shithub: MicroHs

ref: b4a7a0d4c04ad0fb96d0b279d35da2658d58a0e1
dir: /lib/Data/Complex.hs/

View raw version
module Data.Complex(module Data.Complex) where
import Data.Typeable

infix 6 :+

data Complex a = !a :+ !a
  deriving(Typeable)

instance forall a . Eq a => Eq (Complex a) where
  (x :+ y) == (x' :+ y')  =  x == x' && y == y'   -- parser bug

instance forall a . Show a => Show (Complex a) where
  show (x :+ y) = show x ++ " :+ " ++ show y

realPart :: forall a . Complex a -> a
realPart (x :+ _) =  x

imagPart :: forall a . Complex a -> a
imagPart (_ :+ y) =  y

conjugate        :: forall a . Num a => Complex a -> Complex a
conjugate (x:+y) =  x :+ (- y)

mkPolar          :: forall a . Floating a => a -> a -> Complex a
mkPolar r theta  =  r * cos theta :+ r * sin theta

cis              :: forall a . Floating a => a -> Complex a
cis theta        =  cos theta :+ sin theta

polar            :: forall a . (RealFloat a) => Complex a -> (a,a)
polar z          =  (magnitude z, phase z)

magnitude :: forall a . (Ord a, Floating a) => Complex a -> a
magnitude (x:+y) =
  -- slightly contorted to avoid overflow
  let ax = abs x
      ay = abs y
      mx = max ax ay
      mn = min ax ay
      r = mn / mx
  in  mx * sqrt(1 + r*r)

phase :: forall a . (RealFloat a) => Complex a -> a
-- XXX phase (0 :+ 0)   = 0
phase (x:+y) | x==0 && y==0 = 0
             | otherwise    = atan2 y x


instance forall a . (RealFloat a) => Num (Complex a)  where
    (x:+y) + (x':+y')   =  (x+x') :+ (y+y')
    (x:+y) - (x':+y')   =  (x-x') :+ (y-y')
    (x:+y) * (x':+y')   =  (x*x'-y*y') :+ (x*y'+y*x')
    negate (x:+y)       =  negate x :+ negate y
    abs z               =  magnitude z :+ 0
--    signum (0:+0)       =  0
    signum z@(x:+y) | x==0 && y==0 = 0
                    | otherwise    =  x/r :+ y/r  where r = magnitude z
    fromInteger n       =  fromInteger n :+ 0

instance forall a . (RealFloat a) => Fractional (Complex a)  where
    (x:+y) / (x':+y')   =  (x*x''+y*y'') / d :+ (y*x''-x*y'') / d
                           where x'' = scaleFloat k x'
                                 y'' = scaleFloat k y'
                                 k   = - max (exponent x') (exponent y')
                                 d   = x'*x'' + y'*y''

    fromRational a      =  fromRational a :+ 0

instance forall a . (RealFloat a) => Floating (Complex a) where
    pi             =  pi :+ 0
    exp (x:+y)     =  expx * cos y :+ expx * sin y
                      where expx = exp x
    log z          =  log (magnitude z) :+ phase z
{-
    x ** y = case (x,y) of
 {- XXX
     (_ , (0:+0))  -> 1 :+ 0
      ((0:+0), (exp_re:+_)) -> case compare exp_re 0 of
                 GT -> 0 :+ 0
                 LT -> inf :+ 0
                 EQ -> nan :+ nan
-}
      ((re:+im), (exp_re:+_))
        | (isInfinite re || isInfinite im) -> case compare exp_re 0 of
                 GT -> inf :+ 0
                 LT -> 0 :+ 0
                 EQ -> nan :+ nan
        | otherwise -> exp (log x * y)
     where
        inf = 1/0
        nan = 0/0
-}
    sqrt z@(x:+y) | x==0 && y==0 = 0
                  | otherwise    =  u :+ (if y < 0 then - v else v)
                      where (u,v) = if x < 0 then (v',u') else (u',v')
                            v'    = abs y / (u'*2)
                            u'    = sqrt ((magnitude z + abs x) / 2)

    sin (x:+y)     =  sin x * cosh y :+ cos x * sinh y
    cos (x:+y)     =  cos x * cosh y :+ (- (sin x) * sinh y)
    tan (x:+y)     =  (sinx*coshy:+cosx*sinhy)/(cosx*coshy:+(- sinx*sinhy))
                      where sinx  = sin x
                            cosx  = cos x
                            sinhy = sinh y
                            coshy = cosh y

    sinh (x:+y)    =  cos y * sinh x :+ sin  y * cosh x
    cosh (x:+y)    =  cos y * cosh x :+ sin y * sinh x
    tanh (x:+y)    =  (cosy*sinhx:+siny*coshx)/(cosy*coshx:+siny*sinhx)
                      where siny  = sin y
                            cosy  = cos y
                            sinhx = sinh x
                            coshx = cosh x

    asin z@(x:+y)  =  y':+(- x')
                      where  (x':+y') = log (((- y):+x) + sqrt (1 - z*z))
    acos z         =  y'':+(- x'')
                      where (x'':+y'') = log (z + ((- y'):+x'))
                            (x':+y')   = sqrt (1 - z*z)
    atan z@(x:+y)  =  y':+(- x')
                      where (x':+y') = log (((1 - y):+x) / sqrt (1+z*z))

    asinh z        =  log (z + sqrt (1+z*z))

    acosh z        =  log (z + (sqrt $ z+1) * (sqrt $ z - 1))
    atanh z        =  0.5 * log ((1.0+z) / (1.0-z))

    log1p x@(a :+ b)
      | abs a < 0.5 && abs b < 0.5
      , u <- 2*a + a*a + b*b = log1p (u/(1 + sqrt(u+1))) :+ atan2 (1 + a) b
      | otherwise = log (1 + x)

    expm1 x@(a :+ b)
      | a*a + b*b < 1
      , u <- expm1 a
      , v <- sin (b/2)
      , w <- -2*v*v = (u*w + u + w) :+ (u+1)*sin b
      | otherwise = exp x - 1