ref: cd4138458a4a88dab6a1dc3b0f7c7907c855e800
parent: 2de1b5630d7717f5fc5401a7ca3aa756d3c204fd
author: Anuj Verma <anujv@iitbhilai.ac.in>
date: Tue Aug 18 06:14:20 EDT 2020
[sdf] Add utility functions for contours. * src/sdf/ftsdf.c (get_control_box, get_contour_orientation): New functions. (split_conic, split_cubic, split_sdf_conic, split_sdf_cubic, split_sdf_shape): New functions.
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,3 +1,12 @@
+2020-08-18 Anuj Verma <anujv@iitbhilai.ac.in>
+
+ [sdf] Add utility functions for contours.
+
+ * src/sdf/ftsdf.c (get_control_box, get_contour_orientation): New
+ functions.
+ (split_conic, split_cubic, split_sdf_conic, split_sdf_cubic,
+ split_sdf_shape): New functions.
+
2020-08-17 Anuj Verma <anujv@iitbhilai.ac.in>
[sdf] Add functions to decompose `FT_Outline`.
--- a/src/sdf/ftsdf.c
+++ b/src/sdf/ftsdf.c
@@ -842,4 +842,474 @@
return error;
}
+
+ /**************************************************************************
+ *
+ * utility functions
+ *
+ */
+
+ /* Return the control box of a edge. The control box is a rectangle */
+ /* in which all the control points can fit tightly. */
+ static FT_CBox
+ get_control_box( SDF_Edge edge )
+ {
+ FT_CBox cbox;
+ FT_Bool is_set = 0;
+
+
+ switch ( edge.edge_type )
+ {
+ case SDF_EDGE_CUBIC:
+ cbox.xMin = edge.control_b.x;
+ cbox.xMax = edge.control_b.x;
+ cbox.yMin = edge.control_b.y;
+ cbox.yMax = edge.control_b.y;
+
+ is_set = 1;
+ /* fall through */
+
+ case SDF_EDGE_CONIC:
+ if ( is_set )
+ {
+ cbox.xMin = edge.control_a.x < cbox.xMin
+ ? edge.control_a.x
+ : cbox.xMin;
+ cbox.xMax = edge.control_a.x > cbox.xMax
+ ? edge.control_a.x
+ : cbox.xMax;
+
+ cbox.yMin = edge.control_a.y < cbox.yMin
+ ? edge.control_a.y
+ : cbox.yMin;
+ cbox.yMax = edge.control_a.y > cbox.yMax
+ ? edge.control_a.y
+ : cbox.yMax;
+ }
+ else
+ {
+ cbox.xMin = edge.control_a.x;
+ cbox.xMax = edge.control_a.x;
+ cbox.yMin = edge.control_a.y;
+ cbox.yMax = edge.control_a.y;
+
+ is_set = 1;
+ }
+ /* fall through */
+
+ case SDF_EDGE_LINE:
+ if ( is_set )
+ {
+ cbox.xMin = edge.start_pos.x < cbox.xMin
+ ? edge.start_pos.x
+ : cbox.xMin;
+ cbox.xMax = edge.start_pos.x > cbox.xMax
+ ? edge.start_pos.x
+ : cbox.xMax;
+
+ cbox.yMin = edge.start_pos.y < cbox.yMin
+ ? edge.start_pos.y
+ : cbox.yMin;
+ cbox.yMax = edge.start_pos.y > cbox.yMax
+ ? edge.start_pos.y
+ : cbox.yMax;
+ }
+ else
+ {
+ cbox.xMin = edge.start_pos.x;
+ cbox.xMax = edge.start_pos.x;
+ cbox.yMin = edge.start_pos.y;
+ cbox.yMax = edge.start_pos.y;
+ }
+
+ cbox.xMin = edge.end_pos.x < cbox.xMin
+ ? edge.end_pos.x
+ : cbox.xMin;
+ cbox.xMax = edge.end_pos.x > cbox.xMax
+ ? edge.end_pos.x
+ : cbox.xMax;
+
+ cbox.yMin = edge.end_pos.y < cbox.yMin
+ ? edge.end_pos.y
+ : cbox.yMin;
+ cbox.yMax = edge.end_pos.y > cbox.yMax
+ ? edge.end_pos.y
+ : cbox.yMax;
+
+ break;
+
+ default:
+ break;
+ }
+
+ return cbox;
+ }
+
+
+ /* Return orientation of a single contour. */
+ /* Note that the orientation is independent of the fill rule! */
+ /* So, for TTF a clockwise-oriented contour has to be filled */
+ /* and the opposite for OTF fonts. */
+ static SDF_Contour_Orientation
+ get_contour_orientation ( SDF_Contour* contour )
+ {
+ SDF_Edge* head = NULL;
+ FT_26D6 area = 0;
+
+
+ /* return none if invalid parameters */
+ if ( !contour || !contour->edges )
+ return SDF_ORIENTATION_NONE;
+
+ head = contour->edges;
+
+ /* Calculate the area of the control box for all edges. */
+ while ( head )
+ {
+ switch ( head->edge_type )
+ {
+ case SDF_EDGE_LINE:
+ area += MUL_26D6( ( head->end_pos.x - head->start_pos.x ),
+ ( head->end_pos.y + head->start_pos.y ) );
+ break;
+
+ case SDF_EDGE_CONIC:
+ area += MUL_26D6( head->control_a.x - head->start_pos.x,
+ head->control_a.y + head->start_pos.y );
+ area += MUL_26D6( head->end_pos.x - head->control_a.x,
+ head->end_pos.y + head->control_a.y );
+ break;
+
+ case SDF_EDGE_CUBIC:
+ area += MUL_26D6( head->control_a.x - head->start_pos.x,
+ head->control_a.y + head->start_pos.y );
+ area += MUL_26D6( head->control_b.x - head->control_a.x,
+ head->control_b.y + head->control_a.y );
+ area += MUL_26D6( head->end_pos.x - head->control_b.x,
+ head->end_pos.y + head->control_b.y );
+ break;
+
+ default:
+ return SDF_ORIENTATION_NONE;
+ }
+
+ head = head->next;
+ }
+
+ /* Clockwise contours cover a positive area, and anti-clockwise */
+ /* contours cover a negative area. */
+ if ( area > 0 )
+ return SDF_ORIENTATION_CW;
+ else
+ return SDF_ORIENTATION_ACW;
+ }
+
+
+ /* This function is exactly the same as the one */
+ /* in the smooth renderer. It splits a conic */
+ /* into two conics exactly half way at t = 0.5. */
+ static void
+ split_conic( FT_26D6_Vec* base )
+ {
+ FT_26D6 a, b;
+
+
+ base[4].x = base[2].x;
+ a = base[0].x + base[1].x;
+ b = base[1].x + base[2].x;
+ base[3].x = b / 2;
+ base[2].x = ( a + b ) / 4;
+ base[1].x = a / 2;
+
+ base[4].y = base[2].y;
+ a = base[0].y + base[1].y;
+ b = base[1].y + base[2].y;
+ base[3].y = b / 2;
+ base[2].y = ( a + b ) / 4;
+ base[1].y = a / 2;
+ }
+
+
+ /* This function is exactly the same as the one */
+ /* in the smooth renderer. It splits a cubic */
+ /* into two cubics exactly half way at t = 0.5. */
+ static void
+ split_cubic( FT_26D6_Vec* base )
+ {
+ FT_26D6 a, b, c;
+
+
+ base[6].x = base[3].x;
+ a = base[0].x + base[1].x;
+ b = base[1].x + base[2].x;
+ c = base[2].x + base[3].x;
+ base[5].x = c / 2;
+ c += b;
+ base[4].x = c / 4;
+ base[1].x = a / 2;
+ a += b;
+ base[2].x = a / 4;
+ base[3].x = ( a + c ) / 8;
+
+ base[6].y = base[3].y;
+ a = base[0].y + base[1].y;
+ b = base[1].y + base[2].y;
+ c = base[2].y + base[3].y;
+ base[5].y = c / 2;
+ c += b;
+ base[4].y = c / 4;
+ base[1].y = a / 2;
+ a += b;
+ base[2].y = a / 4;
+ base[3].y = ( a + c ) / 8;
+ }
+
+
+ /* Split a conic Bezier curve into a number of lines */
+ /* and add them to `out'. */
+ /* */
+ /* This function uses recursion; we thus need */
+ /* parameter `max_splits' for stopping. */
+ static FT_Error
+ split_sdf_conic( FT_Memory memory,
+ FT_26D6_Vec* control_points,
+ FT_Int max_splits,
+ SDF_Edge** out )
+ {
+ FT_Error error = FT_Err_Ok;
+ FT_26D6_Vec cpos[5];
+ SDF_Edge* left,* right;
+
+
+ if ( !memory || !out )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ /* split conic outline */
+ cpos[0] = control_points[0];
+ cpos[1] = control_points[1];
+ cpos[2] = control_points[2];
+
+ split_conic( cpos );
+
+ /* If max number of splits is done */
+ /* then stop and add the lines to */
+ /* the list. */
+ if ( max_splits <= 2 )
+ goto Append;
+
+ /* Otherwise keep splitting. */
+ FT_CALL( split_sdf_conic( memory, &cpos[0], max_splits / 2, out ) );
+ FT_CALL( split_sdf_conic( memory, &cpos[2], max_splits / 2, out ) );
+
+ /* [NOTE]: This is not an efficient way of */
+ /* splitting the curve. Check the deviation */
+ /* instead and stop if the deviation is less */
+ /* than a pixel. */
+
+ goto Exit;
+
+ Append:
+ /* Do allocation and add the lines to the list. */
+
+ FT_CALL( sdf_edge_new( memory, &left ) );
+ FT_CALL( sdf_edge_new( memory, &right ) );
+
+ left->start_pos = cpos[0];
+ left->end_pos = cpos[2];
+ left->edge_type = SDF_EDGE_LINE;
+
+ right->start_pos = cpos[2];
+ right->end_pos = cpos[4];
+ right->edge_type = SDF_EDGE_LINE;
+
+ left->next = right;
+ right->next = (*out);
+ *out = left;
+
+ Exit:
+ return error;
+ }
+
+
+ /* Split a cubic Bezier curve into a number of lines */
+ /* and add them to `out`. */
+ /* */
+ /* This function uses recursion; we thus need */
+ /* parameter `max_splits' for stopping. */
+ static FT_Error
+ split_sdf_cubic( FT_Memory memory,
+ FT_26D6_Vec* control_points,
+ FT_Int max_splits,
+ SDF_Edge** out )
+ {
+ FT_Error error = FT_Err_Ok;
+ FT_26D6_Vec cpos[7];
+ SDF_Edge* left,* right;
+
+
+ if ( !memory || !out )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ /* split the conic */
+ cpos[0] = control_points[0];
+ cpos[1] = control_points[1];
+ cpos[2] = control_points[2];
+ cpos[3] = control_points[3];
+
+ split_cubic( cpos );
+
+ /* If max number of splits is done */
+ /* then stop and add the lines to */
+ /* the list. */
+ if ( max_splits <= 2 )
+ goto Append;
+
+ /* Otherwise keep splitting. */
+ FT_CALL( split_sdf_cubic( memory, &cpos[0], max_splits / 2, out ) );
+ FT_CALL( split_sdf_cubic( memory, &cpos[3], max_splits / 2, out ) );
+
+ /* [NOTE]: This is not an efficient way of */
+ /* splitting the curve. Check the deviation */
+ /* instead and stop if the deviation is less */
+ /* than a pixel. */
+
+ goto Exit;
+
+ Append:
+ /* Do allocation and add the lines to the list. */
+
+ FT_CALL( sdf_edge_new( memory, &left) );
+ FT_CALL( sdf_edge_new( memory, &right) );
+
+ left->start_pos = cpos[0];
+ left->end_pos = cpos[3];
+ left->edge_type = SDF_EDGE_LINE;
+
+ right->start_pos = cpos[3];
+ right->end_pos = cpos[6];
+ right->edge_type = SDF_EDGE_LINE;
+
+ left->next = right;
+ right->next = (*out);
+ *out = left;
+
+ Exit:
+ return error;
+ }
+
+
+ /* Subdivide an entire shape into line segments */
+ /* such that it doesn't look visually different */
+ /* from the original curve. */
+ static FT_Error
+ split_sdf_shape( SDF_Shape* shape )
+ {
+ FT_Error error = FT_Err_Ok;
+ FT_Memory memory;
+
+ SDF_Contour* contours;
+ SDF_Contour* new_contours = NULL;
+
+
+ if ( !shape || !shape->memory )
+ {
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ contours = shape->contours;
+ memory = shape->memory;
+
+ /* for each contour */
+ while ( contours )
+ {
+ SDF_Edge* edges = contours->edges;
+ SDF_Edge* new_edges = NULL;
+
+ SDF_Contour* tempc;
+
+
+ /* for each edge */
+ while ( edges )
+ {
+ SDF_Edge* edge = edges;
+ SDF_Edge* temp;
+
+ switch ( edge->edge_type )
+ {
+ case SDF_EDGE_LINE:
+ /* Just create a duplicate edge in case */
+ /* it is a line. We can use the same edge. */
+ FT_CALL( sdf_edge_new( memory, &temp ) );
+
+ ft_memcpy( temp, edge, sizeof ( *edge ) );
+
+ temp->next = new_edges;
+ new_edges = temp;
+ break;
+
+ case SDF_EDGE_CONIC:
+ /* Subdivide the curve and add it to the list. */
+ {
+ FT_26D6_Vec ctrls[3];
+
+
+ ctrls[0] = edge->start_pos;
+ ctrls[1] = edge->control_a;
+ ctrls[2] = edge->end_pos;
+
+ error = split_sdf_conic( memory, ctrls, 32, &new_edges );
+ }
+ break;
+
+ case SDF_EDGE_CUBIC:
+ /* Subdivide the curve and add it to the list. */
+ {
+ FT_26D6_Vec ctrls[4];
+
+
+ ctrls[0] = edge->start_pos;
+ ctrls[1] = edge->control_a;
+ ctrls[2] = edge->control_b;
+ ctrls[3] = edge->end_pos;
+
+ error = split_sdf_cubic( memory, ctrls, 32, &new_edges );
+ }
+ break;
+
+ default:
+ error = FT_THROW( Invalid_Argument );
+ goto Exit;
+ }
+
+ edges = edges->next;
+ }
+
+ /* add to the contours list */
+ FT_CALL( sdf_contour_new( memory, &tempc ) );
+
+ tempc->next = new_contours;
+ tempc->edges = new_edges;
+ new_contours = tempc;
+ new_edges = NULL;
+
+ /* deallocate the contour */
+ tempc = contours;
+ contours = contours->next;
+
+ sdf_contour_done( memory, &tempc );
+ }
+
+ shape->contours = new_contours;
+
+ Exit:
+ return error;
+ }
+
/* END */