0)
- #print line.strip(), value, len(bitmasks), len(bitmask)
- for bit in xrange(8):
- bitmask += [(value >> bit) & 1]
- if len(bitmask) >= bitmask_length:
- bitmasks += [bitmask]
- bitmask = []
- break
- if bitmask:
- bitmasks += [bitmask]
-
- frames = []
- frame_labels = []
- i = 0
- for line in frame_lines:
- if '\tdw ' in line:
- frame_labels += [line.split('\tdw ')[1].strip()]
- else:
- for part in line.split():
- part = part.strip()
- if part in frame_labels:
- frames += [(part, i)]
- i += 1
-
- results = []
-
- for label, i in frames:
- result = []
-
- # get the bitmask and tile ids for each frame
- # don't care if we read past bounds, so just read the rest of the file
- values = []
- for line in frame_lines[i:]:
- if '\tdb ' in line:
- values += line.split('\tdb ')[1].split(';')[0].split(',')
-
- #print bitmasks
- #print values[0]
- #print int(values[0].replace('$', '0x'), 0)
- bitmask = bitmasks[int(values[0].replace('$', '0x'), 0)]
- tiles = values[1:]
- k = 0
- j = 0
- for bit in bitmask:
- if bit:
- result += [int(tiles[k].replace('$', '0x'), 0)]
- k += 1
- else:
- result += [j]
- j += 1
-
- results += [result]
-
- return results
-
-def get_animated_graphics(path, w=7, h=7, bitmask_path=None, frame_path=None):
- frames = get_animation_frames(path, w, h, bitmask_path, frame_path)
- new_path = path.replace('.animated.2bpp', '.2bpp')
- tiles = gfx.get_tiles(bytearray(open(path, 'rb').read()))
- new_tiles = tiles[:w * h]
- for frame in frames:
- for tile in frame:
- new_tiles += [tiles[tile]]
- new_graphic = gfx.connect(new_tiles)
- print new_path, list(new_graphic)
- open(new_path, 'wb').write(bytearray(new_graphic))
- return new_path
-
-def filepath_rules(filepath):
- """Infer attributes of certain graphics by their location in the filesystem."""
- args = {}
-
- filedir, filename = os.path.split(filepath)
- if filedir.startswith('./'):
- filedir = filedir[2:]
-
- name, ext = os.path.splitext(filename)
- if ext == '.lz':
- name, ext = os.path.splitext(name)
-
- pokemon_name = ''
-
- if 'gfx/pics/' in filedir:
- pokemon_name = filedir.split('/')[-1]
- if pokemon_name.startswith('unown_'):
- index = filedir.find(pokemon_name)
- if index != -1:
- filedir = filedir[:index + len('unown')] + filedir[index + len('unown_a'):]
- if name == 'front' or name == 'front.animated':
- args['pal_file'] = os.path.join(filedir, 'normal.pal')
- args['pic'] = True
- args['animate'] = True
- elif name == 'back':
- args['pal_file'] = os.path.join(filedir, 'normal.pal')
- args['pic'] = True
-
- elif 'gfx/trainers' in filedir:
- args['pic'] = True
-
- elif os.path.join(filedir, name) in pics:
- args['pic'] = True
-
- elif filedir == 'gfx/tilesets':
- args['tileset'] = True
-
- if args.get('pal_file'):
- if os.path.exists(args['pal_file']):
- args['palout'] = args['pal_file']
- else:
- del args['pal_file']
-
- if args.get('pic'):
- if ext == '.png':
- w, h = gfx.png.Reader(filepath).asRGBA8()[:2]
- w = min(w/8, h/8)
- args['pic_dimensions'] = w, w
- elif ext == '.2bpp':
- if pokemon_name and name == 'front' or name == 'front.animated':
- w, h = get_pokemon_dimensions(filepath.replace(ext, '.dimensions')) or (7, 7)
- args['pic_dimensions'] = w, w
- elif pokemon_name and name == 'back':
- args['pic_dimensions'] = 6, 6
- else:
- args['pic_dimensions'] = 7, 7
-
- if args.get('tileset'):
- args['width'] = 128
- return args
-
-
-def to_1bpp(filename, **kwargs):
- name, ext = os.path.splitext(filename)
- if ext == '.1bpp': pass
- elif ext == '.2bpp': gfx.export_2bpp_to_1bpp(filename, **kwargs)
- elif ext == '.png': gfx.export_png_to_1bpp(filename, **kwargs)
- elif ext == '.lz':
- decompress(filename, **kwargs)
- to_1bpp(name, **kwargs)
-
-def to_2bpp(filename, **kwargs):
- name, ext = os.path.splitext(filename)
- if ext == '.1bpp': gfx.export_1bpp_to_2bpp(filename, **kwargs)
- elif ext == '.2bpp': pass
- elif ext == '.png': gfx.export_png_to_2bpp(filename, **kwargs)
- elif ext == '.lz':
- decompress(filename, **kwargs)
- to_2bpp(name, **kwargs)
-
-def to_png(filename, **kwargs):
- name, ext = os.path.splitext(filename)
- if ext == '.1bpp': gfx.export_1bpp_to_png(filename, **kwargs)
- elif ext == '.2bpp' and name.endswith('.animated'):
- w, h = kwargs.get('pic_dimensions') or (7, 7)
- new_path = get_animated_graphics(filename, w=w, h=h)
- return to_png(new_path, **kwargs)
- elif ext == '.2bpp': gfx.export_2bpp_to_png(filename, **kwargs)
- elif ext == '.png': pass
- elif ext == '.lz':
- decompress(filename, **kwargs)
- to_png(name, **kwargs)
-
-def compress(filename, **kwargs):
- data = open(filename, 'rb').read()
- lz_data = lz.Compressed(data).output
- open(filename + '.lz', 'wb').write(bytearray(lz_data))
-
-def decompress(filename, **kwargs):
- lz_data = open(filename, 'rb').read()
- data = lz.Decompressed(lz_data).output
- name, ext = os.path.splitext(filename)
- open(name, 'wb').write(bytearray(data))
-
-
-methods = {
- '2bpp': to_2bpp,
- '1bpp': to_1bpp,
- 'png': to_png,
- 'lz': compress,
- 'unlz': decompress,
-}
-
-def main(method_name, filenames=None):
- if filenames is None: filenames = []
- for filename in filenames:
- args = filepath_rules(filename)
- method = methods.get(method_name)
- if method:
- method(filename, **args)
-
-def get_args():
- ap = argparse.ArgumentParser()
- ap.add_argument('method_name')
- ap.add_argument('filenames', nargs='*')
- args = ap.parse_args()
- return args
-
-if __name__ == '__main__':
- main(**get_args().__dict__)
--- /dev/null
+++ b/tools/gfx.py
@@ -1,0 +1,264 @@
+"""Supplementary scripts for graphics conversion."""
+
+import os
+import argparse
+
+from pokemontools import gfx, lz
+
+
+# Graphics with inverted tilemaps that aren't covered by filepath_rules.
+pics = [
+ 'gfx/shrink1',
+ 'gfx/shrink2',
+]
+
+def recursive_read(filename):
+ def recurse(filename_):
+ lines = []
+ for line in open(filename_):
+ if 'include "' in line.lower():
+ lines += recurse(line.split('"')[1])
+ else:
+ lines += [line]
+ return lines
+ lines = recurse(filename)
+ return ''.join(lines)
+
+base_stats = None
+def get_base_stats():
+ global base_stats
+ if not base_stats:
+ base_stats = recursive_read('data/base_stats.asm')
+ return base_stats
+
+def get_pokemon_dimensions(path):
+ try:
+ byte = bytearray(open(path, 'rb').read())[0]
+ width = byte & 0xf
+ height = (byte >> 8) & 0xf
+ return width, height
+ except:
+ return None
+
+
+def get_animation_frames(path=None, w=7, h=7, bitmask_path=None, frame_path=None):
+ """Retrieve animation frame tilemaps from generated frame/bitmask data."""
+ if not path:
+ path = bitmask_path
+ if not path:
+ path = frame_path
+ if not path:
+ raise Exception("need at least one of path, bitmask_path or frame_path")
+
+ if not bitmask_path:
+ bitmask_path = os.path.join(os.path.split(path)[0], 'bitmask.asm')
+ if not frame_path:
+ frame_path = os.path.join(os.path.split(path)[0], 'frames.asm')
+ bitmask_lines = open(bitmask_path).readlines()
+ frame_lines = open(frame_path).readlines()
+
+ bitmask_length = w * h
+
+ bitmasks = []
+ bitmask = []
+ for line in bitmask_lines:
+ if '\tdb ' in line:
+ value = line.split('\tdb ')[1].strip().replace('%', '0b')
+ value = int(value, 0)
+ #print line.strip(), value, len(bitmasks), len(bitmask)
+ for bit in xrange(8):
+ bitmask += [(value >> bit) & 1]
+ if len(bitmask) >= bitmask_length:
+ bitmasks += [bitmask]
+ bitmask = []
+ break
+ if bitmask:
+ bitmasks += [bitmask]
+
+ frames = []
+ frame_labels = []
+ i = 0
+ for line in frame_lines:
+ if '\tdw ' in line:
+ frame_labels += [line.split('\tdw ')[1].strip()]
+ else:
+ for part in line.split():
+ part = part.strip()
+ if part in frame_labels:
+ frames += [(part, i)]
+ i += 1
+
+ results = []
+
+ for label, i in frames:
+ result = []
+
+ # get the bitmask and tile ids for each frame
+ # don't care if we read past bounds, so just read the rest of the file
+ values = []
+ for line in frame_lines[i:]:
+ if '\tdb ' in line:
+ values += line.split('\tdb ')[1].split(';')[0].split(',')
+
+ #print bitmasks
+ #print values[0]
+ #print int(values[0].replace('$', '0x'), 0)
+ bitmask = bitmasks[int(values[0].replace('$', '0x'), 0)]
+ tiles = values[1:]
+ k = 0
+ j = 0
+ for bit in bitmask:
+ if bit:
+ result += [int(tiles[k].replace('$', '0x'), 0)]
+ k += 1
+ else:
+ result += [j]
+ j += 1
+
+ results += [result]
+
+ return results
+
+def get_animated_graphics(path, w=7, h=7, bitmask_path=None, frame_path=None):
+ frames = get_animation_frames(path, w, h, bitmask_path, frame_path)
+ new_path = path.replace('.animated.2bpp', '.2bpp')
+ tiles = gfx.get_tiles(bytearray(open(path, 'rb').read()))
+ new_tiles = tiles[:w * h]
+ for frame in frames:
+ for tile in frame:
+ new_tiles += [tiles[tile]]
+ new_graphic = gfx.connect(new_tiles)
+ print new_path, list(new_graphic)
+ open(new_path, 'wb').write(bytearray(new_graphic))
+ return new_path
+
+def filepath_rules(filepath):
+ """Infer attributes of certain graphics by their location in the filesystem."""
+ args = {}
+
+ filedir, filename = os.path.split(filepath)
+ if filedir.startswith('./'):
+ filedir = filedir[2:]
+
+ name, ext = os.path.splitext(filename)
+ if ext == '.lz':
+ name, ext = os.path.splitext(name)
+
+ pokemon_name = ''
+
+ if 'gfx/pokemon/' in filedir:
+ pokemon_name = filedir.split('/')[-1]
+ if pokemon_name.startswith('unown_'):
+ index = filedir.find(pokemon_name)
+ if index != -1:
+ filedir = filedir[:index + len('unown')] + filedir[index + len('unown_a'):]
+ if name == 'front' or name == 'front.animated':
+ args['pal_file'] = os.path.join(filedir, 'normal.pal')
+ args['pic'] = True
+ args['animate'] = True
+ elif name == 'back':
+ args['pal_file'] = os.path.join(filedir, 'normal.pal')
+ args['pic'] = True
+
+ elif 'gfx/trainers' in filedir:
+ args['pic'] = True
+
+ elif os.path.join(filedir, name) in pics:
+ args['pic'] = True
+
+ elif filedir == 'gfx/tilesets':
+ args['tileset'] = True
+
+ if args.get('pal_file'):
+ if os.path.exists(args['pal_file']):
+ args['palout'] = args['pal_file']
+ else:
+ del args['pal_file']
+
+ if args.get('pic'):
+ if ext == '.png':
+ w, h = gfx.png.Reader(filepath).asRGBA8()[:2]
+ w = min(w/8, h/8)
+ args['pic_dimensions'] = w, w
+ elif ext == '.2bpp':
+ if pokemon_name and name == 'front' or name == 'front.animated':
+ w, h = get_pokemon_dimensions(filepath.replace(ext, '.dimensions')) or (7, 7)
+ args['pic_dimensions'] = w, w
+ elif pokemon_name and name == 'back':
+ args['pic_dimensions'] = 6, 6
+ else:
+ args['pic_dimensions'] = 7, 7
+
+ if args.get('tileset'):
+ args['width'] = 128
+ return args
+
+
+def to_1bpp(filename, **kwargs):
+ name, ext = os.path.splitext(filename)
+ if ext == '.1bpp': pass
+ elif ext == '.2bpp': gfx.export_2bpp_to_1bpp(filename, **kwargs)
+ elif ext == '.png': gfx.export_png_to_1bpp(filename, **kwargs)
+ elif ext == '.lz':
+ decompress(filename, **kwargs)
+ to_1bpp(name, **kwargs)
+
+def to_2bpp(filename, **kwargs):
+ name, ext = os.path.splitext(filename)
+ if ext == '.1bpp': gfx.export_1bpp_to_2bpp(filename, **kwargs)
+ elif ext == '.2bpp': pass
+ elif ext == '.png': gfx.export_png_to_2bpp(filename, **kwargs)
+ elif ext == '.lz':
+ decompress(filename, **kwargs)
+ to_2bpp(name, **kwargs)
+
+def to_png(filename, **kwargs):
+ name, ext = os.path.splitext(filename)
+ if ext == '.1bpp': gfx.export_1bpp_to_png(filename, **kwargs)
+ elif ext == '.2bpp' and name.endswith('.animated'):
+ w, h = kwargs.get('pic_dimensions') or (7, 7)
+ new_path = get_animated_graphics(filename, w=w, h=h)
+ return to_png(new_path, **kwargs)
+ elif ext == '.2bpp': gfx.export_2bpp_to_png(filename, **kwargs)
+ elif ext == '.png': pass
+ elif ext == '.lz':
+ decompress(filename, **kwargs)
+ to_png(name, **kwargs)
+
+def compress(filename, **kwargs):
+ data = open(filename, 'rb').read()
+ lz_data = lz.Compressed(data).output
+ open(filename + '.lz', 'wb').write(bytearray(lz_data))
+
+def decompress(filename, **kwargs):
+ lz_data = open(filename, 'rb').read()
+ data = lz.Decompressed(lz_data).output
+ name, ext = os.path.splitext(filename)
+ open(name, 'wb').write(bytearray(data))
+
+
+methods = {
+ '2bpp': to_2bpp,
+ '1bpp': to_1bpp,
+ 'png': to_png,
+ 'lz': compress,
+ 'unlz': decompress,
+}
+
+def main(method_name, filenames=None):
+ if filenames is None: filenames = []
+ for filename in filenames:
+ args = filepath_rules(filename)
+ method = methods.get(method_name)
+ if method:
+ method(filename, **args)
+
+def get_args():
+ ap = argparse.ArgumentParser()
+ ap.add_argument('method_name')
+ ap.add_argument('filenames', nargs='*')
+ args = ap.parse_args()
+ return args
+
+if __name__ == '__main__':
+ main(**get_args().__dict__)
--- /dev/null
+++ b/tools/pokemontools/__init__.py
@@ -1,0 +1,1 @@
+# A subset of https://github.com/pret/pokemon-reverse-engineering-tools
--- /dev/null
+++ b/tools/pokemontools/gfx.py
@@ -1,0 +1,938 @@
+# -*- coding: utf-8 -*-
+
+import os
+import sys
+import png
+from math import sqrt, floor, ceil
+import argparse
+import operator
+
+from lz import Compressed, Decompressed
+
+
+def split(list_, interval):
+ """
+ Split a list by length.
+ """
+ for i in xrange(0, len(list_), interval):
+ j = min(i + interval, len(list_))
+ yield list_[i:j]
+
+
+def hex_dump(data, length=0x10):
+ """
+ just use hexdump -C
+ """
+ margin = len('%x' % len(data))
+ output = []
+ address = 0
+ for line in split(data, length):
+ output += [
+ hex(address)[2:].zfill(margin) +
+ ' | ' +
+ ' '.join('%.2x' % byte for byte in line)
+ ]
+ address += length
+ return '\n'.join(output)
+
+
+def get_tiles(image):
+ """
+ Split a 2bpp image into 8x8 tiles.
+ """
+ return list(split(image, 0x10))
+
+def connect(tiles):
+ """
+ Combine 8x8 tiles into a 2bpp image.
+ """
+ return [byte for tile in tiles for byte in tile]
+
+def transpose(tiles, width=None):
+ """
+ Transpose a tile arrangement along line y=-x.
+
+ 00 01 02 03 04 05 00 06 0c 12 18 1e
+ 06 07 08 09 0a 0b 01 07 0d 13 19 1f
+ 0c 0d 0e 0f 10 11 <-> 02 08 0e 14 1a 20
+ 12 13 14 15 16 17 03 09 0f 15 1b 21
+ 18 19 1a 1b 1c 1d 04 0a 10 16 1c 22
+ 1e 1f 20 21 22 23 05 0b 11 17 1d 23
+
+ 00 01 02 03 00 04 08
+ 04 05 06 07 <-> 01 05 09
+ 08 09 0a 0b 02 06 0a
+ 03 07 0b
+ """
+ if width == None:
+ width = int(sqrt(len(tiles))) # assume square image
+ tiles = sorted(enumerate(tiles), key= lambda (i, tile): i % width)
+ return [tile for i, tile in tiles]
+
+def transpose_tiles(image, width=None):
+ return connect(transpose(get_tiles(image), width))
+
+def interleave(tiles, width):
+ """
+ 00 01 02 03 04 05 00 02 04 06 08 0a
+ 06 07 08 09 0a 0b 01 03 05 07 09 0b
+ 0c 0d 0e 0f 10 11 --> 0c 0e 10 12 14 16
+ 12 13 14 15 16 17 0d 0f 11 13 15 17
+ 18 19 1a 1b 1c 1d 18 1a 1c 1e 20 22
+ 1e 1f 20 21 22 23 19 1b 1d 1f 21 23
+ """
+ interleaved = []
+ left, right = split(tiles[::2], width), split(tiles[1::2], width)
+ for l, r in zip(left, right):
+ interleaved += l + r
+ return interleaved
+
+def deinterleave(tiles, width):
+ """
+ 00 02 04 06 08 0a 00 01 02 03 04 05
+ 01 03 05 07 09 0b 06 07 08 09 0a 0b
+ 0c 0e 10 12 14 16 --> 0c 0d 0e 0f 10 11
+ 0d 0f 11 13 15 17 12 13 14 15 16 17
+ 18 1a 1c 1e 20 22 18 19 1a 1b 1c 1d
+ 19 1b 1d 1f 21 23 1e 1f 20 21 22 23
+ """
+ deinterleaved = []
+ rows = list(split(tiles, width))
+ for left, right in zip(rows[::2], rows[1::2]):
+ for l, r in zip(left, right):
+ deinterleaved += [l, r]
+ return deinterleaved
+
+def interleave_tiles(image, width):
+ return connect(interleave(get_tiles(image), width))
+
+def deinterleave_tiles(image, width):
+ return connect(deinterleave(get_tiles(image), width))
+
+
+def condense_image_to_map(image, pic=0):
+ """
+ Reduce an image of adjacent frames to an image containing a base frame and any unrepeated tiles.
+ Returns the new image and the corresponding tilemap used to reconstruct the input image.
+
+ If <pic> is 0, ignore the concept of frames. This behavior might be better off as another function.
+ """
+ tiles = get_tiles(image)
+ new_tiles, tilemap = condense_tiles_to_map(tiles, pic)
+ new_image = connect(new_tiles)
+ return new_image, tilemap
+
+def condense_tiles_to_map(tiles, pic=0):
+ """
+ Reduce a sequence of tiles representing adjacent frames to a base frame and any unrepeated tiles.
+ Returns the new tiles and the corresponding tilemap used to reconstruct the input tile sequence.
+
+ If <pic> is 0, ignore the concept of frames. This behavior might be better off as another function.
+ """
+
+ # Leave the first frame intact for pics.
+ new_tiles = tiles[:pic]
+ tilemap = range(pic)
+
+ for i, tile in enumerate(tiles[pic:]):
+ if tile not in new_tiles:
+ new_tiles.append(tile)
+
+ if pic:
+ # Match the first frame exactly where possible.
+ # This reduces the space needed to replace tiles in pic animations.
+ # For example, if a tile is repeated twice in the first frame,
+ # but at the same relative index as the second tile, use the second index.
+ # When creating a bitmask later, the second index would not require a replacement, but the first index would have.
+ pic_i = i % pic
+ if tile == new_tiles[pic_i]:
+ tilemap.append(pic_i)
+ else:
+ tilemap.append(new_tiles.index(tile))
+ else:
+ tilemap.append(new_tiles.index(tile))
+ return new_tiles, tilemap
+
+def test_condense_tiles_to_map():
+ test = condense_tiles_to_map(list('abcadbae'))
+ if test != (list('abcde'), [0, 1, 2, 0, 3, 1, 0, 4]):
+ raise Exception(test)
+ test = condense_tiles_to_map(list('abcadbae'), 2)
+ if test != (list('abcde'), [0, 1, 2, 0, 3, 1, 0, 4]):
+ raise Exception(test)
+ test = condense_tiles_to_map(list('abcadbae'), 4)
+ if test != (list('abcade'), [0, 1, 2, 3, 4, 1, 0, 5]):
+ raise Exception(test)
+ test = condense_tiles_to_map(list('abcadbea'), 4)
+ if test != (list('abcade'), [0, 1, 2, 3, 4, 1, 5, 3]):
+ raise Exception(test)
+
+
+def to_file(filename, data):
+ """
+ Apparently open(filename, 'wb').write(bytearray(data)) won't work.
+ """
+ file = open(filename, 'wb')
+ for byte in data:
+ file.write('%c' % byte)
+ file.close()
+
+
+def decompress_file(filein, fileout=None):
+ image = bytearray(open(filein).read())
+ de = Decompressed(image)
+
+ if fileout == None:
+ fileout = os.path.splitext(filein)[0]
+ to_file(fileout, de.output)
+
+
+def compress_file(filein, fileout=None):
+ image = bytearray(open(filein).read())
+ lz = Compressed(image)
+
+ if fileout == None:
+ fileout = filein + '.lz'
+ to_file(fileout, lz.output)
+
+
+def bin_to_rgb(word):
+ red = word & 0b11111
+ word >>= 5
+ green = word & 0b11111
+ word >>= 5
+ blue = word & 0b11111
+ return (red, green, blue)
+
+def convert_binary_pal_to_text_by_filename(filename):
+ pal = bytearray(open(filename).read())
+ return convert_binary_pal_to_text(pal)
+
+def convert_binary_pal_to_text(pal):
+ output = ''
+ words = [hi * 0x100 + lo for lo, hi in zip(pal[::2], pal[1::2])]
+ for word in words:
+ red, green, blue = ['%.2d' % c for c in bin_to_rgb(word)]
+ output += '\tRGB ' + ', '.join((red, green, blue))
+ output += '\n'
+ return output
+
+def read_rgb_macros(lines):
+ colors = []
+ for line in lines:
+ macro = line.split(" ")[0].strip()
+ if macro == 'RGB':
+ params = ' '.join(line.split(" ")[1:]).split(',')
+ red, green, blue = [int(v) for v in params]
+ colors += [[red, green, blue]]
+ return colors
+
+
+def rewrite_binary_pals_to_text(filenames):
+ for filename in filenames:
+ pal_text = convert_binary_pal_to_text_by_filename(filename)
+ with open(filename, 'w') as out:
+ out.write(pal_text)
+
+
+def flatten(planar):
+ """
+ Flatten planar 2bpp image data into a quaternary pixel map.
+ """
+ strips = []
+ for bottom, top in split(planar, 2):
+ bottom = bottom
+ top = top
+ strip = []
+ for i in xrange(7,-1,-1):
+ color = (
+ (bottom >> i & 1) +
+ (top *2 >> i & 2)
+ )
+ strip += [color]
+ strips += strip
+ return strips
+
+def to_lines(image, width):
+ """
+ Convert a tiled quaternary pixel map to lines of quaternary pixels.
+ """
+ tile_width = 8
+ tile_height = 8
+ num_columns = width / tile_width
+ height = len(image) / width
+
+ lines = []
+ for cur_line in xrange(height):
+ tile_row = cur_line / tile_height
+ line = []
+ for column in xrange(num_columns):
+ anchor = (
+ num_columns * tile_row * tile_width * tile_height +
+ column * tile_width * tile_height +
+ cur_line % tile_height * tile_width
+ )
+ line += image[anchor : anchor + tile_width]
+ lines += [line]
+ return lines
+
+
+def dmg2rgb(word):
+ """
+ For PNGs.
+ """
+ def shift(value):
+ while True:
+ yield value & (2**5 - 1)
+ value >>= 5
+ word = shift(word)
+ # distribution is less even w/ << 3
+ red, green, blue = [int(color * 8.25) for color in [word.next() for _ in xrange(3)]]
+ alpha = 255
+ return (red, green, blue, alpha)
+
+
+def rgb_to_dmg(color):
+ """
+ For PNGs.
+ """
+ word = (color['r'] / 8)
+ word += (color['g'] / 8) << 5
+ word += (color['b'] / 8) << 10
+ return word
+
+
+def pal_to_png(filename):
+ """
+ Interpret a .pal file as a png palette.
+ """
+ with open(filename) as rgbs:
+ colors = read_rgb_macros(rgbs.readlines())
+ a = 255
+ palette = []
+ for color in colors:
+ # even distribution over 000-255
+ r, g, b = [int(hue * 8.25) for hue in color]
+ palette += [(r, g, b, a)]
+ white = (255,255,255,255)
+ black = (000,000,000,255)
+ if white not in palette and len(palette) < 4:
+ palette = [white] + palette
+ if black not in palette and len(palette) < 4:
+ palette = palette + [black]
+ return palette
+
+
+def png_to_rgb(palette):
+ """
+ Convert a png palette to rgb macros.
+ """
+ output = ''
+ for color in palette:
+ r, g, b = [color[c] / 8 for c in 'rgb']
+ output += '\tRGB ' + ', '.join(['%.2d' % hue for hue in (r, g, b)])
+ output += '\n'
+ return output
+
+
+def read_filename_arguments(filename):
+ """
+ Infer graphics conversion arguments given a filename.
+
+ Arguments are separated with '.'.
+ """
+ parsed_arguments = {}
+
+ int_arguments = {
+ 'w': 'width',
+ 'h': 'height',
+ 't': 'tile_padding',
+ }
+ arguments = os.path.splitext(filename)[0].lstrip('.').split('.')[1:]
+ for argument in arguments:
+
+ # Check for integer arguments first (i.e. "w128").
+ arg = argument[0]
+ param = argument[1:]
+ if param.isdigit():
+ arg = int_arguments.get(arg, False)
+ if arg:
+ parsed_arguments[arg] = int(param)
+
+ elif argument == 'arrange':
+ parsed_arguments['norepeat'] = True
+ parsed_arguments['tilemap'] = True
+
+ # Pic dimensions (i.e. "6x6").
+ elif 'x' in argument and any(map(str.isdigit, argument)):
+ w, h = argument.split('x')
+ if w.isdigit() and h.isdigit():
+ parsed_arguments['pic_dimensions'] = (int(w), int(h))
+
+ else:
+ parsed_arguments[argument] = True
+
+ return parsed_arguments
+
+
+def export_2bpp_to_png(filein, fileout=None, pal_file=None, height=0, width=0, tile_padding=0, pic_dimensions=None, **kwargs):
+
+ if fileout == None:
+ fileout = os.path.splitext(filein)[0] + '.png'
+
+ image = open(filein, 'rb').read()
+
+ arguments = {
+ 'width': width,
+ 'height': height,
+ 'pal_file': pal_file,
+ 'tile_padding': tile_padding,
+ 'pic_dimensions': pic_dimensions,
+ }
+ arguments.update(read_filename_arguments(filein))
+
+ if pal_file == None:
+ if os.path.exists(os.path.splitext(fileout)[0]+'.pal'):
+ arguments['pal_file'] = os.path.splitext(fileout)[0]+'.pal'
+
+ result = convert_2bpp_to_png(image, **arguments)
+ width, height, palette, greyscale, bitdepth, px_map = result
+
+ w = png.Writer(
+ width,
+ height,
+ palette=palette,
+ compression=9,
+ greyscale=greyscale,
+ bitdepth=bitdepth
+ )
+ with open(fileout, 'wb') as f:
+ w.write(f, px_map)
+
+
+def convert_2bpp_to_png(image, **kwargs):
+ """
+ Convert a planar 2bpp graphic to png.
+ """
+
+ image = bytearray(image)
+
+ pad_color = bytearray([0])
+
+ width = kwargs.get('width', 0)
+ height = kwargs.get('height', 0)
+ tile_padding = kwargs.get('tile_padding', 0)
+ pic_dimensions = kwargs.get('pic_dimensions', None)
+ pal_file = kwargs.get('pal_file', None)
+ interleave = kwargs.get('interleave', False)
+
+ # Width must be specified to interleave.
+ if interleave and width:
+ image = interleave_tiles(image, width / 8)
+
+ # Pad the image by a given number of tiles if asked.
+ image += pad_color * 0x10 * tile_padding
+
+ # Some images are transposed in blocks.
+ if pic_dimensions:
+ w, h = pic_dimensions
+ if not width: width = w * 8
+
+ pic_length = w * h * 0x10
+
+ trailing = len(image) % pic_length
+
+ pic = []
+ for i in xrange(0, len(image) - trailing, pic_length):
+ pic += transpose_tiles(image[i:i+pic_length], h)
+ image = bytearray(pic) + image[len(image) - trailing:]
+
+ # Pad out trailing lines.
+ image += pad_color * 0x10 * ((w - (len(image) / 0x10) % h) % w)
+
+ def px_length(img):
+ return len(img) * 4
+ def tile_length(img):
+ return len(img) * 4 / (8*8)
+
+ if width and height:
+ tile_width = width / 8
+ more_tile_padding = (tile_width - (tile_length(image) % tile_width or tile_width))
+ image += pad_color * 0x10 * more_tile_padding
+
+ elif width and not height:
+ tile_width = width / 8
+ more_tile_padding = (tile_width - (tile_length(image) % tile_width or tile_width))
+ image += pad_color * 0x10 * more_tile_padding
+ height = px_length(image) / width
+
+ elif height and not width:
+ tile_height = height / 8
+ more_tile_padding = (tile_height - (tile_length(image) % tile_height or tile_height))
+ image += pad_color * 0x10 * more_tile_padding
+ width = px_length(image) / height
+
+ # at least one dimension should be given
+ if width * height != px_length(image):
+ # look for possible combos of width/height that would form a rectangle
+ matches = []
+ # Height need not be divisible by 8, but width must.
+ # See pokered gfx/minimize_pic.1bpp.
+ for w in range(8, px_length(image) / 2 + 1, 8):
+ h = px_length(image) / w
+ if w * h == px_length(image):
+ matches += [(w, h)]
+ # go for the most square image
+ if len(matches):
+ width, height = sorted(matches, key= lambda (w, h): (h % 8 != 0, w + h))[0] # favor height
+ else:
+ raise Exception, 'Image can\'t be divided into tiles (%d px)!' % (px_length(image))
+
+ # convert tiles to lines
+ lines = to_lines(flatten(image), width)
+
+ if pal_file == None:
+ palette = None
+ greyscale = True
+ bitdepth = 2
+ px_map = [[3 - pixel for pixel in line] for line in lines]
+
+ else: # gbc color
+ palette = pal_to_png(pal_file)
+ greyscale = False
+ bitdepth = 8
+ px_map = [[pixel for pixel in line] for line in lines]
+
+ return width, height, palette, greyscale, bitdepth, px_map
+
+
+def get_pic_animation(tmap, w, h):
+ """
+ Generate pic animation data from a combined tilemap of each frame.
+ """
+ frame_text = ''
+ bitmask_text = ''
+
+ frames = list(split(tmap, w * h))
+ base = frames.pop(0)
+ bitmasks = []
+
+ for i in xrange(len(frames)):
+ frame_text += '\tdw .frame{}\n'.format(i + 1)
+
+ for i, frame in enumerate(frames):
+ bitmask = map(operator.ne, frame, base)
+ if bitmask not in bitmasks:
+ bitmasks.append(bitmask)
+ which_bitmask = bitmasks.index(bitmask)
+
+ mask = iter(bitmask)
+ masked_frame = filter(lambda _: mask.next(), frame)
+
+ frame_text += '.frame{}\n'.format(i + 1)
+ frame_text += '\tdb ${:02x} ; bitmask\n'.format(which_bitmask)
+ if masked_frame:
+ frame_text += '\tdb {}\n'.format(', '.join(
+ map('${:02x}'.format, masked_frame)
+ ))
+
+ for i, bitmask in enumerate(bitmasks):
+ bitmask_text += '; {}\n'.format(i)
+ for byte in split(bitmask, 8):
+ byte = int(''.join(map(int.__repr__, reversed(byte))), 2)
+ bitmask_text += '\tdb %{:08b}\n'.format(byte)
+
+ return frame_text, bitmask_text
+
+
+def export_png_to_2bpp(filein, fileout=None, palout=None, **kwargs):
+
+ arguments = {
+ 'tile_padding': 0,
+ 'pic_dimensions': None,
+ 'animate': False,
+ 'stupid_bitmask_hack': [],
+ }
+ arguments.update(kwargs)
+ arguments.update(read_filename_arguments(filein))
+
+ image, arguments = png_to_2bpp(filein, **arguments)
+
+ if fileout == None:
+ fileout = os.path.splitext(filein)[0] + '.2bpp'
+ to_file(fileout, image)
+
+ tmap = arguments.get('tmap')
+
+ if tmap != None and arguments['animate'] and arguments['pic_dimensions']:
+ # Generate pic animation data.
+ frame_text, bitmask_text = get_pic_animation(tmap, *arguments['pic_dimensions'])
+
+ frames_path = os.path.join(os.path.split(fileout)[0], 'frames.asm')
+ with open(frames_path, 'w') as out:
+ out.write(frame_text)
+
+ bitmask_path = os.path.join(os.path.split(fileout)[0], 'bitmask.asm')
+
+ # The following Pokemon have a bitmask dummied out.
+ for exception in arguments['stupid_bitmask_hack']:
+ if exception in bitmask_path:
+ bitmasks = bitmask_text.split(';')
+ bitmasks[-1] = bitmasks[-1].replace('1', '0')
+ bitmask_text = ';'.join(bitmasks)
+
+ with open(bitmask_path, 'w') as out:
+ out.write(bitmask_text)
+
+ elif tmap != None and arguments.get('tilemap', False):
+ tilemap_path = os.path.splitext(fileout)[0] + '.tilemap'
+ to_file(tilemap_path, tmap)
+
+ palette = arguments.get('palette')
+ if palout == None:
+ palout = os.path.splitext(fileout)[0] + '.pal'
+ export_palette(palette, palout)
+
+
+def get_image_padding(width, height, wstep=8, hstep=8):
+
+ padding = {
+ 'left': 0,
+ 'right': 0,
+ 'top': 0,
+ 'bottom': 0,
+ }
+
+ if width % wstep and width >= wstep:
+ pad = float(width % wstep) / 2
+ padding['left'] = int(ceil(pad))
+ padding['right'] = int(floor(pad))
+
+ if height % hstep and height >= hstep:
+ pad = float(height % hstep) / 2
+ padding['top'] = int(ceil(pad))
+ padding['bottom'] = int(floor(pad))
+
+ return padding
+
+
+def png_to_2bpp(filein, **kwargs):
+ """
+ Convert a png image to planar 2bpp.
+ """
+
+ arguments = {
+ 'tile_padding': 0,
+ 'pic_dimensions': False,
+ 'interleave': False,
+ 'norepeat': False,
+ 'tilemap': False,
+ }
+ arguments.update(kwargs)
+
+ if type(filein) is str:
+ filein = open(filein)
+
+ assert type(filein) is file
+
+ width, height, rgba, info = png.Reader(filein).asRGBA8()
+
+ # png.Reader returns flat pixel data. Nested is easier to work with
+ len_px = len('rgba')
+ image = []
+ palette = []
+ for line in rgba:
+ newline = []
+ for px in xrange(0, len(line), len_px):
+ color = dict(zip('rgba', line[px:px+len_px]))
+ if color not in palette:
+ if len(palette) < 4:
+ palette += [color]
+ else:
+ # TODO Find the nearest match
+ print 'WARNING: %s: Color %s truncated to' % (filein, color),
+ color = sorted(palette, key=lambda x: sum(x.values()))[0]
+ print color
+ newline += [color]
+ image += [newline]
+
+ assert len(palette) <= 4, '%s: palette should be 4 colors, is really %d (%s)' % (filein, len(palette), palette)
+
+ # Pad out smaller palettes with greyscale colors
+ greyscale = {
+ 'black': { 'r': 0x00, 'g': 0x00, 'b': 0x00, 'a': 0xff },
+ 'grey': { 'r': 0x55, 'g': 0x55, 'b': 0x55, 'a': 0xff },
+ 'gray': { 'r': 0xaa, 'g': 0xaa, 'b': 0xaa, 'a': 0xff },
+ 'white': { 'r': 0xff, 'g': 0xff, 'b': 0xff, 'a': 0xff },
+ }
+ preference = 'white', 'black', 'grey', 'gray'
+ for hue in map(greyscale.get, preference):
+ if len(palette) >= 4:
+ break
+ if hue not in palette:
+ palette += [hue]
+
+ palette.sort(key=lambda x: sum(x.values()))
+
+ # Game Boy palette order
+ palette.reverse()
+
+ # Map pixels to quaternary color ids
+ padding = get_image_padding(width, height)
+ width += padding['left'] + padding['right']
+ height += padding['top'] + padding['bottom']
+ pad = bytearray([0])
+
+ qmap = []
+ qmap += pad * width * padding['top']
+ for line in image:
+ qmap += pad * padding['left']
+ for color in line:
+ qmap += [palette.index(color)]
+ qmap += pad * padding['right']
+ qmap += pad * width * padding['bottom']
+
+ # Graphics are stored in tiles instead of lines
+ tile_width = 8
+ tile_height = 8
+ num_columns = max(width, tile_width) / tile_width
+ num_rows = max(height, tile_height) / tile_height
+ image = []
+
+ for row in xrange(num_rows):
+ for column in xrange(num_columns):
+
+ # Split it up into strips to convert to planar data
+ for strip in xrange(min(tile_height, height)):
+ anchor = (
+ row * num_columns * tile_width * tile_height +
+ column * tile_width +
+ strip * width
+ )
+ line = qmap[anchor : anchor + tile_width]
+ bottom, top = 0, 0
+ for bit, quad in enumerate(line):
+ bottom += (quad & 1) << (7 - bit)
+ top += (quad /2 & 1) << (7 - bit)
+ image += [bottom, top]
+
+ dim = arguments['pic_dimensions']
+ if dim:
+ if type(dim) in (tuple, list):
+ w, h = dim
+ else:
+ # infer dimensions based on width.
+ w = width / tile_width
+ h = height / tile_height
+ if h % w == 0:
+ h = w
+
+ tiles = get_tiles(image)
+ pic_length = w * h
+ tile_width = width / 8
+ trailing = len(tiles) % pic_length
+ new_image = []
+ for block in xrange(len(tiles) / pic_length):
+ offset = (h * tile_width) * ((block * w) / tile_width) + ((block * w) % tile_width)
+ pic = []
+ for row in xrange(h):
+ index = offset + (row * tile_width)
+ pic += tiles[index:index + w]
+ new_image += transpose(pic, w)
+ new_image += tiles[len(tiles) - trailing:]
+ image = connect(new_image)
+
+ # Remove any tile padding used to make the png rectangular.
+ image = image[:len(image) - arguments['tile_padding'] * 0x10]
+
+ tmap = None
+
+ if arguments['interleave']:
+ image = deinterleave_tiles(image, num_columns)
+
+ if arguments['pic_dimensions']:
+ image, tmap = condense_image_to_map(image, w * h)
+ elif arguments['norepeat']:
+ image, tmap = condense_image_to_map(image)
+ if not arguments['tilemap']:
+ tmap = None
+
+ arguments.update({ 'palette': palette, 'tmap': tmap, })
+
+ return image, arguments
+
+
+def export_palette(palette, filename):
+ """
+ Export a palette from png to rgb macros in a .pal file.
+ """
+
+ if os.path.exists(filename):
+
+ # Pic palettes are 2 colors (black/white are added later).
+ with open(filename) as rgbs:
+ colors = read_rgb_macros(rgbs.readlines())
+
+ if len(colors) == 2:
+ palette = palette[1:3]
+
+ text = png_to_rgb(palette)
+ with open(filename, 'w') as out:
+ out.write(text)
+
+
+def png_to_lz(filein):
+
+ name = os.path.splitext(filein)[0]
+
+ export_png_to_2bpp(filein)
+ image = open(name+'.2bpp', 'rb').read()
+ to_file(name+'.2bpp'+'.lz', Compressed(image).output)
+
+
+def convert_2bpp_to_1bpp(data):
+ """
+ Convert planar 2bpp image data to 1bpp. Assume images are two colors.
+ """
+ return data[::2]
+
+def convert_1bpp_to_2bpp(data):
+ """
+ Convert 1bpp image data to planar 2bpp (black/white).
+ """
+ output = []
+ for i in data:
+ output += [i, i]
+ return output
+
+
+def export_2bpp_to_1bpp(filename):
+ name, extension = os.path.splitext(filename)
+ image = open(filename, 'rb').read()
+ image = convert_2bpp_to_1bpp(image)
+ to_file(name + '.1bpp', image)
+
+def export_1bpp_to_2bpp(filename):
+ name, extension = os.path.splitext(filename)
+ image = open(filename, 'rb').read()
+ image = convert_1bpp_to_2bpp(image)
+ to_file(name + '.2bpp', image)
+
+
+def export_1bpp_to_png(filename, fileout=None):
+
+ if fileout == None:
+ fileout = os.path.splitext(filename)[0] + '.png'
+
+ arguments = read_filename_arguments(filename)
+
+ image = open(filename, 'rb').read()
+ image = convert_1bpp_to_2bpp(image)
+
+ result = convert_2bpp_to_png(image, **arguments)
+ width, height, palette, greyscale, bitdepth, px_map = result
+
+ w = png.Writer(width, height, palette=palette, compression=9, greyscale=greyscale, bitdepth=bitdepth)
+ with open(fileout, 'wb') as f:
+ w.write(f, px_map)
+
+
+def export_png_to_1bpp(filename, fileout=None):
+
+ if fileout == None:
+ fileout = os.path.splitext(filename)[0] + '.1bpp'
+
+ arguments = read_filename_arguments(filename)
+ image = png_to_1bpp(filename, **arguments)
+
+ to_file(fileout, image)
+
+def png_to_1bpp(filename, **kwargs):
+ image, kwargs = png_to_2bpp(filename, **kwargs)
+ return convert_2bpp_to_1bpp(image)
+
+
+def convert_to_2bpp(filenames=[]):
+ for filename in filenames:
+ filename, name, extension = try_decompress(filename)
+ if extension == '.1bpp':
+ export_1bpp_to_2bpp(filename)
+ elif extension == '.2bpp':
+ pass
+ elif extension == '.png':
+ export_png_to_2bpp(filename)
+ else:
+ raise Exception, "Don't know how to convert {} to 2bpp!".format(filename)
+
+def convert_to_1bpp(filenames=[]):
+ for filename in filenames:
+ filename, name, extension = try_decompress(filename)
+ if extension == '.1bpp':
+ pass
+ elif extension == '.2bpp':
+ export_2bpp_to_1bpp(filename)
+ elif extension == '.png':
+ export_png_to_1bpp(filename)
+ else:
+ raise Exception, "Don't know how to convert {} to 1bpp!".format(filename)
+
+def convert_to_png(filenames=[]):
+ for filename in filenames:
+ filename, name, extension = try_decompress(filename)
+ if extension == '.1bpp':
+ export_1bpp_to_png(filename)
+ elif extension == '.2bpp':
+ export_2bpp_to_png(filename)
+ elif extension == '.png':
+ pass
+ else:
+ raise Exception, "Don't know how to convert {} to png!".format(filename)
+
+def compress(filenames=[]):
+ for filename in filenames:
+ data = open(filename, 'rb').read()
+ lz_data = Compressed(data).output
+ to_file(filename + '.lz', lz_data)
+
+def decompress(filenames=[]):
+ for filename in filenames:
+ name, extension = os.path.splitext(filename)
+ lz_data = open(filename, 'rb').read()
+ data = Decompressed(lz_data).output
+ to_file(name, data)
+
+def try_decompress(filename):
+ """
+ Try to decompress a graphic when determining the filetype.
+ This skips the manual unlz step when attempting
+ to convert lz-compressed graphics to png.
+ """
+ name, extension = os.path.splitext(filename)
+ if extension == '.lz':
+ decompress([filename])
+ filename = name
+ name, extension = os.path.splitext(filename)
+ return filename, name, extension
+
+
+def main():
+ ap = argparse.ArgumentParser()
+ ap.add_argument('mode')
+ ap.add_argument('filenames', nargs='*')
+ args = ap.parse_args()
+
+ method = {
+ '2bpp': convert_to_2bpp,
+ '1bpp': convert_to_1bpp,
+ 'png': convert_to_png,
+ 'lz': compress,
+ 'unlz': decompress,
+ }.get(args.mode, None)
+
+ if method == None:
+ raise Exception, "Unknown conversion method!"
+
+ method(args.filenames)
+
+if __name__ == "__main__":
+ main()
--- /dev/null
+++ b/tools/pokemontools/lz.py
@@ -1,0 +1,580 @@
+# -*- coding: utf-8 -*-
+"""
+Pokemon Crystal data de/compression.
+"""
+
+"""
+A rundown of Pokemon Crystal's compression scheme:
+
+Control commands occupy bits 5-7.
+Bits 0-4 serve as the first parameter <n> for each command.
+"""
+lz_commands = {
+ 'literal': 0, # n values for n bytes
+ 'iterate': 1, # one value for n bytes
+ 'alternate': 2, # alternate two values for n bytes
+ 'blank': 3, # zero for n bytes
+}
+
+"""
+Repeater commands repeat any data that was just decompressed.
+They take an additional signed parameter <s> to mark a relative starting point.
+These wrap around (positive from the start, negative from the current position).
+"""
+lz_commands.update({
+ 'repeat': 4, # n bytes starting from s
+ 'flip': 5, # n bytes in reverse bit order starting from s
+ 'reverse': 6, # n bytes backwards starting from s
+})
+
+"""
+The long command is used when 5 bits aren't enough. Bits 2-4 contain a new control code.
+Bits 0-1 are appended to a new byte as 8-9, allowing a 10-bit parameter.
+"""
+lz_commands.update({
+ 'long': 7, # n is now 10 bits for a new control code
+})
+max_length = 1 << 10 # can't go higher than 10 bits
+lowmax = 1 << 5 # standard 5-bit param
+
+"""
+If 0xff is encountered instead of a command, decompression ends.
+"""
+lz_end = 0xff
+
+
+bit_flipped = [
+ sum(((byte >> i) & 1) << (7 - i) for i in xrange(8))
+ for byte in xrange(0x100)
+]
+
+
+class Compressed:
+
+ """
+ Usage:
+ lz = Compressed(data).output
+ or
+ lz = Compressed().compress(data)
+ or
+ c = Compressed()
+ c.data = data
+ lz = c.compress()
+
+ There are some issues with reproducing the target compressor.
+ Some notes are listed here:
+ - the criteria for detecting a lookback is inconsistent
+ - sometimes lookbacks that are mostly 0s are pruned, sometimes not
+ - target appears to skip ahead if it can use a lookback soon, stopping the current command short or in some cases truncating it with literals.
+ - this has been implemented, but the specifics are unknown
+ - self.min_scores: It's unknown if blank's minimum score should be 1 or 2. Most likely it's 1, with some other hack to account for edge cases.
+ - may be related to the above
+ - target does not appear to compress backwards
+ """
+
+ def __init__(self, *args, **kwargs):
+
+ self.min_scores = {
+ 'blank': 1,
+ 'iterate': 2,
+ 'alternate': 3,
+ 'repeat': 3,
+ 'reverse': 3,
+ 'flip': 3,
+ }
+
+ self.preference = [
+ 'repeat',
+ 'blank',
+ 'flip',
+ 'reverse',
+ 'iterate',
+ 'alternate',
+ #'literal',
+ ]
+
+ self.lookback_methods = 'repeat', 'reverse', 'flip'
+
+ self.__dict__.update({
+ 'data': None,
+ 'commands': lz_commands,
+ 'debug': False,
+ 'literal_only': False,
+ })
+
+ self.arg_names = 'data', 'commands', 'debug', 'literal_only'
+
+ self.__dict__.update(kwargs)
+ self.__dict__.update(dict(zip(self.arg_names, args)))
+
+ if self.data is not None:
+ self.compress()
+
+ def compress(self, data=None):
+ if data is not None:
+ self.data = data
+
+ self.data = list(bytearray(self.data))
+
+ self.indexes = {}
+ self.lookbacks = {}
+ for method in self.lookback_methods:
+ self.lookbacks[method] = {}
+
+ self.address = 0
+ self.end = len(self.data)
+ self.output = []
+ self.literal = None
+
+ while self.address < self.end:
+
+ if self.score():
+ self.do_literal()
+ self.do_winner()
+
+ else:
+ if self.literal == None:
+ self.literal = self.address
+ self.address += 1
+
+ self.do_literal()
+
+ self.output += [lz_end]
+ return self.output
+
+ def reset_scores(self):
+ self.scores = {}
+ self.offsets = {}
+ self.helpers = {}
+ for method in self.min_scores.iterkeys():
+ self.scores[method] = 0
+
+ def bit_flip(self, byte):
+ return bit_flipped[byte]
+
+ def do_literal(self):
+ if self.literal != None:
+ length = abs(self.address - self.literal)
+ start = min(self.literal, self.address + 1)
+ self.helpers['literal'] = self.data[start:start+length]
+ self.do_cmd('literal', length)
+ self.literal = None
+
+ def score(self):
+ self.reset_scores()
+
+ map(self.score_literal, ['iterate', 'alternate', 'blank'])
+
+ for method in self.lookback_methods:
+ self.scores[method], self.offsets[method] = self.find_lookback(method, self.address)
+
+ self.stop_short()
+
+ return any(
+ score
+ > self.min_scores[method] + int(score > lowmax)
+ for method, score in self.scores.iteritems()
+ )
+
+ def stop_short(self):
+ """
+ If a lookback is close, reduce the scores of other commands.
+ """
+ best_method, best_score = max(
+ self.scores.items(),
+ key = lambda x: (
+ x[1],
+ -self.preference.index(x[0])
+ )
+ )
+ for method in self.lookback_methods:
+ min_score = self.min_scores[method]
+ for address in xrange(self.address+1, self.address+best_score):
+ length, index = self.find_lookback(method, address)
+ if length > max(min_score, best_score):
+ # BUG: lookbacks can reduce themselves. This appears to be a bug in the target also.
+ for m, score in self.scores.items():
+ self.scores[m] = min(score, address - self.address)
+
+
+ def read(self, address=None):
+ if address is None:
+ address = self.address
+ if 0 <= address < len(self.data):
+ return self.data[address]
+ return None
+
+ def find_all_lookbacks(self):
+ for method in self.lookback_methods:
+ for address, byte in enumerate(self.data):
+ self.find_lookback(method, address)
+
+ def find_lookback(self, method, address=None):
+ """Temporarily stubbed, because the real function doesn't run in polynomial time."""
+ return 0, None
+
+ def broken_find_lookback(self, method, address=None):
+ if address is None:
+ address = self.address
+
+ existing = self.lookbacks.get(method, {}).get(address)
+ if existing != None:
+ return existing
+
+ lookback = 0, None
+
+ # Better to not carelessly optimize at the moment.
+ """
+ if address < 2:
+ return lookback
+ """
+
+ byte = self.read(address)
+ if byte is None:
+ return lookback
+
+ direction, mutate = {
+ 'repeat': ( 1, int),
+ 'reverse': (-1, int),
+ 'flip': ( 1, self.bit_flip),
+ }[method]
+
+ # Doesn't seem to help
+ """
+ if mutate == self.bit_flip:
+ if byte == 0:
+ self.lookbacks[method][address] = lookback
+ return lookback
+ """
+
+ data_len = len(self.data)
+ is_two_byte_index = lambda index: int(index < address - 0x7f)
+
+ for index in self.get_indexes(mutate(byte)):
+
+ if index >= address:
+ break
+
+ old_length, old_index = lookback
+ if direction == 1:
+ if old_length > data_len - index: break
+ else:
+ if old_length > index: continue
+
+ if self.read(index) in [None]: continue
+
+ length = 1 # we know there's at least one match, or we wouldn't be checking this index
+ while 1:
+ this_byte = self.read(address + length)
+ that_byte = self.read(index + length * direction)
+ if that_byte == None or this_byte != mutate(that_byte):
+ break
+ length += 1
+
+ score = length - is_two_byte_index(index)
+ old_score = old_length - is_two_byte_index(old_index)
+ if score >= old_score or (score == old_score and length > old_length):
+ # XXX maybe avoid two-byte indexes when possible
+ if score >= lookback[0] - is_two_byte_index(lookback[1]):
+ lookback = length, index
+
+ self.lookbacks[method][address] = lookback
+ return lookback
+
+ def get_indexes(self, byte):
+ if not self.indexes.has_key(byte):
+ self.indexes[byte] = []
+ index = -1
+ while 1:
+ try:
+ index = self.data.index(byte, index + 1)
+ except ValueError:
+ break
+ self.indexes[byte].append(index)
+ return self.indexes[byte]
+
+ def score_literal(self, method):
+ address = self.address
+
+ compare = {
+ 'blank': [0],
+ 'iterate': [self.read(address)],
+ 'alternate': [self.read(address), self.read(address + 1)],
+ }[method]
+
+ # XXX may or may not be correct
+ if method == 'alternate' and compare[0] == 0:
+ return
+
+ length = 0
+ while self.read(address + length) == compare[length % len(compare)]:
+ length += 1
+
+ self.scores[method] = length
+ self.helpers[method] = compare
+
+ def do_winner(self):
+ winners = filter(
+ lambda (method, score):
+ score
+ > self.min_scores[method] + int(score > lowmax),
+ self.scores.iteritems()
+ )
+ winners.sort(
+ key = lambda (method, score): (
+ -(score - self.min_scores[method] - int(score > lowmax)),
+ self.preference.index(method)
+ )
+ )
+ winner, score = winners[0]
+
+ length = min(score, max_length)
+ self.do_cmd(winner, length)
+ self.address += length
+
+ def do_cmd(self, cmd, length):
+ start_address = self.address
+
+ cmd_length = length - 1
+
+ output = []
+
+ if length > lowmax:
+ output.append(
+ (self.commands['long'] << 5)
+ + (self.commands[cmd] << 2)
+ + (cmd_length >> 8)
+ )
+ output.append(
+ cmd_length & 0xff
+ )
+ else:
+ output.append(
+ (self.commands[cmd] << 5)
+ + cmd_length
+ )
+
+ self.helpers['blank'] = [] # quick hack
+ output += self.helpers.get(cmd, [])
+
+ if cmd in self.lookback_methods:
+ offset = self.offsets[cmd]
+ # Negative offsets are one byte.
+ # Positive offsets are two.
+ if 0 < start_address - offset - 1 <= 0x7f:
+ offset = (start_address - offset - 1) | 0x80
+ output += [offset]
+ else:
+ output += [offset / 0x100, offset % 0x100] # big endian
+
+ if self.debug:
+ print ' '.join(map(str, [
+ cmd, length, '\t',
+ ' '.join(map('{:02x}'.format, output)),
+ self.data[start_address:start_address+length] if cmd in self.lookback_methods else '',
+ ]))
+
+ self.output += output
+
+
+
+class Decompressed:
+ """
+ Interpret and decompress lz-compressed data, usually 2bpp.
+ """
+
+ """
+ Usage:
+ data = Decompressed(lz).output
+ or
+ data = Decompressed().decompress(lz)
+ or
+ d = Decompressed()
+ d.lz = lz
+ data = d.decompress()
+
+ To decompress from offset 0x80000 in a rom:
+ data = Decompressed(rom, start=0x80000).output
+ """
+
+ lz = None
+ start = 0
+ commands = lz_commands
+ debug = False
+
+ arg_names = 'lz', 'start', 'commands', 'debug'
+
+ def __init__(self, *args, **kwargs):
+ self.__dict__.update(dict(zip(self.arg_names, args)))
+ self.__dict__.update(kwargs)
+
+ self.command_names = dict(map(reversed, self.commands.items()))
+ self.address = self.start
+
+ if self.lz is not None:
+ self.decompress()
+
+ if self.debug: print self.command_list()
+
+
+ def command_list(self):
+ """
+ Print a list of commands that were used. Useful for debugging.
+ """
+
+ text = ''
+
+ output_address = 0
+ for name, attrs in self.used_commands:
+ length = attrs['length']
+ address = attrs['address']
+ offset = attrs['offset']
+ direction = attrs['direction']
+
+ text += '{2:03x} {0}: {1}'.format(name, length, output_address)
+ text += '\t' + ' '.join(
+ '{:02x}'.format(int(byte))
+ for byte in self.lz[ address : address + attrs['cmd_length'] ]
+ )
+
+ if offset is not None:
+ repeated_data = self.output[ offset : offset + length * direction : direction ]
+ if name == 'flip':
+ repeated_data = map(bit_flipped.__getitem__, repeated_data)
+ text += ' [' + ' '.join(map('{:02x}'.format, repeated_data)) + ']'
+
+ text += '\n'
+ output_address += length
+
+ return text
+
+
+ def decompress(self, lz=None):
+
+ if lz is not None:
+ self.lz = lz
+
+ self.lz = bytearray(self.lz)
+
+ self.used_commands = []
+ self.output = []
+
+ while 1:
+
+ cmd_address = self.address
+ self.offset = None
+ self.direction = None
+
+ if (self.byte == lz_end):
+ self.next()
+ break
+
+ self.cmd = (self.byte & 0b11100000) >> 5
+
+ if self.cmd_name == 'long':
+ # 10-bit length
+ self.cmd = (self.byte & 0b00011100) >> 2
+ self.length = (self.next() & 0b00000011) * 0x100
+ self.length += self.next() + 1
+ else:
+ # 5-bit length
+ self.length = (self.next() & 0b00011111) + 1
+
+ self.__class__.__dict__[self.cmd_name](self)
+
+ self.used_commands += [(
+ self.cmd_name,
+ {
+ 'length': self.length,
+ 'address': cmd_address,
+ 'offset': self.offset,
+ 'cmd_length': self.address - cmd_address,
+ 'direction': self.direction,
+ }
+ )]
+
+ # Keep track of the data we just decompressed.
+ self.compressed_data = self.lz[self.start : self.address]
+
+
+ @property
+ def byte(self):
+ return self.lz[ self.address ]
+
+ def next(self):
+ byte = self.byte
+ self.address += 1
+ return byte
+
+ @property
+ def cmd_name(self):
+ return self.command_names.get(self.cmd)
+
+
+ def get_offset(self):
+
+ if self.byte >= 0x80: # negative
+ # negative
+ offset = self.next() & 0x7f
+ offset = len(self.output) - offset - 1
+ else:
+ # positive
+ offset = self.next() * 0x100
+ offset += self.next()
+
+ self.offset = offset
+
+
+ def literal(self):
+ """
+ Copy data directly.
+ """
+ self.output += self.lz[ self.address : self.address + self.length ]
+ self.address += self.length
+
+ def iterate(self):
+ """
+ Write one byte repeatedly.
+ """
+ self.output += [self.next()] * self.length
+
+ def alternate(self):
+ """
+ Write alternating bytes.
+ """
+ alts = [self.next(), self.next()]
+ self.output += [ alts[x & 1] for x in xrange(self.length) ]
+
+ def blank(self):
+ """
+ Write zeros.
+ """
+ self.output += [0] * self.length
+
+ def flip(self):
+ """
+ Repeat flipped bytes from output.
+
+ Example: 11100100 -> 00100111
+ """
+ self._repeat(table=bit_flipped)
+
+ def reverse(self):
+ """
+ Repeat reversed bytes from output.
+ """
+ self._repeat(direction=-1)
+
+ def repeat(self):
+ """
+ Repeat bytes from output.
+ """
+ self._repeat()
+
+ def _repeat(self, direction=1, table=None):
+ self.get_offset()
+ self.direction = direction
+ # Note: appends must be one at a time (this way, repeats can draw from themselves if required)
+ for i in xrange(self.length):
+ byte = self.output[ self.offset + i * direction ]
+ self.output.append( table[byte] if table else byte )
--- /dev/null
+++ b/tools/pokemontools/png.py
@@ -1,0 +1,2650 @@
+#!/usr/bin/env python
+
+from __future__ import print_function
+
+# png.py - PNG encoder/decoder in pure Python
+#
+# Copyright (C) 2006 Johann C. Rocholl <johann@browsershots.org>
+# Portions Copyright (C) 2009 David Jones <drj@pobox.com>
+# And probably portions Copyright (C) 2006 Nicko van Someren <nicko@nicko.org>
+#
+# Original concept by Johann C. Rocholl.
+#
+# LICENCE (MIT)
+#
+# Permission is hereby granted, free of charge, to any person
+# obtaining a copy of this software and associated documentation files
+# (the "Software"), to deal in the Software without restriction,
+# including without limitation the rights to use, copy, modify, merge,
+# publish, distribute, sublicense, and/or sell copies of the Software,
+# and to permit persons to whom the Software is furnished to do so,
+# subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be
+# included in all copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
+
+"""
+Pure Python PNG Reader/Writer
+
+This Python module implements support for PNG images (see PNG
+specification at http://www.w3.org/TR/2003/REC-PNG-20031110/ ). It reads
+and writes PNG files with all allowable bit depths
+(1/2/4/8/16/24/32/48/64 bits per pixel) and colour combinations:
+greyscale (1/2/4/8/16 bit); RGB, RGBA, LA (greyscale with alpha) with
+8/16 bits per channel; colour mapped images (1/2/4/8 bit).
+Adam7 interlacing is supported for reading and
+writing. A number of optional chunks can be specified (when writing)
+and understood (when reading): ``tRNS``, ``bKGD``, ``gAMA``.
+
+For help, type ``import png; help(png)`` in your python interpreter.
+
+A good place to start is the :class:`Reader` and :class:`Writer`
+classes.
+
+Requires Python 2.3. Limited support is available for Python 2.2, but
+not everything works. Best with Python 2.4 and higher. Installation is
+trivial, but see the ``README.txt`` file (with the source distribution)
+for details.
+
+This file can also be used as a command-line utility to convert
+`Netpbm <http://netpbm.sourceforge.net/>`_ PNM files to PNG, and the
+reverse conversion from PNG to PNM. The interface is similar to that
+of the ``pnmtopng`` program from Netpbm. Type ``python png.py --help``
+at the shell prompt for usage and a list of options.
+
+A note on spelling and terminology
+----------------------------------
+
+Generally British English spelling is used in the documentation. So
+that's "greyscale" and "colour". This not only matches the author's
+native language, it's also used by the PNG specification.
+
+The major colour models supported by PNG (and hence by PyPNG) are:
+greyscale, RGB, greyscale--alpha, RGB--alpha. These are sometimes
+referred to using the abbreviations: L, RGB, LA, RGBA. In this case
+each letter abbreviates a single channel: *L* is for Luminance or Luma
+or Lightness which is the channel used in greyscale images; *R*, *G*,
+*B* stand for Red, Green, Blue, the components of a colour image; *A*
+stands for Alpha, the opacity channel (used for transparency effects,
+but higher values are more opaque, so it makes sense to call it
+opacity).
+
+A note on formats
+-----------------
+
+When getting pixel data out of this module (reading) and presenting
+data to this module (writing) there are a number of ways the data could
+be represented as a Python value. Generally this module uses one of
+three formats called "flat row flat pixel", "boxed row flat pixel", and
+"boxed row boxed pixel". Basically the concern is whether each pixel
+and each row comes in its own little tuple (box), or not.
+
+Consider an image that is 3 pixels wide by 2 pixels high, and each pixel
+has RGB components:
+
+Boxed row flat pixel::
+
+ list([R,G,B, R,G,B, R,G,B],
+ [R,G,B, R,G,B, R,G,B])
+
+Each row appears as its own list, but the pixels are flattened so
+that three values for one pixel simply follow the three values for
+the previous pixel. This is the most common format used, because it
+provides a good compromise between space and convenience. PyPNG regards
+itself as at liberty to replace any sequence type with any sufficiently
+compatible other sequence type; in practice each row is an array (from
+the array module), and the outer list is sometimes an iterator rather
+than an explicit list (so that streaming is possible).
+
+Flat row flat pixel::
+
+ [R,G,B, R,G,B, R,G,B,
+ R,G,B, R,G,B, R,G,B]
+
+The entire image is one single giant sequence of colour values.
+Generally an array will be used (to save space), not a list.
+
+Boxed row boxed pixel::
+
+ list([ (R,G,B), (R,G,B), (R,G,B) ],
+ [ (R,G,B), (R,G,B), (R,G,B) ])
+
+Each row appears in its own list, but each pixel also appears in its own
+tuple. A serious memory burn in Python.
+
+In all cases the top row comes first, and for each row the pixels are
+ordered from left-to-right. Within a pixel the values appear in the
+order, R-G-B-A (or L-A for greyscale--alpha).
+
+There is a fourth format, mentioned because it is used internally,
+is close to what lies inside a PNG file itself, and has some support
+from the public API. This format is called packed. When packed,
+each row is a sequence of bytes (integers from 0 to 255), just as
+it is before PNG scanline filtering is applied. When the bit depth
+is 8 this is essentially the same as boxed row flat pixel; when the
+bit depth is less than 8, several pixels are packed into each byte;
+when the bit depth is 16 (the only value more than 8 that is supported
+by the PNG image format) each pixel value is decomposed into 2 bytes
+(and `packed` is a misnomer). This format is used by the
+:meth:`Writer.write_packed` method. It isn't usually a convenient
+format, but may be just right if the source data for the PNG image
+comes from something that uses a similar format (for example, 1-bit
+BMPs, or another PNG file).
+
+And now, my famous members
+--------------------------
+"""
+
+__version__ = "0.0.18"
+
+import itertools
+import math
+# http://www.python.org/doc/2.4.4/lib/module-operator.html
+import operator
+import struct
+import sys
+# http://www.python.org/doc/2.4.4/lib/module-warnings.html
+import warnings
+import zlib
+
+from array import array
+from functools import reduce
+
+try:
+ # `cpngfilters` is a Cython module: it must be compiled by
+ # Cython for this import to work.
+ # If this import does work, then it overrides pure-python
+ # filtering functions defined later in this file (see `class
+ # pngfilters`).
+ import cpngfilters as pngfilters
+except ImportError:
+ pass
+
+
+__all__ = ['Image', 'Reader', 'Writer', 'write_chunks', 'from_array']
+
+
+# The PNG signature.
+# http://www.w3.org/TR/PNG/#5PNG-file-signature
+_signature = struct.pack('8B', 137, 80, 78, 71, 13, 10, 26, 10)
+
+_adam7 = ((0, 0, 8, 8),
+ (4, 0, 8, 8),
+ (0, 4, 4, 8),
+ (2, 0, 4, 4),
+ (0, 2, 2, 4),
+ (1, 0, 2, 2),
+ (0, 1, 1, 2))
+
+def group(s, n):
+ # See http://www.python.org/doc/2.6/library/functions.html#zip
+ return list(zip(*[iter(s)]*n))
+
+def isarray(x):
+ return isinstance(x, array)
+
+def tostring(row):
+ return row.tostring()
+
+def interleave_planes(ipixels, apixels, ipsize, apsize):
+ """
+ Interleave (colour) planes, e.g. RGB + A = RGBA.
+
+ Return an array of pixels consisting of the `ipsize` elements of
+ data from each pixel in `ipixels` followed by the `apsize` elements
+ of data from each pixel in `apixels`. Conventionally `ipixels`
+ and `apixels` are byte arrays so the sizes are bytes, but it
+ actually works with any arrays of the same type. The returned
+ array is the same type as the input arrays which should be the
+ same type as each other.
+ """
+
+ itotal = len(ipixels)
+ atotal = len(apixels)
+ newtotal = itotal + atotal
+ newpsize = ipsize + apsize
+ # Set up the output buffer
+ # See http://www.python.org/doc/2.4.4/lib/module-array.html#l2h-1356
+ out = array(ipixels.typecode)
+ # It's annoying that there is no cheap way to set the array size :-(
+ out.extend(ipixels)
+ out.extend(apixels)
+ # Interleave in the pixel data
+ for i in range(ipsize):
+ out[i:newtotal:newpsize] = ipixels[i:itotal:ipsize]
+ for i in range(apsize):
+ out[i+ipsize:newtotal:newpsize] = apixels[i:atotal:apsize]
+ return out
+
+def check_palette(palette):
+ """Check a palette argument (to the :class:`Writer` class)
+ for validity. Returns the palette as a list if okay; raises an
+ exception otherwise.
+ """
+
+ # None is the default and is allowed.
+ if palette is None:
+ return None
+
+ p = list(palette)
+ if not (0 < len(p) <= 256):
+ raise ValueError("a palette must have between 1 and 256 entries")
+ seen_triple = False
+ for i,t in enumerate(p):
+ if len(t) not in (3,4):
+ raise ValueError(
+ "palette entry %d: entries must be 3- or 4-tuples." % i)
+ if len(t) == 3:
+ seen_triple = True
+ if seen_triple and len(t) == 4:
+ raise ValueError(
+ "palette entry %d: all 4-tuples must precede all 3-tuples" % i)
+ for x in t:
+ if int(x) != x or not(0 <= x <= 255):
+ raise ValueError(
+ "palette entry %d: values must be integer: 0 <= x <= 255" % i)
+ return p
+
+def check_sizes(size, width, height):
+ """Check that these arguments, in supplied, are consistent.
+ Return a (width, height) pair.
+ """
+
+ if not size:
+ return width, height
+
+ if len(size) != 2:
+ raise ValueError(
+ "size argument should be a pair (width, height)")
+ if width is not None and width != size[0]:
+ raise ValueError(
+ "size[0] (%r) and width (%r) should match when both are used."
+ % (size[0], width))
+ if height is not None and height != size[1]:
+ raise ValueError(
+ "size[1] (%r) and height (%r) should match when both are used."
+ % (size[1], height))
+ return size
+
+def check_color(c, greyscale, which):
+ """Checks that a colour argument for transparent or
+ background options is the right form. Returns the colour
+ (which, if it's a bar integer, is "corrected" to a 1-tuple).
+ """
+
+ if c is None:
+ return c
+ if greyscale:
+ try:
+ len(c)
+ except TypeError:
+ c = (c,)
+ if len(c) != 1:
+ raise ValueError("%s for greyscale must be 1-tuple" %
+ which)
+ if not isinteger(c[0]):
+ raise ValueError(
+ "%s colour for greyscale must be integer" % which)
+ else:
+ if not (len(c) == 3 and
+ isinteger(c[0]) and
+ isinteger(c[1]) and
+ isinteger(c[2])):
+ raise ValueError(
+ "%s colour must be a triple of integers" % which)
+ return c
+
+class Error(Exception):
+ def __str__(self):
+ return self.__class__.__name__ + ': ' + ' '.join(self.args)
+
+class FormatError(Error):
+ """Problem with input file format. In other words, PNG file does
+ not conform to the specification in some way and is invalid.
+ """
+
+class ChunkError(FormatError):
+ pass
+
+
+class Writer:
+ """
+ PNG encoder in pure Python.
+ """
+
+ def __init__(self, width=None, height=None,
+ size=None,
+ greyscale=False,
+ alpha=False,
+ bitdepth=8,
+ palette=None,
+ transparent=None,
+ background=None,
+ gamma=None,
+ compression=None,
+ interlace=False,
+ bytes_per_sample=None, # deprecated
+ planes=None,
+ colormap=None,
+ maxval=None,
+ chunk_limit=2**20,
+ x_pixels_per_unit = None,
+ y_pixels_per_unit = None,
+ unit_is_meter = False):
+ """
+ Create a PNG encoder object.
+
+ Arguments:
+
+ width, height
+ Image size in pixels, as two separate arguments.
+ size
+ Image size (w,h) in pixels, as single argument.
+ greyscale
+ Input data is greyscale, not RGB.
+ alpha
+ Input data has alpha channel (RGBA or LA).
+ bitdepth
+ Bit depth: from 1 to 16.
+ palette
+ Create a palette for a colour mapped image (colour type 3).
+ transparent
+ Specify a transparent colour (create a ``tRNS`` chunk).
+ background
+ Specify a default background colour (create a ``bKGD`` chunk).
+ gamma
+ Specify a gamma value (create a ``gAMA`` chunk).
+ compression
+ zlib compression level: 0 (none) to 9 (more compressed);
+ default: -1 or None.
+ interlace
+ Create an interlaced image.
+ chunk_limit
+ Write multiple ``IDAT`` chunks to save memory.
+ x_pixels_per_unit
+ Number of pixels a unit along the x axis (write a
+ `pHYs` chunk).
+ y_pixels_per_unit
+ Number of pixels a unit along the y axis (write a
+ `pHYs` chunk). Along with `x_pixel_unit`, this gives
+ the pixel size ratio.
+ unit_is_meter
+ `True` to indicate that the unit (for the `pHYs`
+ chunk) is metre.
+
+ The image size (in pixels) can be specified either by using the
+ `width` and `height` arguments, or with the single `size`
+ argument. If `size` is used it should be a pair (*width*,
+ *height*).
+
+ `greyscale` and `alpha` are booleans that specify whether
+ an image is greyscale (or colour), and whether it has an
+ alpha channel (or not).
+
+ `bitdepth` specifies the bit depth of the source pixel values.
+ Each source pixel value must be an integer between 0 and
+ ``2**bitdepth-1``. For example, 8-bit images have values
+ between 0 and 255. PNG only stores images with bit depths of
+ 1,2,4,8, or 16. When `bitdepth` is not one of these values,
+ the next highest valid bit depth is selected, and an ``sBIT``
+ (significant bits) chunk is generated that specifies the
+ original precision of the source image. In this case the
+ supplied pixel values will be rescaled to fit the range of
+ the selected bit depth.
+
+ The details of which bit depth / colour model combinations the
+ PNG file format supports directly, are somewhat arcane
+ (refer to the PNG specification for full details). Briefly:
+ "small" bit depths (1,2,4) are only allowed with greyscale and
+ colour mapped images; colour mapped images cannot have bit depth
+ 16.
+
+ For colour mapped images (in other words, when the `palette`
+ argument is specified) the `bitdepth` argument must match one of
+ the valid PNG bit depths: 1, 2, 4, or 8. (It is valid to have a
+ PNG image with a palette and an ``sBIT`` chunk, but the meaning
+ is slightly different; it would be awkward to press the
+ `bitdepth` argument into service for this.)
+
+ The `palette` option, when specified, causes a colour
+ mapped image to be created: the PNG colour type is set to 3;
+ `greyscale` must not be set; `alpha` must not be set;
+ `transparent` must not be set; the bit depth must be 1,2,4,
+ or 8. When a colour mapped image is created, the pixel values
+ are palette indexes and the `bitdepth` argument specifies the
+ size of these indexes (not the size of the colour values in
+ the palette).
+
+ The palette argument value should be a sequence of 3- or
+ 4-tuples. 3-tuples specify RGB palette entries; 4-tuples
+ specify RGBA palette entries. If both 4-tuples and 3-tuples
+ appear in the sequence then all the 4-tuples must come
+ before all the 3-tuples. A ``PLTE`` chunk is created; if there
+ are 4-tuples then a ``tRNS`` chunk is created as well. The
+ ``PLTE`` chunk will contain all the RGB triples in the same
+ sequence; the ``tRNS`` chunk will contain the alpha channel for
+ all the 4-tuples, in the same sequence. Palette entries
+ are always 8-bit.
+
+ If specified, the `transparent` and `background` parameters must
+ be a tuple with three integer values for red, green, blue, or
+ a simple integer (or singleton tuple) for a greyscale image.
+
+ If specified, the `gamma` parameter must be a positive number
+ (generally, a `float`). A ``gAMA`` chunk will be created.
+ Note that this will not change the values of the pixels as
+ they appear in the PNG file, they are assumed to have already
+ been converted appropriately for the gamma specified.
+
+ The `compression` argument specifies the compression level to
+ be used by the ``zlib`` module. Values from 1 to 9 specify
+ compression, with 9 being "more compressed" (usually smaller
+ and slower, but it doesn't always work out that way). 0 means
+ no compression. -1 and ``None`` both mean that the default
+ level of compession will be picked by the ``zlib`` module
+ (which is generally acceptable).
+
+ If `interlace` is true then an interlaced image is created
+ (using PNG's so far only interace method, *Adam7*). This does
+ not affect how the pixels should be presented to the encoder,
+ rather it changes how they are arranged into the PNG file.
+ On slow connexions interlaced images can be partially decoded
+ by the browser to give a rough view of the image that is
+ successively refined as more image data appears.
+
+ .. note ::
+
+ Enabling the `interlace` option requires the entire image
+ to be processed in working memory.
+
+ `chunk_limit` is used to limit the amount of memory used whilst
+ compressing the image. In order to avoid using large amounts of
+ memory, multiple ``IDAT`` chunks may be created.
+ """
+
+ # At the moment the `planes` argument is ignored;
+ # its purpose is to act as a dummy so that
+ # ``Writer(x, y, **info)`` works, where `info` is a dictionary
+ # returned by Reader.read and friends.
+ # Ditto for `colormap`.
+
+ width, height = check_sizes(size, width, height)
+ del size
+
+ if width <= 0 or height <= 0:
+ raise ValueError("width and height must be greater than zero")
+ if not isinteger(width) or not isinteger(height):
+ raise ValueError("width and height must be integers")
+ # http://www.w3.org/TR/PNG/#7Integers-and-byte-order
+ if width > 2**32-1 or height > 2**32-1:
+ raise ValueError("width and height cannot exceed 2**32-1")
+
+ if alpha and transparent is not None:
+ raise ValueError(
+ "transparent colour not allowed with alpha channel")
+
+ if bytes_per_sample is not None:
+ warnings.warn('please use bitdepth instead of bytes_per_sample',
+ DeprecationWarning)
+ if bytes_per_sample not in (0.125, 0.25, 0.5, 1, 2):
+ raise ValueError(
+ "bytes per sample must be .125, .25, .5, 1, or 2")
+ bitdepth = int(8*bytes_per_sample)
+ del bytes_per_sample
+ if not isinteger(bitdepth) or bitdepth < 1 or 16 < bitdepth:
+ raise ValueError("bitdepth (%r) must be a positive integer <= 16" %
+ bitdepth)
+
+ self.rescale = None
+ palette = check_palette(palette)
+ if palette:
+ if bitdepth not in (1,2,4,8):
+ raise ValueError("with palette, bitdepth must be 1, 2, 4, or 8")
+ if transparent is not None:
+ raise ValueError("transparent and palette not compatible")
+ if alpha:
+ raise ValueError("alpha and palette not compatible")
+ if greyscale:
+ raise ValueError("greyscale and palette not compatible")
+ else:
+ # No palette, check for sBIT chunk generation.
+ if alpha or not greyscale:
+ if bitdepth not in (8,16):
+ targetbitdepth = (8,16)[bitdepth > 8]
+ self.rescale = (bitdepth, targetbitdepth)
+ bitdepth = targetbitdepth
+ del targetbitdepth
+ else:
+ assert greyscale
+ assert not alpha
+ if bitdepth not in (1,2,4,8,16):
+ if bitdepth > 8:
+ targetbitdepth = 16
+ elif bitdepth == 3:
+ targetbitdepth = 4
+ else:
+ assert bitdepth in (5,6,7)
+ targetbitdepth = 8
+ self.rescale = (bitdepth, targetbitdepth)
+ bitdepth = targetbitdepth
+ del targetbitdepth
+
+ if bitdepth < 8 and (alpha or not greyscale and not palette):
+ raise ValueError(
+ "bitdepth < 8 only permitted with greyscale or palette")
+ if bitdepth > 8 and palette:
+ raise ValueError(
+ "bit depth must be 8 or less for images with palette")
+
+ transparent = check_color(transparent, greyscale, 'transparent')
+ background = check_color(background, greyscale, 'background')
+
+ # It's important that the true boolean values (greyscale, alpha,
+ # colormap, interlace) are converted to bool because Iverson's
+ # convention is relied upon later on.
+ self.width = width
+ self.height = height
+ self.transparent = transparent
+ self.background = background
+ self.gamma = gamma
+ self.greyscale = bool(greyscale)
+ self.alpha = bool(alpha)
+ self.colormap = bool(palette)
+ self.bitdepth = int(bitdepth)
+ self.compression = compression
+ self.chunk_limit = chunk_limit
+ self.interlace = bool(interlace)
+ self.palette = palette
+ self.x_pixels_per_unit = x_pixels_per_unit
+ self.y_pixels_per_unit = y_pixels_per_unit
+ self.unit_is_meter = bool(unit_is_meter)
+
+ self.color_type = 4*self.alpha + 2*(not greyscale) + 1*self.colormap
+ assert self.color_type in (0,2,3,4,6)
+
+ self.color_planes = (3,1)[self.greyscale or self.colormap]
+ self.planes = self.color_planes + self.alpha
+ # :todo: fix for bitdepth < 8
+ self.psize = (self.bitdepth/8) * self.planes
+
+ def make_palette(self):
+ """Create the byte sequences for a ``PLTE`` and if necessary a
+ ``tRNS`` chunk. Returned as a pair (*p*, *t*). *t* will be
+ ``None`` if no ``tRNS`` chunk is necessary.
+ """
+
+ p = array('B')
+ t = array('B')
+
+ for x in self.palette:
+ p.extend(x[0:3])
+ if len(x) > 3:
+ t.append(x[3])
+ p = tostring(p)
+ t = tostring(t)
+ if t:
+ return p,t
+ return p,None
+
+ def write(self, outfile, rows):
+ """Write a PNG image to the output file. `rows` should be
+ an iterable that yields each row in boxed row flat pixel
+ format. The rows should be the rows of the original image,
+ so there should be ``self.height`` rows of ``self.width *
+ self.planes`` values. If `interlace` is specified (when
+ creating the instance), then an interlaced PNG file will
+ be written. Supply the rows in the normal image order;
+ the interlacing is carried out internally.
+
+ .. note ::
+
+ Interlacing will require the entire image to be in working
+ memory.
+ """
+
+ if self.interlace:
+ fmt = 'BH'[self.bitdepth > 8]
+ a = array(fmt, itertools.chain(*rows))
+ return self.write_array(outfile, a)
+
+ nrows = self.write_passes(outfile, rows)
+ if nrows != self.height:
+ raise ValueError(
+ "rows supplied (%d) does not match height (%d)" %
+ (nrows, self.height))
+
+ def write_passes(self, outfile, rows, packed=False):
+ """
+ Write a PNG image to the output file.
+
+ Most users are expected to find the :meth:`write` or
+ :meth:`write_array` method more convenient.
+
+ The rows should be given to this method in the order that
+ they appear in the output file. For straightlaced images,
+ this is the usual top to bottom ordering, but for interlaced
+ images the rows should have already been interlaced before
+ passing them to this function.
+
+ `rows` should be an iterable that yields each row. When
+ `packed` is ``False`` the rows should be in boxed row flat pixel
+ format; when `packed` is ``True`` each row should be a packed
+ sequence of bytes.
+ """
+
+ # http://www.w3.org/TR/PNG/#5PNG-file-signature
+ outfile.write(_signature)
+
+ # http://www.w3.org/TR/PNG/#11IHDR
+ write_chunk(outfile, b'IHDR',
+ struct.pack("!2I5B", self.width, self.height,
+ self.bitdepth, self.color_type,
+ 0, 0, self.interlace))
+
+ # See :chunk:order
+ # http://www.w3.org/TR/PNG/#11gAMA
+ if self.gamma is not None:
+ write_chunk(outfile, b'gAMA',
+ struct.pack("!L", int(round(self.gamma*1e5))))
+
+ # See :chunk:order
+ # http://www.w3.org/TR/PNG/#11sBIT
+ if self.rescale:
+ write_chunk(outfile, b'sBIT',
+ struct.pack('%dB' % self.planes,
+ *[self.rescale[0]]*self.planes))
+
+ # :chunk:order: Without a palette (PLTE chunk), ordering is
+ # relatively relaxed. With one, gAMA chunk must precede PLTE
+ # chunk which must precede tRNS and bKGD.
+ # See http://www.w3.org/TR/PNG/#5ChunkOrdering
+ if self.palette:
+ p,t = self.make_palette()
+ write_chunk(outfile, b'PLTE', p)
+ if t:
+ # tRNS chunk is optional. Only needed if palette entries
+ # have alpha.
+ write_chunk(outfile, b'tRNS', t)
+
+ # http://www.w3.org/TR/PNG/#11tRNS
+ if self.transparent is not None:
+ if self.greyscale:
+ write_chunk(outfile, b'tRNS',
+ struct.pack("!1H", *self.transparent))
+ else:
+ write_chunk(outfile, b'tRNS',
+ struct.pack("!3H", *self.transparent))
+
+ # http://www.w3.org/TR/PNG/#11bKGD
+ if self.background is not None:
+ if self.greyscale:
+ write_chunk(outfile, b'bKGD',
+ struct.pack("!1H", *self.background))
+ else:
+ write_chunk(outfile, b'bKGD',
+ struct.pack("!3H", *self.background))
+
+ # http://www.w3.org/TR/PNG/#11pHYs
+ if self.x_pixels_per_unit is not None and self.y_pixels_per_unit is not None:
+ tup = (self.x_pixels_per_unit, self.y_pixels_per_unit, int(self.unit_is_meter))
+ write_chunk(outfile, b'pHYs', struct.pack("!LLB",*tup))
+
+ # http://www.w3.org/TR/PNG/#11IDAT
+ if self.compression is not None:
+ compressor = zlib.compressobj(self.compression)
+ else:
+ compressor = zlib.compressobj()
+
+ # Choose an extend function based on the bitdepth. The extend
+ # function packs/decomposes the pixel values into bytes and
+ # stuffs them onto the data array.
+ data = array('B')
+ if self.bitdepth == 8 or packed:
+ extend = data.extend
+ elif self.bitdepth == 16:
+ # Decompose into bytes
+ def extend(sl):
+ fmt = '!%dH' % len(sl)
+ data.extend(array('B', struct.pack(fmt, *sl)))
+ else:
+ # Pack into bytes
+ assert self.bitdepth < 8
+ # samples per byte
+ spb = int(8/self.bitdepth)
+ def extend(sl):
+ a = array('B', sl)
+ # Adding padding bytes so we can group into a whole
+ # number of spb-tuples.
+ l = float(len(a))
+ extra = math.ceil(l / float(spb))*spb - l
+ a.extend([0]*int(extra))
+ # Pack into bytes
+ l = group(a, spb)
+ l = [reduce(lambda x,y:
+ (x << self.bitdepth) + y, e) for e in l]
+ data.extend(l)
+ if self.rescale:
+ oldextend = extend
+ factor = \
+ float(2**self.rescale[1]-1) / float(2**self.rescale[0]-1)
+ def extend(sl):
+ oldextend([int(round(factor*x)) for x in sl])
+
+ # Build the first row, testing mostly to see if we need to
+ # changed the extend function to cope with NumPy integer types
+ # (they cause our ordinary definition of extend to fail, so we
+ # wrap it). See
+ # http://code.google.com/p/pypng/issues/detail?id=44
+ enumrows = enumerate(rows)
+ del rows
+
+ # First row's filter type.
+ data.append(0)
+ # :todo: Certain exceptions in the call to ``.next()`` or the
+ # following try would indicate no row data supplied.
+ # Should catch.
+ i,row = next(enumrows)
+ try:
+ # If this fails...
+ extend(row)
+ except:
+ # ... try a version that converts the values to int first.
+ # Not only does this work for the (slightly broken) NumPy
+ # types, there are probably lots of other, unknown, "nearly"
+ # int types it works for.
+ def wrapmapint(f):
+ return lambda sl: f([int(x) for x in sl])
+ extend = wrapmapint(extend)
+ del wrapmapint
+ extend(row)
+
+ for i,row in enumrows:
+ # Add "None" filter type. Currently, it's essential that
+ # this filter type be used for every scanline as we do not
+ # mark the first row of a reduced pass image; that means we
+ # could accidentally compute the wrong filtered scanline if
+ # we used "up", "average", or "paeth" on such a line.
+ data.append(0)
+ extend(row)
+ if len(data) > self.chunk_limit:
+ compressed = compressor.compress(tostring(data))
+ if len(compressed):
+ write_chunk(outfile, b'IDAT', compressed)
+ # Because of our very witty definition of ``extend``,
+ # above, we must re-use the same ``data`` object. Hence
+ # we use ``del`` to empty this one, rather than create a
+ # fresh one (which would be my natural FP instinct).
+ del data[:]
+ if len(data):
+ compressed = compressor.compress(tostring(data))
+ else:
+ compressed = b''
+ flushed = compressor.flush()
+ if len(compressed) or len(flushed):
+ write_chunk(outfile, b'IDAT', compressed + flushed)
+ # http://www.w3.org/TR/PNG/#11IEND
+ write_chunk(outfile, b'IEND')
+ return i+1
+
+ def write_array(self, outfile, pixels):
+ """
+ Write an array in flat row flat pixel format as a PNG file on
+ the output file. See also :meth:`write` method.
+ """
+
+ if self.interlace:
+ self.write_passes(outfile, self.array_scanlines_interlace(pixels))
+ else:
+ self.write_passes(outfile, self.array_scanlines(pixels))
+
+ def write_packed(self, outfile, rows):
+ """
+ Write PNG file to `outfile`. The pixel data comes from `rows`
+ which should be in boxed row packed format. Each row should be
+ a sequence of packed bytes.
+
+ Technically, this method does work for interlaced images but it
+ is best avoided. For interlaced images, the rows should be
+ presented in the order that they appear in the file.
+
+ This method should not be used when the source image bit depth
+ is not one naturally supported by PNG; the bit depth should be
+ 1, 2, 4, 8, or 16.
+ """
+
+ if self.rescale:
+ raise Error("write_packed method not suitable for bit depth %d" %
+ self.rescale[0])
+ return self.write_passes(outfile, rows, packed=True)
+
+ def convert_pnm(self, infile, outfile):
+ """
+ Convert a PNM file containing raw pixel data into a PNG file
+ with the parameters set in the writer object. Works for
+ (binary) PGM, PPM, and PAM formats.
+ """
+
+ if self.interlace:
+ pixels = array('B')
+ pixels.fromfile(infile,
+ (self.bitdepth/8) * self.color_planes *
+ self.width * self.height)
+ self.write_passes(outfile, self.array_scanlines_interlace(pixels))
+ else:
+ self.write_passes(outfile, self.file_scanlines(infile))
+
+ def convert_ppm_and_pgm(self, ppmfile, pgmfile, outfile):
+ """
+ Convert a PPM and PGM file containing raw pixel data into a
+ PNG outfile with the parameters set in the writer object.
+ """
+ pixels = array('B')
+ pixels.fromfile(ppmfile,
+ (self.bitdepth/8) * self.color_planes *
+ self.width * self.height)
+ apixels = array('B')
+ apixels.fromfile(pgmfile,
+ (self.bitdepth/8) *
+ self.width * self.height)
+ pixels = interleave_planes(pixels, apixels,
+ (self.bitdepth/8) * self.color_planes,
+ (self.bitdepth/8))
+ if self.interlace:
+ self.write_passes(outfile, self.array_scanlines_interlace(pixels))
+ else:
+ self.write_passes(outfile, self.array_scanlines(pixels))
+
+ def file_scanlines(self, infile):
+ """
+ Generates boxed rows in flat pixel format, from the input file
+ `infile`. It assumes that the input file is in a "Netpbm-like"
+ binary format, and is positioned at the beginning of the first
+ pixel. The number of pixels to read is taken from the image
+ dimensions (`width`, `height`, `planes`) and the number of bytes
+ per value is implied by the image `bitdepth`.
+ """
+
+ # Values per row
+ vpr = self.width * self.planes
+ row_bytes = vpr
+ if self.bitdepth > 8:
+ assert self.bitdepth == 16
+ row_bytes *= 2
+ fmt = '>%dH' % vpr
+ def line():
+ return array('H', struct.unpack(fmt, infile.read(row_bytes)))
+ else:
+ def line():
+ scanline = array('B', infile.read(row_bytes))
+ return scanline
+ for y in range(self.height):
+ yield line()
+
+ def array_scanlines(self, pixels):
+ """
+ Generates boxed rows (flat pixels) from flat rows (flat pixels)
+ in an array.
+ """
+
+ # Values per row
+ vpr = self.width * self.planes
+ stop = 0
+ for y in range(self.height):
+ start = stop
+ stop = start + vpr
+ yield pixels[start:stop]
+
+ def array_scanlines_interlace(self, pixels):
+ """
+ Generator for interlaced scanlines from an array. `pixels` is
+ the full source image in flat row flat pixel format. The
+ generator yields each scanline of the reduced passes in turn, in
+ boxed row flat pixel format.
+ """
+
+ # http://www.w3.org/TR/PNG/#8InterlaceMethods
+ # Array type.
+ fmt = 'BH'[self.bitdepth > 8]
+ # Value per row
+ vpr = self.width * self.planes
+ for xstart, ystart, xstep, ystep in _adam7:
+ if xstart >= self.width:
+ continue
+ # Pixels per row (of reduced image)
+ ppr = int(math.ceil((self.width-xstart)/float(xstep)))
+ # number of values in reduced image row.
+ row_len = ppr*self.planes
+ for y in range(ystart, self.height, ystep):
+ if xstep == 1:
+ offset = y * vpr
+ yield pixels[offset:offset+vpr]
+ else:
+ row = array(fmt)
+ # There's no easier way to set the length of an array
+ row.extend(pixels[0:row_len])
+ offset = y * vpr + xstart * self.planes
+ end_offset = (y+1) * vpr
+ skip = self.planes * xstep
+ for i in range(self.planes):
+ row[i::self.planes] = \
+ pixels[offset+i:end_offset:skip]
+ yield row
+
+def write_chunk(outfile, tag, data=b''):
+ """
+ Write a PNG chunk to the output file, including length and
+ checksum.
+ """
+
+ # http://www.w3.org/TR/PNG/#5Chunk-layout
+ outfile.write(struct.pack("!I", len(data)))
+ outfile.write(tag)
+ outfile.write(data)
+ checksum = zlib.crc32(tag)
+ checksum = zlib.crc32(data, checksum)
+ checksum &= 2**32-1
+ outfile.write(struct.pack("!I", checksum))
+
+def write_chunks(out, chunks):
+ """Create a PNG file by writing out the chunks."""
+
+ out.write(_signature)
+ for chunk in chunks:
+ write_chunk(out, *chunk)
+
+def filter_scanline(type, line, fo, prev=None):
+ """Apply a scanline filter to a scanline. `type` specifies the
+ filter type (0 to 4); `line` specifies the current (unfiltered)
+ scanline as a sequence of bytes; `prev` specifies the previous
+ (unfiltered) scanline as a sequence of bytes. `fo` specifies the
+ filter offset; normally this is size of a pixel in bytes (the number
+ of bytes per sample times the number of channels), but when this is
+ < 1 (for bit depths < 8) then the filter offset is 1.
+ """
+
+ assert 0 <= type < 5
+
+ # The output array. Which, pathetically, we extend one-byte at a
+ # time (fortunately this is linear).
+ out = array('B', [type])
+
+ def sub():
+ ai = -fo
+ for x in line:
+ if ai >= 0:
+ x = (x - line[ai]) & 0xff
+ out.append(x)
+ ai += 1
+ def up():
+ for i,x in enumerate(line):
+ x = (x - prev[i]) & 0xff
+ out.append(x)
+ def average():
+ ai = -fo
+ for i,x in enumerate(line):
+ if ai >= 0:
+ x = (x - ((line[ai] + prev[i]) >> 1)) & 0xff
+ else:
+ x = (x - (prev[i] >> 1)) & 0xff
+ out.append(x)
+ ai += 1
+ def paeth():
+ # http://www.w3.org/TR/PNG/#9Filter-type-4-Paeth
+ ai = -fo # also used for ci
+ for i,x in enumerate(line):
+ a = 0
+ b = prev[i]
+ c = 0
+
+ if ai >= 0:
+ a = line[ai]
+ c = prev[ai]
+ p = a + b - c
+ pa = abs(p - a)
+ pb = abs(p - b)
+ pc = abs(p - c)
+ if pa <= pb and pa <= pc:
+ Pr = a
+ elif pb <= pc:
+ Pr = b
+ else:
+ Pr = c
+
+ x = (x - Pr) & 0xff
+ out.append(x)
+ ai += 1
+
+ if not prev:
+ # We're on the first line. Some of the filters can be reduced
+ # to simpler cases which makes handling the line "off the top"
+ # of the image simpler. "up" becomes "none"; "paeth" becomes
+ # "left" (non-trivial, but true). "average" needs to be handled
+ # specially.
+ if type == 2: # "up"
+ type = 0
+ elif type == 3:
+ prev = [0]*len(line)
+ elif type == 4: # "paeth"
+ type = 1
+ if type == 0:
+ out.extend(line)
+ elif type == 1:
+ sub()
+ elif type == 2:
+ up()
+ elif type == 3:
+ average()
+ else: # type == 4
+ paeth()
+ return out
+
+
+def from_array(a, mode=None, info={}):
+ """Create a PNG :class:`Image` object from a 2- or 3-dimensional
+ array. One application of this function is easy PIL-style saving:
+ ``png.from_array(pixels, 'L').save('foo.png')``.
+
+ Unless they are specified using the *info* parameter, the PNG's
+ height and width are taken from the array size. For a 3 dimensional
+ array the first axis is the height; the second axis is the width;
+ and the third axis is the channel number. Thus an RGB image that is
+ 16 pixels high and 8 wide will use an array that is 16x8x3. For 2
+ dimensional arrays the first axis is the height, but the second axis
+ is ``width*channels``, so an RGB image that is 16 pixels high and 8
+ wide will use a 2-dimensional array that is 16x24 (each row will be
+ 8*3 = 24 sample values).
+
+ *mode* is a string that specifies the image colour format in a
+ PIL-style mode. It can be:
+
+ ``'L'``
+ greyscale (1 channel)
+ ``'LA'``
+ greyscale with alpha (2 channel)
+ ``'RGB'``
+ colour image (3 channel)
+ ``'RGBA'``
+ colour image with alpha (4 channel)
+
+ The mode string can also specify the bit depth (overriding how this
+ function normally derives the bit depth, see below). Appending
+ ``';16'`` to the mode will cause the PNG to be 16 bits per channel;
+ any decimal from 1 to 16 can be used to specify the bit depth.
+
+ When a 2-dimensional array is used *mode* determines how many
+ channels the image has, and so allows the width to be derived from
+ the second array dimension.
+
+ The array is expected to be a ``numpy`` array, but it can be any
+ suitable Python sequence. For example, a list of lists can be used:
+ ``png.from_array([[0, 255, 0], [255, 0, 255]], 'L')``. The exact
+ rules are: ``len(a)`` gives the first dimension, height;
+ ``len(a[0])`` gives the second dimension; ``len(a[0][0])`` gives the
+ third dimension, unless an exception is raised in which case a
+ 2-dimensional array is assumed. It's slightly more complicated than
+ that because an iterator of rows can be used, and it all still
+ works. Using an iterator allows data to be streamed efficiently.
+
+ The bit depth of the PNG is normally taken from the array element's
+ datatype (but if *mode* specifies a bitdepth then that is used
+ instead). The array element's datatype is determined in a way which
+ is supposed to work both for ``numpy`` arrays and for Python
+ ``array.array`` objects. A 1 byte datatype will give a bit depth of
+ 8, a 2 byte datatype will give a bit depth of 16. If the datatype
+ does not have an implicit size, for example it is a plain Python
+ list of lists, as above, then a default of 8 is used.
+
+ The *info* parameter is a dictionary that can be used to specify
+ metadata (in the same style as the arguments to the
+ :class:`png.Writer` class). For this function the keys that are
+ useful are:
+
+ height
+ overrides the height derived from the array dimensions and allows
+ *a* to be an iterable.
+ width
+ overrides the width derived from the array dimensions.
+ bitdepth
+ overrides the bit depth derived from the element datatype (but
+ must match *mode* if that also specifies a bit depth).
+
+ Generally anything specified in the
+ *info* dictionary will override any implicit choices that this
+ function would otherwise make, but must match any explicit ones.
+ For example, if the *info* dictionary has a ``greyscale`` key then
+ this must be true when mode is ``'L'`` or ``'LA'`` and false when
+ mode is ``'RGB'`` or ``'RGBA'``.
+ """
+
+ # We abuse the *info* parameter by modifying it. Take a copy here.
+ # (Also typechecks *info* to some extent).
+ info = dict(info)
+
+ # Syntax check mode string.
+ bitdepth = None
+ try:
+ # Assign the 'L' or 'RGBA' part to `gotmode`.
+ if mode.startswith('L'):
+ gotmode = 'L'
+ mode = mode[1:]
+ elif mode.startswith('RGB'):
+ gotmode = 'RGB'
+ mode = mode[3:]
+ else:
+ raise Error()
+ if mode.startswith('A'):
+ gotmode += 'A'
+ mode = mode[1:]
+
+ # Skip any optional ';'
+ while mode.startswith(';'):
+ mode = mode[1:]
+
+ # Parse optional bitdepth
+ if mode:
+ try:
+ bitdepth = int(mode)
+ except (TypeError, ValueError):
+ raise Error()
+ except Error:
+ raise Error("mode string should be 'RGB' or 'L;16' or similar.")
+ mode = gotmode
+
+ # Get bitdepth from *mode* if possible.
+ if bitdepth:
+ if info.get('bitdepth') and bitdepth != info['bitdepth']:
+ raise Error("mode bitdepth (%d) should match info bitdepth (%d)." %
+ (bitdepth, info['bitdepth']))
+ info['bitdepth'] = bitdepth
+
+ # Fill in and/or check entries in *info*.
+ # Dimensions.
+ if 'size' in info:
+ # Check width, height, size all match where used.
+ for dimension,axis in [('width', 0), ('height', 1)]:
+ if dimension in info:
+ if info[dimension] != info['size'][axis]:
+ raise Error(
+ "info[%r] should match info['size'][%r]." %
+ (dimension, axis))
+ info['width'],info['height'] = info['size']
+ if 'height' not in info:
+ try:
+ l = len(a)
+ except TypeError:
+ raise Error(
+ "len(a) does not work, supply info['height'] instead.")
+ info['height'] = l
+ # Colour format.
+ if 'greyscale' in info:
+ if bool(info['greyscale']) != ('L' in mode):
+ raise Error("info['greyscale'] should match mode.")
+ info['greyscale'] = 'L' in mode
+ if 'alpha' in info:
+ if bool(info['alpha']) != ('A' in mode):
+ raise Error("info['alpha'] should match mode.")
+ info['alpha'] = 'A' in mode
+
+ planes = len(mode)
+ if 'planes' in info:
+ if info['planes'] != planes:
+ raise Error("info['planes'] should match mode.")
+
+ # In order to work out whether we the array is 2D or 3D we need its
+ # first row, which requires that we take a copy of its iterator.
+ # We may also need the first row to derive width and bitdepth.
+ a,t = itertools.tee(a)
+ row = next(t)
+ del t
+ try:
+ row[0][0]
+ threed = True
+ testelement = row[0]
+ except (IndexError, TypeError):
+ threed = False
+ testelement = row
+ if 'width' not in info:
+ if threed:
+ width = len(row)
+ else:
+ width = len(row) // planes
+ info['width'] = width
+
+ if threed:
+ # Flatten the threed rows
+ a = (itertools.chain.from_iterable(x) for x in a)
+
+ if 'bitdepth' not in info:
+ try:
+ dtype = testelement.dtype
+ # goto the "else:" clause. Sorry.
+ except AttributeError:
+ try:
+ # Try a Python array.array.
+ bitdepth = 8 * testelement.itemsize
+ except AttributeError:
+ # We can't determine it from the array element's
+ # datatype, use a default of 8.
+ bitdepth = 8
+ else:
+ # If we got here without exception, we now assume that
+ # the array is a numpy array.
+ if dtype.kind == 'b':
+ bitdepth = 1
+ else:
+ bitdepth = 8 * dtype.itemsize
+ info['bitdepth'] = bitdepth
+
+ for thing in 'width height bitdepth greyscale alpha'.split():
+ assert thing in info
+ return Image(a, info)
+
+# So that refugee's from PIL feel more at home. Not documented.
+fromarray = from_array
+
+class Image:
+ """A PNG image. You can create an :class:`Image` object from
+ an array of pixels by calling :meth:`png.from_array`. It can be
+ saved to disk with the :meth:`save` method.
+ """
+
+ def __init__(self, rows, info):
+ """
+ .. note ::
+
+ The constructor is not public. Please do not call it.
+ """
+
+ self.rows = rows
+ self.info = info
+
+ def save(self, file):
+ """Save the image to *file*. If *file* looks like an open file
+ descriptor then it is used, otherwise it is treated as a
+ filename and a fresh file is opened.
+
+ In general, you can only call this method once; after it has
+ been called the first time and the PNG image has been saved, the
+ source data will have been streamed, and cannot be streamed
+ again.
+ """
+
+ w = Writer(**self.info)
+
+ try:
+ file.write
+ def close(): pass
+ except AttributeError:
+ file = open(file, 'wb')
+ def close(): file.close()
+
+ try:
+ w.write(file, self.rows)
+ finally:
+ close()
+
+class _readable:
+ """
+ A simple file-like interface for strings and arrays.
+ """
+
+ def __init__(self, buf):
+ self.buf = buf
+ self.offset = 0
+
+ def read(self, n):
+ r = self.buf[self.offset:self.offset+n]
+ if isarray(r):
+ r = r.tostring()
+ self.offset += n
+ return r
+
+try:
+ str(b'dummy', 'ascii')
+except TypeError:
+ as_str = str
+else:
+ def as_str(x):
+ return str(x, 'ascii')
+
+class Reader:
+ """
+ PNG decoder in pure Python.
+ """
+
+ def __init__(self, _guess=None, **kw):
+ """
+ Create a PNG decoder object.
+
+ The constructor expects exactly one keyword argument. If you
+ supply a positional argument instead, it will guess the input
+ type. You can choose among the following keyword arguments:
+
+ filename
+ Name of input file (a PNG file).
+ file
+ A file-like object (object with a read() method).
+ bytes
+ ``array`` or ``string`` with PNG data.
+
+ """
+ if ((_guess is not None and len(kw) != 0) or
+ (_guess is None and len(kw) != 1)):
+ raise TypeError("Reader() takes exactly 1 argument")
+
+ # Will be the first 8 bytes, later on. See validate_signature.
+ self.signature = None
+ self.transparent = None
+ # A pair of (len,type) if a chunk has been read but its data and
+ # checksum have not (in other words the file position is just
+ # past the 4 bytes that specify the chunk type). See preamble
+ # method for how this is used.
+ self.atchunk = None
+
+ if _guess is not None:
+ if isarray(_guess):
+ kw["bytes"] = _guess
+ elif isinstance(_guess, str):
+ kw["filename"] = _guess
+ elif hasattr(_guess, 'read'):
+ kw["file"] = _guess
+
+ if "filename" in kw:
+ self.file = open(kw["filename"], "rb")
+ elif "file" in kw:
+ self.file = kw["file"]
+ elif "bytes" in kw:
+ self.file = _readable(kw["bytes"])
+ else:
+ raise TypeError("expecting filename, file or bytes array")
+
+
+ def chunk(self, seek=None, lenient=False):
+ """
+ Read the next PNG chunk from the input file; returns a
+ (*type*, *data*) tuple. *type* is the chunk's type as a
+ byte string (all PNG chunk types are 4 bytes long).
+ *data* is the chunk's data content, as a byte string.
+
+ If the optional `seek` argument is
+ specified then it will keep reading chunks until it either runs
+ out of file or finds the type specified by the argument. Note
+ that in general the order of chunks in PNGs is unspecified, so
+ using `seek` can cause you to miss chunks.
+
+ If the optional `lenient` argument evaluates to `True`,
+ checksum failures will raise warnings rather than exceptions.
+ """
+
+ self.validate_signature()
+
+ while True:
+ # http://www.w3.org/TR/PNG/#5Chunk-layout
+ if not self.atchunk:
+ self.atchunk = self.chunklentype()
+ length, type = self.atchunk
+ self.atchunk = None
+ data = self.file.read(length)
+ if len(data) != length:
+ raise ChunkError('Chunk %s too short for required %i octets.'
+ % (type, length))
+ checksum = self.file.read(4)
+ if len(checksum) != 4:
+ raise ChunkError('Chunk %s too short for checksum.' % type)
+ if seek and type != seek:
+ continue
+ verify = zlib.crc32(type)
+ verify = zlib.crc32(data, verify)
+ # Whether the output from zlib.crc32 is signed or not varies
+ # according to hideous implementation details, see
+ # http://bugs.python.org/issue1202 .
+ # We coerce it to be positive here (in a way which works on
+ # Python 2.3 and older).
+ verify &= 2**32 - 1
+ verify = struct.pack('!I', verify)
+ if checksum != verify:
+ (a, ) = struct.unpack('!I', checksum)
+ (b, ) = struct.unpack('!I', verify)
+ message = "Checksum error in %s chunk: 0x%08X != 0x%08X." % (type, a, b)
+ if lenient:
+ warnings.warn(message, RuntimeWarning)
+ else:
+ raise ChunkError(message)
+ return type, data
+
+ def chunks(self):
+ """Return an iterator that will yield each chunk as a
+ (*chunktype*, *content*) pair.
+ """
+
+ while True:
+ t,v = self.chunk()
+ yield t,v
+ if t == b'IEND':
+ break
+
+ def undo_filter(self, filter_type, scanline, previous):
+ """Undo the filter for a scanline. `scanline` is a sequence of
+ bytes that does not include the initial filter type byte.
+ `previous` is decoded previous scanline (for straightlaced
+ images this is the previous pixel row, but for interlaced
+ images, it is the previous scanline in the reduced image, which
+ in general is not the previous pixel row in the final image).
+ When there is no previous scanline (the first row of a
+ straightlaced image, or the first row in one of the passes in an
+ interlaced image), then this argument should be ``None``.
+
+ The scanline will have the effects of filtering removed, and the
+ result will be returned as a fresh sequence of bytes.
+ """
+
+ # :todo: Would it be better to update scanline in place?
+ # Yes, with the Cython extension making the undo_filter fast,
+ # updating scanline inplace makes the code 3 times faster
+ # (reading 50 images of 800x800 went from 40s to 16s)
+ result = scanline
+
+ if filter_type == 0:
+ return result
+
+ if filter_type not in (1,2,3,4):
+ raise FormatError('Invalid PNG Filter Type.'
+ ' See http://www.w3.org/TR/2003/REC-PNG-20031110/#9Filters .')
+
+ # Filter unit. The stride from one pixel to the corresponding
+ # byte from the previous pixel. Normally this is the pixel
+ # size in bytes, but when this is smaller than 1, the previous
+ # byte is used instead.
+ fu = max(1, self.psize)
+
+ # For the first line of a pass, synthesize a dummy previous
+ # line. An alternative approach would be to observe that on the
+ # first line 'up' is the same as 'null', 'paeth' is the same
+ # as 'sub', with only 'average' requiring any special case.
+ if not previous:
+ previous = array('B', [0]*len(scanline))
+
+ def sub():
+ """Undo sub filter."""
+
+ ai = 0
+ # Loop starts at index fu. Observe that the initial part
+ # of the result is already filled in correctly with
+ # scanline.
+ for i in range(fu, len(result)):
+ x = scanline[i]
+ a = result[ai]
+ result[i] = (x + a) & 0xff
+ ai += 1
+
+ def up():
+ """Undo up filter."""
+
+ for i in range(len(result)):
+ x = scanline[i]
+ b = previous[i]
+ result[i] = (x + b) & 0xff
+
+ def average():
+ """Undo average filter."""
+
+ ai = -fu
+ for i in range(len(result)):
+ x = scanline[i]
+ if ai < 0:
+ a = 0
+ else:
+ a = result[ai]
+ b = previous[i]
+ result[i] = (x + ((a + b) >> 1)) & 0xff
+ ai += 1
+
+ def paeth():
+ """Undo Paeth filter."""
+
+ # Also used for ci.
+ ai = -fu
+ for i in range(len(result)):
+ x = scanline[i]
+ if ai < 0:
+ a = c = 0
+ else:
+ a = result[ai]
+ c = previous[ai]
+ b = previous[i]
+ p = a + b - c
+ pa = abs(p - a)
+ pb = abs(p - b)
+ pc = abs(p - c)
+ if pa <= pb and pa <= pc:
+ pr = a
+ elif pb <= pc:
+ pr = b
+ else:
+ pr = c
+ result[i] = (x + pr) & 0xff
+ ai += 1
+
+ # Call appropriate filter algorithm. Note that 0 has already
+ # been dealt with.
+ (None,
+ pngfilters.undo_filter_sub,
+ pngfilters.undo_filter_up,
+ pngfilters.undo_filter_average,
+ pngfilters.undo_filter_paeth)[filter_type](fu, scanline, previous, result)
+ return result
+
+ def deinterlace(self, raw):
+ """
+ Read raw pixel data, undo filters, deinterlace, and flatten.
+ Return in flat row flat pixel format.
+ """
+
+ # Values per row (of the target image)
+ vpr = self.width * self.planes
+
+ # Make a result array, and make it big enough. Interleaving
+ # writes to the output array randomly (well, not quite), so the
+ # entire output array must be in memory.
+ fmt = 'BH'[self.bitdepth > 8]
+ a = array(fmt, [0]*vpr*self.height)
+ source_offset = 0
+
+ for xstart, ystart, xstep, ystep in _adam7:
+ if xstart >= self.width:
+ continue
+ # The previous (reconstructed) scanline. None at the
+ # beginning of a pass to indicate that there is no previous
+ # line.
+ recon = None
+ # Pixels per row (reduced pass image)
+ ppr = int(math.ceil((self.width-xstart)/float(xstep)))
+ # Row size in bytes for this pass.
+ row_size = int(math.ceil(self.psize * ppr))
+ for y in range(ystart, self.height, ystep):
+ filter_type = raw[source_offset]
+ source_offset += 1
+ scanline = raw[source_offset:source_offset+row_size]
+ source_offset += row_size
+ recon = self.undo_filter(filter_type, scanline, recon)
+ # Convert so that there is one element per pixel value
+ flat = self.serialtoflat(recon, ppr)
+ if xstep == 1:
+ assert xstart == 0
+ offset = y * vpr
+ a[offset:offset+vpr] = flat
+ else:
+ offset = y * vpr + xstart * self.planes
+ end_offset = (y+1) * vpr
+ skip = self.planes * xstep
+ for i in range(self.planes):
+ a[offset+i:end_offset:skip] = \
+ flat[i::self.planes]
+ return a
+
+ def iterboxed(self, rows):
+ """Iterator that yields each scanline in boxed row flat pixel
+ format. `rows` should be an iterator that yields the bytes of
+ each row in turn.
+ """
+
+ def asvalues(raw):
+ """Convert a row of raw bytes into a flat row. Result will
+ be a freshly allocated object, not shared with
+ argument.
+ """
+
+ if self.bitdepth == 8:
+ return array('B', raw)
+ if self.bitdepth == 16:
+ raw = tostring(raw)
+ return array('H', struct.unpack('!%dH' % (len(raw)//2), raw))
+ assert self.bitdepth < 8
+ width = self.width
+ # Samples per byte
+ spb = 8//self.bitdepth
+ out = array('B')
+ mask = 2**self.bitdepth - 1
+ shifts = [self.bitdepth * i
+ for i in reversed(list(range(spb)))]
+ for o in raw:
+ out.extend([mask&(o>>i) for i in shifts])
+ return out[:width]
+
+ return map(asvalues, rows)
+
+ def serialtoflat(self, bytes, width=None):
+ """Convert serial format (byte stream) pixel data to flat row
+ flat pixel.
+ """
+
+ if self.bitdepth == 8:
+ return bytes
+ if self.bitdepth == 16:
+ bytes = tostring(bytes)
+ return array('H',
+ struct.unpack('!%dH' % (len(bytes)//2), bytes))
+ assert self.bitdepth < 8
+ if width is None:
+ width = self.width
+ # Samples per byte
+ spb = 8//self.bitdepth
+ out = array('B')
+ mask = 2**self.bitdepth - 1
+ shifts = list(map(self.bitdepth.__mul__, reversed(list(range(spb)))))
+ l = width
+ for o in bytes:
+ out.extend([(mask&(o>>s)) for s in shifts][:l])
+ l -= spb
+ if l <= 0:
+ l = width
+ return out
+
+ def iterstraight(self, raw):
+ """Iterator that undoes the effect of filtering, and yields
+ each row in serialised format (as a sequence of bytes).
+ Assumes input is straightlaced. `raw` should be an iterable
+ that yields the raw bytes in chunks of arbitrary size.
+ """
+
+ # length of row, in bytes
+ rb = self.row_bytes
+ a = array('B')
+ # The previous (reconstructed) scanline. None indicates first
+ # line of image.
+ recon = None
+ for some in raw:
+ a.extend(some)
+ while len(a) >= rb + 1:
+ filter_type = a[0]
+ scanline = a[1:rb+1]
+ del a[:rb+1]
+ recon = self.undo_filter(filter_type, scanline, recon)
+ yield recon
+ if len(a) != 0:
+ # :file:format We get here with a file format error:
+ # when the available bytes (after decompressing) do not
+ # pack into exact rows.
+ raise FormatError(
+ 'Wrong size for decompressed IDAT chunk.')
+ assert len(a) == 0
+
+ def validate_signature(self):
+ """If signature (header) has not been read then read and
+ validate it; otherwise do nothing.
+ """
+
+ if self.signature:
+ return
+ self.signature = self.file.read(8)
+ if self.signature != _signature:
+ raise FormatError("PNG file has invalid signature.")
+
+ def preamble(self, lenient=False):
+ """
+ Extract the image metadata by reading the initial part of
+ the PNG file up to the start of the ``IDAT`` chunk. All the
+ chunks that precede the ``IDAT`` chunk are read and either
+ processed for metadata or discarded.
+
+ If the optional `lenient` argument evaluates to `True`, checksum
+ failures will raise warnings rather than exceptions.
+ """
+
+ self.validate_signature()
+
+ while True:
+ if not self.atchunk:
+ self.atchunk = self.chunklentype()
+ if self.atchunk is None:
+ raise FormatError(
+ 'This PNG file has no IDAT chunks.')
+ if self.atchunk[1] == b'IDAT':
+ return
+ self.process_chunk(lenient=lenient)
+
+ def chunklentype(self):
+ """Reads just enough of the input to determine the next
+ chunk's length and type, returned as a (*length*, *type*) pair
+ where *type* is a string. If there are no more chunks, ``None``
+ is returned.
+ """
+
+ x = self.file.read(8)
+ if not x:
+ return None
+ if len(x) != 8:
+ raise FormatError(
+ 'End of file whilst reading chunk length and type.')
+ length,type = struct.unpack('!I4s', x)
+ if length > 2**31-1:
+ raise FormatError('Chunk %s is too large: %d.' % (type,length))
+ return length,type
+
+ def process_chunk(self, lenient=False):
+ """Process the next chunk and its data. This only processes the
+ following chunk types, all others are ignored: ``IHDR``,
+ ``PLTE``, ``bKGD``, ``tRNS``, ``gAMA``, ``sBIT``, ``pHYs``.
+
+ If the optional `lenient` argument evaluates to `True`,
+ checksum failures will raise warnings rather than exceptions.
+ """
+
+ type, data = self.chunk(lenient=lenient)
+ method = '_process_' + as_str(type)
+ m = getattr(self, method, None)
+ if m:
+ m(data)
+
+ def _process_IHDR(self, data):
+ # http://www.w3.org/TR/PNG/#11IHDR
+ if len(data) != 13:
+ raise FormatError('IHDR chunk has incorrect length.')
+ (self.width, self.height, self.bitdepth, self.color_type,
+ self.compression, self.filter,
+ self.interlace) = struct.unpack("!2I5B", data)
+
+ check_bitdepth_colortype(self.bitdepth, self.color_type)
+
+ if self.compression != 0:
+ raise Error("unknown compression method %d" % self.compression)
+ if self.filter != 0:
+ raise FormatError("Unknown filter method %d,"
+ " see http://www.w3.org/TR/2003/REC-PNG-20031110/#9Filters ."
+ % self.filter)
+ if self.interlace not in (0,1):
+ raise FormatError("Unknown interlace method %d,"
+ " see http://www.w3.org/TR/2003/REC-PNG-20031110/#8InterlaceMethods ."
+ % self.interlace)
+
+ # Derived values
+ # http://www.w3.org/TR/PNG/#6Colour-values
+ colormap = bool(self.color_type & 1)
+ greyscale = not (self.color_type & 2)
+ alpha = bool(self.color_type & 4)
+ color_planes = (3,1)[greyscale or colormap]
+ planes = color_planes + alpha
+
+ self.colormap = colormap
+ self.greyscale = greyscale
+ self.alpha = alpha
+ self.color_planes = color_planes
+ self.planes = planes
+ self.psize = float(self.bitdepth)/float(8) * planes
+ if int(self.psize) == self.psize:
+ self.psize = int(self.psize)
+ self.row_bytes = int(math.ceil(self.width * self.psize))
+ # Stores PLTE chunk if present, and is used to check
+ # chunk ordering constraints.
+ self.plte = None
+ # Stores tRNS chunk if present, and is used to check chunk
+ # ordering constraints.
+ self.trns = None
+ # Stores sbit chunk if present.
+ self.sbit = None
+
+ def _process_PLTE(self, data):
+ # http://www.w3.org/TR/PNG/#11PLTE
+ if self.plte:
+ warnings.warn("Multiple PLTE chunks present.")
+ self.plte = data
+ if len(data) % 3 != 0:
+ raise FormatError(
+ "PLTE chunk's length should be a multiple of 3.")
+ if len(data) > (2**self.bitdepth)*3:
+ raise FormatError("PLTE chunk is too long.")
+ if len(data) == 0:
+ raise FormatError("Empty PLTE is not allowed.")
+
+ def _process_bKGD(self, data):
+ try:
+ if self.colormap:
+ if not self.plte:
+ warnings.warn(
+ "PLTE chunk is required before bKGD chunk.")
+ self.background = struct.unpack('B', data)
+ else:
+ self.background = struct.unpack("!%dH" % self.color_planes,
+ data)
+ except struct.error:
+ raise FormatError("bKGD chunk has incorrect length.")
+
+ def _process_tRNS(self, data):
+ # http://www.w3.org/TR/PNG/#11tRNS
+ self.trns = data
+ if self.colormap:
+ if not self.plte:
+ warnings.warn("PLTE chunk is required before tRNS chunk.")
+ else:
+ if len(data) > len(self.plte)/3:
+ # Was warning, but promoted to Error as it
+ # would otherwise cause pain later on.
+ raise FormatError("tRNS chunk is too long.")
+ else:
+ if self.alpha:
+ raise FormatError(
+ "tRNS chunk is not valid with colour type %d." %
+ self.color_type)
+ try:
+ self.transparent = \
+ struct.unpack("!%dH" % self.color_planes, data)
+ except struct.error:
+ raise FormatError("tRNS chunk has incorrect length.")
+
+ def _process_gAMA(self, data):
+ try:
+ self.gamma = struct.unpack("!L", data)[0] / 100000.0
+ except struct.error:
+ raise FormatError("gAMA chunk has incorrect length.")
+
+ def _process_sBIT(self, data):
+ self.sbit = data
+ if (self.colormap and len(data) != 3 or
+ not self.colormap and len(data) != self.planes):
+ raise FormatError("sBIT chunk has incorrect length.")
+
+ def _process_pHYs(self, data):
+ # http://www.w3.org/TR/PNG/#11pHYs
+ self.phys = data
+ fmt = "!LLB"
+ if len(data) != struct.calcsize(fmt):
+ raise FormatError("pHYs chunk has incorrect length.")
+ self.x_pixels_per_unit, self.y_pixels_per_unit, unit = struct.unpack(fmt,data)
+ self.unit_is_meter = bool(unit)
+
+ def read(self, lenient=False):
+ """
+ Read the PNG file and decode it. Returns (`width`, `height`,
+ `pixels`, `metadata`).
+
+ May use excessive memory.
+
+ `pixels` are returned in boxed row flat pixel format.
+
+ If the optional `lenient` argument evaluates to True,
+ checksum failures will raise warnings rather than exceptions.
+ """
+
+ def iteridat():
+ """Iterator that yields all the ``IDAT`` chunks as strings."""
+ while True:
+ try:
+ type, data = self.chunk(lenient=lenient)
+ except ValueError as e:
+ raise ChunkError(e.args[0])
+ if type == b'IEND':
+ # http://www.w3.org/TR/PNG/#11IEND
+ break
+ if type != b'IDAT':
+ continue
+ # type == b'IDAT'
+ # http://www.w3.org/TR/PNG/#11IDAT
+ if self.colormap and not self.plte:
+ warnings.warn("PLTE chunk is required before IDAT chunk")
+ yield data
+
+ def iterdecomp(idat):
+ """Iterator that yields decompressed strings. `idat` should
+ be an iterator that yields the ``IDAT`` chunk data.
+ """
+
+ # Currently, with no max_length parameter to decompress,
+ # this routine will do one yield per IDAT chunk: Not very
+ # incremental.
+ d = zlib.decompressobj()
+ # Each IDAT chunk is passed to the decompressor, then any
+ # remaining state is decompressed out.
+ for data in idat:
+ # :todo: add a max_length argument here to limit output
+ # size.
+ yield array('B', d.decompress(data))
+ yield array('B', d.flush())
+
+ self.preamble(lenient=lenient)
+ raw = iterdecomp(iteridat())
+
+ if self.interlace:
+ raw = array('B', itertools.chain(*raw))
+ arraycode = 'BH'[self.bitdepth>8]
+ # Like :meth:`group` but producing an array.array object for
+ # each row.
+ pixels = map(lambda *row: array(arraycode, row),
+ *[iter(self.deinterlace(raw))]*self.width*self.planes)
+ else:
+ pixels = self.iterboxed(self.iterstraight(raw))
+ meta = dict()
+ for attr in 'greyscale alpha planes bitdepth interlace'.split():
+ meta[attr] = getattr(self, attr)
+ meta['size'] = (self.width, self.height)
+ for attr in 'gamma transparent background'.split():
+ a = getattr(self, attr, None)
+ if a is not None:
+ meta[attr] = a
+ if self.plte:
+ meta['palette'] = self.palette()
+ return self.width, self.height, pixels, meta
+
+
+ def read_flat(self):
+ """
+ Read a PNG file and decode it into flat row flat pixel format.
+ Returns (*width*, *height*, *pixels*, *metadata*).
+
+ May use excessive memory.
+
+ `pixels` are returned in flat row flat pixel format.
+
+ See also the :meth:`read` method which returns pixels in the
+ more stream-friendly boxed row flat pixel format.
+ """
+
+ x, y, pixel, meta = self.read()
+ arraycode = 'BH'[meta['bitdepth']>8]
+ pixel = array(arraycode, itertools.chain(*pixel))
+ return x, y, pixel, meta
+
+ def palette(self, alpha='natural'):
+ """Returns a palette that is a sequence of 3-tuples or 4-tuples,
+ synthesizing it from the ``PLTE`` and ``tRNS`` chunks. These
+ chunks should have already been processed (for example, by
+ calling the :meth:`preamble` method). All the tuples are the
+ same size: 3-tuples if there is no ``tRNS`` chunk, 4-tuples when
+ there is a ``tRNS`` chunk. Assumes that the image is colour type
+ 3 and therefore a ``PLTE`` chunk is required.
+
+ If the `alpha` argument is ``'force'`` then an alpha channel is
+ always added, forcing the result to be a sequence of 4-tuples.
+ """
+
+ if not self.plte:
+ raise FormatError(
+ "Required PLTE chunk is missing in colour type 3 image.")
+ plte = group(array('B', self.plte), 3)
+ if self.trns or alpha == 'force':
+ trns = array('B', self.trns or '')
+ trns.extend([255]*(len(plte)-len(trns)))
+ plte = list(map(operator.add, plte, group(trns, 1)))
+ return plte
+
+ def asDirect(self):
+ """Returns the image data as a direct representation of an
+ ``x * y * planes`` array. This method is intended to remove the
+ need for callers to deal with palettes and transparency
+ themselves. Images with a palette (colour type 3)
+ are converted to RGB or RGBA; images with transparency (a
+ ``tRNS`` chunk) are converted to LA or RGBA as appropriate.
+ When returned in this format the pixel values represent the
+ colour value directly without needing to refer to palettes or
+ transparency information.
+
+ Like the :meth:`read` method this method returns a 4-tuple:
+
+ (*width*, *height*, *pixels*, *meta*)
+
+ This method normally returns pixel values with the bit depth
+ they have in the source image, but when the source PNG has an
+ ``sBIT`` chunk it is inspected and can reduce the bit depth of
+ the result pixels; pixel values will be reduced according to
+ the bit depth specified in the ``sBIT`` chunk (PNG nerds should
+ note a single result bit depth is used for all channels; the
+ maximum of the ones specified in the ``sBIT`` chunk. An RGB565
+ image will be rescaled to 6-bit RGB666).
+
+ The *meta* dictionary that is returned reflects the `direct`
+ format and not the original source image. For example, an RGB
+ source image with a ``tRNS`` chunk to represent a transparent
+ colour, will have ``planes=3`` and ``alpha=False`` for the
+ source image, but the *meta* dictionary returned by this method
+ will have ``planes=4`` and ``alpha=True`` because an alpha
+ channel is synthesized and added.
+
+ *pixels* is the pixel data in boxed row flat pixel format (just
+ like the :meth:`read` method).
+
+ All the other aspects of the image data are not changed.
+ """
+
+ self.preamble()
+
+ # Simple case, no conversion necessary.
+ if not self.colormap and not self.trns and not self.sbit:
+ return self.read()
+
+ x,y,pixels,meta = self.read()
+
+ if self.colormap:
+ meta['colormap'] = False
+ meta['alpha'] = bool(self.trns)
+ meta['bitdepth'] = 8
+ meta['planes'] = 3 + bool(self.trns)
+ plte = self.palette()
+ def iterpal(pixels):
+ for row in pixels:
+ row = [plte[x] for x in row]
+ yield array('B', itertools.chain(*row))
+ pixels = iterpal(pixels)
+ elif self.trns:
+ # It would be nice if there was some reasonable way
+ # of doing this without generating a whole load of
+ # intermediate tuples. But tuples does seem like the
+ # easiest way, with no other way clearly much simpler or
+ # much faster. (Actually, the L to LA conversion could
+ # perhaps go faster (all those 1-tuples!), but I still
+ # wonder whether the code proliferation is worth it)
+ it = self.transparent
+ maxval = 2**meta['bitdepth']-1
+ planes = meta['planes']
+ meta['alpha'] = True
+ meta['planes'] += 1
+ typecode = 'BH'[meta['bitdepth']>8]
+ def itertrns(pixels):
+ for row in pixels:
+ # For each row we group it into pixels, then form a
+ # characterisation vector that says whether each
+ # pixel is opaque or not. Then we convert
+ # True/False to 0/maxval (by multiplication),
+ # and add it as the extra channel.
+ row = group(row, planes)
+ opa = map(it.__ne__, row)
+ opa = map(maxval.__mul__, opa)
+ opa = list(zip(opa)) # convert to 1-tuples
+ yield array(typecode,
+ itertools.chain(*map(operator.add, row, opa)))
+ pixels = itertrns(pixels)
+ targetbitdepth = None
+ if self.sbit:
+ sbit = struct.unpack('%dB' % len(self.sbit), self.sbit)
+ targetbitdepth = max(sbit)
+ if targetbitdepth > meta['bitdepth']:
+ raise Error('sBIT chunk %r exceeds bitdepth %d' %
+ (sbit,self.bitdepth))
+ if min(sbit) <= 0:
+ raise Error('sBIT chunk %r has a 0-entry' % sbit)
+ if targetbitdepth == meta['bitdepth']:
+ targetbitdepth = None
+ if targetbitdepth:
+ shift = meta['bitdepth'] - targetbitdepth
+ meta['bitdepth'] = targetbitdepth
+ def itershift(pixels):
+ for row in pixels:
+ yield [p >> shift for p in row]
+ pixels = itershift(pixels)
+ return x,y,pixels,meta
+
+ def asFloat(self, maxval=1.0):
+ """Return image pixels as per :meth:`asDirect` method, but scale
+ all pixel values to be floating point values between 0.0 and
+ *maxval*.
+ """
+
+ x,y,pixels,info = self.asDirect()
+ sourcemaxval = 2**info['bitdepth']-1
+ del info['bitdepth']
+ info['maxval'] = float(maxval)
+ factor = float(maxval)/float(sourcemaxval)
+ def iterfloat():
+ for row in pixels:
+ yield [factor * p for p in row]
+ return x,y,iterfloat(),info
+
+ def _as_rescale(self, get, targetbitdepth):
+ """Helper used by :meth:`asRGB8` and :meth:`asRGBA8`."""
+
+ width,height,pixels,meta = get()
+ maxval = 2**meta['bitdepth'] - 1
+ targetmaxval = 2**targetbitdepth - 1
+ factor = float(targetmaxval) / float(maxval)
+ meta['bitdepth'] = targetbitdepth
+ def iterscale():
+ for row in pixels:
+ yield [int(round(x*factor)) for x in row]
+ if maxval == targetmaxval:
+ return width, height, pixels, meta
+ else:
+ return width, height, iterscale(), meta
+
+ def asRGB8(self):
+ """Return the image data as an RGB pixels with 8-bits per
+ sample. This is like the :meth:`asRGB` method except that
+ this method additionally rescales the values so that they
+ are all between 0 and 255 (8-bit). In the case where the
+ source image has a bit depth < 8 the transformation preserves
+ all the information; where the source image has bit depth
+ > 8, then rescaling to 8-bit values loses precision. No
+ dithering is performed. Like :meth:`asRGB`, an alpha channel
+ in the source image will raise an exception.
+
+ This function returns a 4-tuple:
+ (*width*, *height*, *pixels*, *metadata*).
+ *width*, *height*, *metadata* are as per the
+ :meth:`read` method.
+
+ *pixels* is the pixel data in boxed row flat pixel format.
+ """
+
+ return self._as_rescale(self.asRGB, 8)
+
+ def asRGBA8(self):
+ """Return the image data as RGBA pixels with 8-bits per
+ sample. This method is similar to :meth:`asRGB8` and
+ :meth:`asRGBA`: The result pixels have an alpha channel, *and*
+ values are rescaled to the range 0 to 255. The alpha channel is
+ synthesized if necessary (with a small speed penalty).
+ """
+
+ return self._as_rescale(self.asRGBA, 8)
+
+ def asRGB(self):
+ """Return image as RGB pixels. RGB colour images are passed
+ through unchanged; greyscales are expanded into RGB
+ triplets (there is a small speed overhead for doing this).
+
+ An alpha channel in the source image will raise an
+ exception.
+
+ The return values are as for the :meth:`read` method
+ except that the *metadata* reflect the returned pixels, not the
+ source image. In particular, for this method
+ ``metadata['greyscale']`` will be ``False``.
+ """
+
+ width,height,pixels,meta = self.asDirect()
+ if meta['alpha']:
+ raise Error("will not convert image with alpha channel to RGB")
+ if not meta['greyscale']:
+ return width,height,pixels,meta
+ meta['greyscale'] = False
+ typecode = 'BH'[meta['bitdepth'] > 8]
+ def iterrgb():
+ for row in pixels:
+ a = array(typecode, [0]) * 3 * width
+ for i in range(3):
+ a[i::3] = row
+ yield a
+ return width,height,iterrgb(),meta
+
+ def asRGBA(self):
+ """Return image as RGBA pixels. Greyscales are expanded into
+ RGB triplets; an alpha channel is synthesized if necessary.
+ The return values are as for the :meth:`read` method
+ except that the *metadata* reflect the returned pixels, not the
+ source image. In particular, for this method
+ ``metadata['greyscale']`` will be ``False``, and
+ ``metadata['alpha']`` will be ``True``.
+ """
+
+ width,height,pixels,meta = self.asDirect()
+ if meta['alpha'] and not meta['greyscale']:
+ return width,height,pixels,meta
+ typecode = 'BH'[meta['bitdepth'] > 8]
+ maxval = 2**meta['bitdepth'] - 1
+ maxbuffer = struct.pack('=' + typecode, maxval) * 4 * width
+ def newarray():
+ return array(typecode, maxbuffer)
+
+ if meta['alpha'] and meta['greyscale']:
+ # LA to RGBA
+ def convert():
+ for row in pixels:
+ # Create a fresh target row, then copy L channel
+ # into first three target channels, and A channel
+ # into fourth channel.
+ a = newarray()
+ pngfilters.convert_la_to_rgba(row, a)
+ yield a
+ elif meta['greyscale']:
+ # L to RGBA
+ def convert():
+ for row in pixels:
+ a = newarray()
+ pngfilters.convert_l_to_rgba(row, a)
+ yield a
+ else:
+ assert not meta['alpha'] and not meta['greyscale']
+ # RGB to RGBA
+ def convert():
+ for row in pixels:
+ a = newarray()
+ pngfilters.convert_rgb_to_rgba(row, a)
+ yield a
+ meta['alpha'] = True
+ meta['greyscale'] = False
+ return width,height,convert(),meta
+
+def check_bitdepth_colortype(bitdepth, colortype):
+ """Check that `bitdepth` and `colortype` are both valid,
+ and specified in a valid combination. Returns if valid,
+ raise an Exception if not valid.
+ """
+
+ if bitdepth not in (1,2,4,8,16):
+ raise FormatError("invalid bit depth %d" % bitdepth)
+ if colortype not in (0,2,3,4,6):
+ raise FormatError("invalid colour type %d" % colortype)
+ # Check indexed (palettized) images have 8 or fewer bits
+ # per pixel; check only indexed or greyscale images have
+ # fewer than 8 bits per pixel.
+ if colortype & 1 and bitdepth > 8:
+ raise FormatError(
+ "Indexed images (colour type %d) cannot"
+ " have bitdepth > 8 (bit depth %d)."
+ " See http://www.w3.org/TR/2003/REC-PNG-20031110/#table111 ."
+ % (bitdepth, colortype))
+ if bitdepth < 8 and colortype not in (0,3):
+ raise FormatError("Illegal combination of bit depth (%d)"
+ " and colour type (%d)."
+ " See http://www.w3.org/TR/2003/REC-PNG-20031110/#table111 ."
+ % (bitdepth, colortype))
+
+def isinteger(x):
+ try:
+ return int(x) == x
+ except (TypeError, ValueError):
+ return False
+
+
+# === Support for users without Cython ===
+
+try:
+ pngfilters
+except NameError:
+ class pngfilters(object):
+ def undo_filter_sub(filter_unit, scanline, previous, result):
+ """Undo sub filter."""
+
+ ai = 0
+ # Loops starts at index fu. Observe that the initial part
+ # of the result is already filled in correctly with
+ # scanline.
+ for i in range(filter_unit, len(result)):
+ x = scanline[i]
+ a = result[ai]
+ result[i] = (x + a) & 0xff
+ ai += 1
+ undo_filter_sub = staticmethod(undo_filter_sub)
+
+ def undo_filter_up(filter_unit, scanline, previous, result):
+ """Undo up filter."""
+
+ for i in range(len(result)):
+ x = scanline[i]
+ b = previous[i]
+ result[i] = (x + b) & 0xff
+ undo_filter_up = staticmethod(undo_filter_up)
+
+ def undo_filter_average(filter_unit, scanline, previous, result):
+ """Undo up filter."""
+
+ ai = -filter_unit
+ for i in range(len(result)):
+ x = scanline[i]
+ if ai < 0:
+ a = 0
+ else:
+ a = result[ai]
+ b = previous[i]
+ result[i] = (x + ((a + b) >> 1)) & 0xff
+ ai += 1
+ undo_filter_average = staticmethod(undo_filter_average)
+
+ def undo_filter_paeth(filter_unit, scanline, previous, result):
+ """Undo Paeth filter."""
+
+ # Also used for ci.
+ ai = -filter_unit
+ for i in range(len(result)):
+ x = scanline[i]
+ if ai < 0:
+ a = c = 0
+ else:
+ a = result[ai]
+ c = previous[ai]
+ b = previous[i]
+ p = a + b - c
+ pa = abs(p - a)
+ pb = abs(p - b)
+ pc = abs(p - c)
+ if pa <= pb and pa <= pc:
+ pr = a
+ elif pb <= pc:
+ pr = b
+ else:
+ pr = c
+ result[i] = (x + pr) & 0xff
+ ai += 1
+ undo_filter_paeth = staticmethod(undo_filter_paeth)
+
+ def convert_la_to_rgba(row, result):
+ for i in range(3):
+ result[i::4] = row[0::2]
+ result[3::4] = row[1::2]
+ convert_la_to_rgba = staticmethod(convert_la_to_rgba)
+
+ def convert_l_to_rgba(row, result):
+ """Convert a grayscale image to RGBA. This method assumes
+ the alpha channel in result is already correctly
+ initialized.
+ """
+ for i in range(3):
+ result[i::4] = row
+ convert_l_to_rgba = staticmethod(convert_l_to_rgba)
+
+ def convert_rgb_to_rgba(row, result):
+ """Convert an RGB image to RGBA. This method assumes the
+ alpha channel in result is already correctly initialized.
+ """
+ for i in range(3):
+ result[i::4] = row[i::3]
+ convert_rgb_to_rgba = staticmethod(convert_rgb_to_rgba)
+
+
+# === Command Line Support ===
+
+def read_pam_header(infile):
+ """
+ Read (the rest of a) PAM header. `infile` should be positioned
+ immediately after the initial 'P7' line (at the beginning of the
+ second line). Returns are as for `read_pnm_header`.
+ """
+
+ # Unlike PBM, PGM, and PPM, we can read the header a line at a time.
+ header = dict()
+ while True:
+ l = infile.readline().strip()
+ if l == b'ENDHDR':
+ break
+ if not l:
+ raise EOFError('PAM ended prematurely')
+ if l[0] == b'#':
+ continue
+ l = l.split(None, 1)
+ if l[0] not in header:
+ header[l[0]] = l[1]
+ else:
+ header[l[0]] += b' ' + l[1]
+
+ required = [b'WIDTH', b'HEIGHT', b'DEPTH', b'MAXVAL']
+ WIDTH,HEIGHT,DEPTH,MAXVAL = required
+ present = [x for x in required if x in header]
+ if len(present) != len(required):
+ raise Error('PAM file must specify WIDTH, HEIGHT, DEPTH, and MAXVAL')
+ width = int(header[WIDTH])
+ height = int(header[HEIGHT])
+ depth = int(header[DEPTH])
+ maxval = int(header[MAXVAL])
+ if (width <= 0 or
+ height <= 0 or
+ depth <= 0 or
+ maxval <= 0):
+ raise Error(
+ 'WIDTH, HEIGHT, DEPTH, MAXVAL must all be positive integers')
+ return 'P7', width, height, depth, maxval
+
+def read_pnm_header(infile, supported=(b'P5', b'P6')):
+ """
+ Read a PNM header, returning (format,width,height,depth,maxval).
+ `width` and `height` are in pixels. `depth` is the number of
+ channels in the image; for PBM and PGM it is synthesized as 1, for
+ PPM as 3; for PAM images it is read from the header. `maxval` is
+ synthesized (as 1) for PBM images.
+ """
+
+ # Generally, see http://netpbm.sourceforge.net/doc/ppm.html
+ # and http://netpbm.sourceforge.net/doc/pam.html
+
+ # Technically 'P7' must be followed by a newline, so by using
+ # rstrip() we are being liberal in what we accept. I think this
+ # is acceptable.
+ type = infile.read(3).rstrip()
+ if type not in supported:
+ raise NotImplementedError('file format %s not supported' % type)
+ if type == b'P7':
+ # PAM header parsing is completely different.
+ return read_pam_header(infile)
+ # Expected number of tokens in header (3 for P4, 4 for P6)
+ expected = 4
+ pbm = (b'P1', b'P4')
+ if type in pbm:
+ expected = 3
+ header = [type]
+
+ # We have to read the rest of the header byte by byte because the
+ # final whitespace character (immediately following the MAXVAL in
+ # the case of P6) may not be a newline. Of course all PNM files in
+ # the wild use a newline at this point, so it's tempting to use
+ # readline; but it would be wrong.
+ def getc():
+ c = infile.read(1)
+ if not c:
+ raise Error('premature EOF reading PNM header')
+ return c
+
+ c = getc()
+ while True:
+ # Skip whitespace that precedes a token.
+ while c.isspace():
+ c = getc()
+ # Skip comments.
+ while c == '#':
+ while c not in b'\n\r':
+ c = getc()
+ if not c.isdigit():
+ raise Error('unexpected character %s found in header' % c)
+ # According to the specification it is legal to have comments
+ # that appear in the middle of a token.
+ # This is bonkers; I've never seen it; and it's a bit awkward to
+ # code good lexers in Python (no goto). So we break on such
+ # cases.
+ token = b''
+ while c.isdigit():
+ token += c
+ c = getc()
+ # Slight hack. All "tokens" are decimal integers, so convert
+ # them here.
+ header.append(int(token))
+ if len(header) == expected:
+ break
+ # Skip comments (again)
+ while c == '#':
+ while c not in '\n\r':
+ c = getc()
+ if not c.isspace():
+ raise Error('expected header to end with whitespace, not %s' % c)
+
+ if type in pbm:
+ # synthesize a MAXVAL
+ header.append(1)
+ depth = (1,3)[type == b'P6']
+ return header[0], header[1], header[2], depth, header[3]
+
+def write_pnm(file, width, height, pixels, meta):
+ """Write a Netpbm PNM/PAM file.
+ """
+
+ bitdepth = meta['bitdepth']
+ maxval = 2**bitdepth - 1
+ # Rudely, the number of image planes can be used to determine
+ # whether we are L (PGM), LA (PAM), RGB (PPM), or RGBA (PAM).
+ planes = meta['planes']
+ # Can be an assert as long as we assume that pixels and meta came
+ # from a PNG file.
+ assert planes in (1,2,3,4)
+ if planes in (1,3):
+ if 1 == planes:
+ # PGM
+ # Could generate PBM if maxval is 1, but we don't (for one
+ # thing, we'd have to convert the data, not just blat it
+ # out).
+ fmt = 'P5'
+ else:
+ # PPM
+ fmt = 'P6'
+ header = '%s %d %d %d\n' % (fmt, width, height, maxval)
+ if planes in (2,4):
+ # PAM
+ # See http://netpbm.sourceforge.net/doc/pam.html
+ if 2 == planes:
+ tupltype = 'GRAYSCALE_ALPHA'
+ else:
+ tupltype = 'RGB_ALPHA'
+ header = ('P7\nWIDTH %d\nHEIGHT %d\nDEPTH %d\nMAXVAL %d\n'
+ 'TUPLTYPE %s\nENDHDR\n' %
+ (width, height, planes, maxval, tupltype))
+ file.write(header.encode('ascii'))
+ # Values per row
+ vpr = planes * width
+ # struct format
+ fmt = '>%d' % vpr
+ if maxval > 0xff:
+ fmt = fmt + 'H'
+ else:
+ fmt = fmt + 'B'
+ for row in pixels:
+ file.write(struct.pack(fmt, *row))
+ file.flush()
+
+def color_triple(color):
+ """
+ Convert a command line colour value to a RGB triple of integers.
+ FIXME: Somewhere we need support for greyscale backgrounds etc.
+ """
+ if color.startswith('#') and len(color) == 4:
+ return (int(color[1], 16),
+ int(color[2], 16),
+ int(color[3], 16))
+ if color.startswith('#') and len(color) == 7:
+ return (int(color[1:3], 16),
+ int(color[3:5], 16),
+ int(color[5:7], 16))
+ elif color.startswith('#') and len(color) == 13:
+ return (int(color[1:5], 16),
+ int(color[5:9], 16),
+ int(color[9:13], 16))
+
+def _add_common_options(parser):
+ """Call *parser.add_option* for each of the options that are
+ common between this PNG--PNM conversion tool and the gen
+ tool.
+ """
+ parser.add_option("-i", "--interlace",
+ default=False, action="store_true",
+ help="create an interlaced PNG file (Adam7)")
+ parser.add_option("-t", "--transparent",
+ action="store", type="string", metavar="#RRGGBB",
+ help="mark the specified colour as transparent")
+ parser.add_option("-b", "--background",
+ action="store", type="string", metavar="#RRGGBB",
+ help="save the specified background colour")
+ parser.add_option("-g", "--gamma",
+ action="store", type="float", metavar="value",
+ help="save the specified gamma value")
+ parser.add_option("-c", "--compression",
+ action="store", type="int", metavar="level",
+ help="zlib compression level (0-9)")
+ return parser
+
+def _main(argv):
+ """
+ Run the PNG encoder with options from the command line.
+ """
+
+ # Parse command line arguments
+ from optparse import OptionParser
+ version = '%prog ' + __version__
+ parser = OptionParser(version=version)
+ parser.set_usage("%prog [options] [imagefile]")
+ parser.add_option('-r', '--read-png', default=False,
+ action='store_true',
+ help='Read PNG, write PNM')
+ parser.add_option("-a", "--alpha",
+ action="store", type="string", metavar="pgmfile",
+ help="alpha channel transparency (RGBA)")
+ _add_common_options(parser)
+
+ (options, args) = parser.parse_args(args=argv[1:])
+
+ # Convert options
+ if options.transparent is not None:
+ options.transparent = color_triple(options.transparent)
+ if options.background is not None:
+ options.background = color_triple(options.background)
+
+ # Prepare input and output files
+ if len(args) == 0:
+ infilename = '-'
+ infile = sys.stdin
+ elif len(args) == 1:
+ infilename = args[0]
+ infile = open(infilename, 'rb')
+ else:
+ parser.error("more than one input file")
+ outfile = sys.stdout
+ if sys.platform == "win32":
+ import msvcrt, os
+ msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY)
+
+ if options.read_png:
+ # Encode PNG to PPM
+ png = Reader(file=infile)
+ width,height,pixels,meta = png.asDirect()
+ write_pnm(outfile, width, height, pixels, meta)
+ else:
+ # Encode PNM to PNG
+ format, width, height, depth, maxval = \
+ read_pnm_header(infile, (b'P5',b'P6',b'P7'))
+ # When it comes to the variety of input formats, we do something
+ # rather rude. Observe that L, LA, RGB, RGBA are the 4 colour
+ # types supported by PNG and that they correspond to 1, 2, 3, 4
+ # channels respectively. So we use the number of channels in
+ # the source image to determine which one we have. We do not
+ # care about TUPLTYPE.
+ greyscale = depth <= 2
+ pamalpha = depth in (2,4)
+ supported = [2**x-1 for x in range(1,17)]
+ try:
+ mi = supported.index(maxval)
+ except ValueError:
+ raise NotImplementedError(
+ 'your maxval (%s) not in supported list %s' %
+ (maxval, str(supported)))
+ bitdepth = mi+1
+ writer = Writer(width, height,
+ greyscale=greyscale,
+ bitdepth=bitdepth,
+ interlace=options.interlace,
+ transparent=options.transparent,
+ background=options.background,
+ alpha=bool(pamalpha or options.alpha),
+ gamma=options.gamma,
+ compression=options.compression)
+ if options.alpha:
+ pgmfile = open(options.alpha, 'rb')
+ format, awidth, aheight, adepth, amaxval = \
+ read_pnm_header(pgmfile, 'P5')
+ if amaxval != '255':
+ raise NotImplementedError(
+ 'maxval %s not supported for alpha channel' % amaxval)
+ if (awidth, aheight) != (width, height):
+ raise ValueError("alpha channel image size mismatch"
+ " (%s has %sx%s but %s has %sx%s)"
+ % (infilename, width, height,
+ options.alpha, awidth, aheight))
+ writer.convert_ppm_and_pgm(infile, pgmfile, outfile)
+ else:
+ writer.convert_pnm(infile, outfile)
+
+
+if __name__ == '__main__':
+ try:
+ _main(sys.argv)
+ except Error as e:
+ print(e, file=sys.stderr)