ref: a255125fe482772feade4334635fc8a3967199b9
parent: cd4138458a4a88dab6a1dc3b0f7c7907c855e800
author: Anuj Verma <anujv@iitbhilai.ac.in>
date: Tue Aug 18 06:17:46 EDT 2020
[sdf] Add essential math functions. * src/sdf/ftsdf.c (cube_root, arc_cos) [!USE_NEWTON_FOR_CONIC]: New auxiliary functions. * src/sdf/ftsdf.c (solve_quadratic_equation, solve_cubic_equation) [!USE_NEWTON_FOR_CONIC]: New functions.
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,5 +1,15 @@
2020-08-18 Anuj Verma <anujv@iitbhilai.ac.in>
+ [sdf] Add essential math functions.
+
+ * src/sdf/ftsdf.c (cube_root, arc_cos) [!USE_NEWTON_FOR_CONIC]: New
+ auxiliary functions.
+
+ * src/sdf/ftsdf.c (solve_quadratic_equation, solve_cubic_equation)
+ [!USE_NEWTON_FOR_CONIC]: New functions.
+
+2020-08-18 Anuj Verma <anujv@iitbhilai.ac.in>
+
[sdf] Add utility functions for contours.
* src/sdf/ftsdf.c (get_control_box, get_contour_orientation): New
--- a/src/sdf/ftsdf.c
+++ b/src/sdf/ftsdf.c
@@ -1312,4 +1312,248 @@
return error;
}
+
+ /**************************************************************************
+ *
+ * math functions
+ *
+ */
+
+#if !USE_NEWTON_FOR_CONIC
+
+ /* [NOTE]: All the functions below down until rasterizer */
+ /* can be avoided if we decide to subdivide the */
+ /* curve into lines. */
+
+ /* This function uses Newton's iteration to find */
+ /* the cube root of a fixed-point integer. */
+ static FT_16D16
+ cube_root( FT_16D16 val )
+ {
+ /* [IMPORTANT]: This function is not good as it may */
+ /* not break, so use a lookup table instead. Or we */
+ /* can use an algorithm similar to `square_root`. */
+
+ FT_Int v, g, c;
+
+
+ if ( val == 0 ||
+ val == -FT_INT_16D16( 1 ) ||
+ val == FT_INT_16D16( 1 ) )
+ return val;
+
+ v = val < 0 ? -val : val;
+ g = square_root( v );
+ c = 0;
+
+ while ( 1 )
+ {
+ c = FT_MulFix( FT_MulFix( g, g ), g ) - v;
+ c = FT_DivFix( c, 3 * FT_MulFix( g, g ) );
+
+ g -= c;
+
+ if ( ( c < 0 ? -c : c ) < 30 )
+ break;
+ }
+
+ return val < 0 ? -g : g;
+ }
+
+
+ /* Calculate the perpendicular by using '1 - base^2'. */
+ /* Then use arctan to compute the angle. */
+ static FT_16D16
+ arc_cos( FT_16D16 val )
+ {
+ FT_16D16 p;
+ FT_16D16 b = val;
+ FT_16D16 one = FT_INT_16D16( 1 );
+
+
+ if ( b > one )
+ b = one;
+ if ( b < -one )
+ b = -one;
+
+ p = one - FT_MulFix( b, b );
+ p = square_root( p );
+
+ return FT_Atan2( b, p );
+ }
+
+
+ /* Compute roots of a quadratic polynomial, assign them to `out`, */
+ /* and return number of real roots. */
+ /* */
+ /* The procedure can be found at */
+ /* */
+ /* https://mathworld.wolfram.com/QuadraticFormula.html */
+ static FT_UShort
+ solve_quadratic_equation( FT_26D6 a,
+ FT_26D6 b,
+ FT_26D6 c,
+ FT_16D16 out[2] )
+ {
+ FT_16D16 discriminant = 0;
+
+
+ a = FT_26D6_16D16( a );
+ b = FT_26D6_16D16( b );
+ c = FT_26D6_16D16( c );
+
+ if ( a == 0 )
+ {
+ if ( b == 0 )
+ return 0;
+ else
+ {
+ out[0] = FT_DivFix( -c, b );
+
+ return 1;
+ }
+ }
+
+ discriminant = FT_MulFix( b, b ) - 4 * FT_MulFix( a, c );
+
+ if ( discriminant < 0 )
+ return 0;
+ else if ( discriminant == 0 )
+ {
+ out[0] = FT_DivFix( -b, 2 * a );
+
+ return 1;
+ }
+ else
+ {
+ discriminant = square_root( discriminant );
+
+ out[0] = FT_DivFix( -b + discriminant, 2 * a );
+ out[1] = FT_DivFix( -b - discriminant, 2 * a );
+
+ return 2;
+ }
+ }
+
+
+ /* Compute roots of a cubic polynomial, assign them to `out`, */
+ /* and return number of real roots. */
+ /* */
+ /* The procedure can be found at */
+ /* */
+ /* https://mathworld.wolfram.com/CubicFormula.html */
+ static FT_UShort
+ solve_cubic_equation( FT_26D6 a,
+ FT_26D6 b,
+ FT_26D6 c,
+ FT_26D6 d,
+ FT_16D16 out[3] )
+ {
+ FT_16D16 q = 0; /* intermediate */
+ FT_16D16 r = 0; /* intermediate */
+
+ FT_16D16 a2 = b; /* x^2 coefficients */
+ FT_16D16 a1 = c; /* x coefficients */
+ FT_16D16 a0 = d; /* constant */
+
+ FT_16D16 q3 = 0;
+ FT_16D16 r2 = 0;
+ FT_16D16 a23 = 0;
+ FT_16D16 a22 = 0;
+ FT_16D16 a1x2 = 0;
+
+
+ /* cutoff value for `a` to be a cubic, otherwise solve quadratic */
+ if ( a == 0 || FT_ABS( a ) < 16 )
+ return solve_quadratic_equation( b, c, d, out );
+
+ if ( d == 0 )
+ {
+ out[0] = 0;
+
+ return solve_quadratic_equation( a, b, c, out + 1 ) + 1;
+ }
+
+ /* normalize the coefficients; this also makes them 16.16 */
+ a2 = FT_DivFix( a2, a );
+ a1 = FT_DivFix( a1, a );
+ a0 = FT_DivFix( a0, a );
+
+ /* compute intermediates */
+ a1x2 = FT_MulFix( a1, a2 );
+ a22 = FT_MulFix( a2, a2 );
+ a23 = FT_MulFix( a22, a2 );
+
+ q = ( 3 * a1 - a22 ) / 9;
+ r = ( 9 * a1x2 - 27 * a0 - 2 * a23 ) / 54;
+
+ /* [BUG]: `q3` and `r2` still cause underflow. */
+
+ q3 = FT_MulFix( q, q );
+ q3 = FT_MulFix( q3, q );
+
+ r2 = FT_MulFix( r, r );
+
+ if ( q3 < 0 && r2 < -q3 )
+ {
+ FT_16D16 t = 0;
+
+
+ q3 = square_root( -q3 );
+ t = FT_DivFix( r, q3 );
+
+ if ( t > ( 1 << 16 ) )
+ t = ( 1 << 16 );
+ if ( t < -( 1 << 16 ) )
+ t = -( 1 << 16 );
+
+ t = arc_cos( t );
+ a2 /= 3;
+ q = 2 * square_root( -q );
+
+ out[0] = FT_MulFix( q, FT_Cos( t / 3 ) ) - a2;
+ out[1] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 2 ) / 3 ) ) - a2;
+ out[2] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 4 ) / 3 ) ) - a2;
+
+ return 3;
+ }
+
+ else if ( r2 == -q3 )
+ {
+ FT_16D16 s = 0;
+
+
+ s = cube_root( r );
+ a2 /= -3;
+
+ out[0] = a2 + ( 2 * s );
+ out[1] = a2 - s;
+
+ return 2;
+ }
+
+ else
+ {
+ FT_16D16 s = 0;
+ FT_16D16 t = 0;
+ FT_16D16 dis = 0;
+
+
+ if ( q3 == 0 )
+ dis = FT_ABS( r );
+ else
+ dis = square_root( q3 + r2 );
+
+ s = cube_root( r + dis );
+ t = cube_root( r - dis );
+ a2 /= -3;
+ out[0] = ( a2 + ( s + t ) );
+
+ return 1;
+ }
+ }
+
+#endif /* !USE_NEWTON_FOR_CONIC */
+
+
/* END */