ref: 5cac6a09c4db2b7e05c3e8dfd8920e2cdd1b8b03
dir: /inertia.c/
/* * inertia.c: Game involving navigating round a grid picking up * gems. * * Game rules and basic generator design by Ben Olmstead. * This re-implementation was written by Simon Tatham. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <limits.h> #include <math.h> #include "puzzles.h" /* Used in the game_state */ #define BLANK 'b' #define GEM 'g' #define MINE 'm' #define STOP 's' #define WALL 'w' /* Used in the game IDs */ #define START 'S' /* Used in the game generation */ #define POSSGEM 'G' /* Used only in the game_drawstate*/ #define UNDRAWN '?' #define DIRECTIONS 8 #define DP1 (DIRECTIONS+1) #define DX(dir) ( (dir) & 3 ? (((dir) & 7) > 4 ? -1 : +1) : 0 ) #define DY(dir) ( DX((dir)+6) ) /* * Lvalue macro which expects x and y to be in range. */ #define LV_AT(w, h, grid, x, y) ( (grid)[(y)*(w)+(x)] ) /* * Rvalue macro which can cope with x and y being out of range. */ #define AT(w, h, grid, x, y) ( (x)<0 || (x)>=(w) || (y)<0 || (y)>=(h) ? \ WALL : LV_AT(w, h, grid, x, y) ) enum { COL_BACKGROUND, COL_OUTLINE, COL_HIGHLIGHT, COL_LOWLIGHT, COL_PLAYER, COL_DEAD_PLAYER, COL_MINE, COL_GEM, COL_WALL, COL_HINT, NCOLOURS }; struct game_params { int w, h; }; typedef struct soln { int refcount; int len; unsigned char *list; } soln; struct game_state { game_params p; int px, py; int gems; char *grid; int distance_moved; bool dead; bool cheated; int solnpos; soln *soln; }; static game_params *default_params(void) { game_params *ret = snew(game_params); ret->w = 10; #ifdef PORTRAIT_SCREEN ret->h = 10; #else ret->h = 8; #endif return ret; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(const game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static const struct game_params inertia_presets[] = { #ifdef PORTRAIT_SCREEN { 10, 10 }, { 12, 12 }, { 16, 16 }, #else { 10, 8 }, { 15, 12 }, { 20, 16 }, #endif }; static bool game_fetch_preset(int i, char **name, game_params **params) { game_params p, *ret; char *retname; char namebuf[80]; if (i < 0 || i >= lenof(inertia_presets)) return false; p = inertia_presets[i]; ret = dup_params(&p); sprintf(namebuf, "%dx%d", ret->w, ret->h); retname = dupstr(namebuf); *params = ret; *name = retname; return true; } static void decode_params(game_params *params, char const *string) { params->w = params->h = atoi(string); while (*string && isdigit((unsigned char)*string)) string++; if (*string == 'x') { string++; params->h = atoi(string); } } static char *encode_params(const game_params *params, bool full) { char data[256]; sprintf(data, "%dx%d", params->w, params->h); return dupstr(data); } static config_item *game_configure(const game_params *params) { config_item *ret; char buf[80]; ret = snewn(3, config_item); ret[0].name = "Width"; ret[0].type = C_STRING; sprintf(buf, "%d", params->w); ret[0].u.string.sval = dupstr(buf); ret[1].name = "Height"; ret[1].type = C_STRING; sprintf(buf, "%d", params->h); ret[1].u.string.sval = dupstr(buf); ret[2].name = NULL; ret[2].type = C_END; return ret; } static game_params *custom_params(const config_item *cfg) { game_params *ret = snew(game_params); ret->w = atoi(cfg[0].u.string.sval); ret->h = atoi(cfg[1].u.string.sval); return ret; } static const char *validate_params(const game_params *params, bool full) { /* * Avoid completely degenerate cases which only have one * row/column. We probably could generate completable puzzles * of that shape, but they'd be forced to be extremely boring * and at large sizes would take a while to happen upon at * random as well. */ if (params->w < 2 || params->h < 2) return "Width and height must both be at least two"; if (params->w > INT_MAX / params->h) return "Width times height must not be unreasonably large"; /* * The grid construction algorithm creates 1/5 as many gems as * grid squares, and must create at least one gem to have an * actual puzzle. However, an area-five grid is ruled out by * the above constraint, so the practical minimum is six. */ if (params->w * params->h < 6) return "Grid area must be at least six squares"; return NULL; } /* ---------------------------------------------------------------------- * Solver used by grid generator. */ struct solver_scratch { bool *reachable_from, *reachable_to; int *positions; }; static struct solver_scratch *new_scratch(int w, int h) { struct solver_scratch *sc = snew(struct solver_scratch); sc->reachable_from = snewn(w * h * DIRECTIONS, bool); sc->reachable_to = snewn(w * h * DIRECTIONS, bool); sc->positions = snewn(w * h * DIRECTIONS, int); return sc; } static void free_scratch(struct solver_scratch *sc) { sfree(sc->reachable_from); sfree(sc->reachable_to); sfree(sc->positions); sfree(sc); } static bool can_go(int w, int h, char *grid, int x1, int y1, int dir1, int x2, int y2, int dir2) { /* * Returns true if we can transition directly from (x1,y1) * going in direction dir1, to (x2,y2) going in direction dir2. */ /* * If we're actually in the middle of an unoccupyable square, * we cannot make any move. */ if (AT(w, h, grid, x1, y1) == WALL || AT(w, h, grid, x1, y1) == MINE) return false; /* * If a move is capable of stopping at x1,y1,dir1, and x2,y2 is * the same coordinate as x1,y1, then we can make the * transition (by stopping and changing direction). * * For this to be the case, we have to either have a wall * beyond x1,y1,dir1, or have a stop on x1,y1. */ if (x2 == x1 && y2 == y1 && (AT(w, h, grid, x1, y1) == STOP || AT(w, h, grid, x1, y1) == START || AT(w, h, grid, x1+DX(dir1), y1+DY(dir1)) == WALL)) return true; /* * If a move is capable of continuing here, then x1,y1,dir1 can * move one space further on. */ if (x2 == x1+DX(dir1) && y2 == y1+DY(dir1) && dir1 == dir2 && (AT(w, h, grid, x2, y2) == BLANK || AT(w, h, grid, x2, y2) == GEM || AT(w, h, grid, x2, y2) == STOP || AT(w, h, grid, x2, y2) == START)) return true; /* * That's it. */ return false; } static int find_gem_candidates(int w, int h, char *grid, struct solver_scratch *sc) { int wh = w*h; int head, tail; int sx, sy, gx, gy, gd, pass, possgems; /* * This function finds all the candidate gem squares, which are * precisely those squares which can be picked up on a loop * from the starting point back to the starting point. Doing * this may involve passing through such a square in the middle * of a move; so simple breadth-first search over the _squares_ * of the grid isn't quite adequate, because it might be that * we can only reach a gem from the start by moving over it in * one direction, but can only return to the start if we were * moving over it in another direction. * * Instead, we BFS over a space which mentions each grid square * eight times - once for each direction. We also BFS twice: * once to find out what square+direction pairs we can reach * _from_ the start point, and once to find out what pairs we * can reach the start point from. Then a square is reachable * if any of the eight directions for that square has both * flags set. */ memset(sc->reachable_from, 0, wh * DIRECTIONS * sizeof(bool)); memset(sc->reachable_to, 0, wh * DIRECTIONS * sizeof(bool)); /* * Find the starting square. */ sx = -1; /* placate optimiser */ for (sy = 0; sy < h; sy++) { for (sx = 0; sx < w; sx++) if (AT(w, h, grid, sx, sy) == START) break; if (sx < w) break; } assert(sy < h); for (pass = 0; pass < 2; pass++) { bool *reachable = (pass == 0 ? sc->reachable_from : sc->reachable_to); int sign = (pass == 0 ? +1 : -1); int dir; #ifdef SOLVER_DIAGNOSTICS printf("starting pass %d\n", pass); #endif /* * `head' and `tail' are indices within sc->positions which * track the list of board positions left to process. */ head = tail = 0; for (dir = 0; dir < DIRECTIONS; dir++) { int index = (sy*w+sx)*DIRECTIONS+dir; sc->positions[tail++] = index; reachable[index] = true; #ifdef SOLVER_DIAGNOSTICS printf("starting point %d,%d,%d\n", sx, sy, dir); #endif } /* * Now repeatedly pick an element off the list and process * it. */ while (head < tail) { int index = sc->positions[head++]; int dir = index % DIRECTIONS; int x = (index / DIRECTIONS) % w; int y = index / (w * DIRECTIONS); int n, x2, y2, d2, i2; #ifdef SOLVER_DIAGNOSTICS printf("processing point %d,%d,%d\n", x, y, dir); #endif /* * The places we attempt to switch to here are: * - each possible direction change (all the other * directions in this square) * - one step further in the direction we're going (or * one step back, if we're in the reachable_to pass). */ for (n = -1; n < DIRECTIONS; n++) { if (n < 0) { x2 = x + sign * DX(dir); y2 = y + sign * DY(dir); d2 = dir; } else { x2 = x; y2 = y; d2 = n; } i2 = (y2*w+x2)*DIRECTIONS+d2; if (x2 >= 0 && x2 < w && y2 >= 0 && y2 < h && !reachable[i2]) { bool ok; #ifdef SOLVER_DIAGNOSTICS printf(" trying point %d,%d,%d", x2, y2, d2); #endif if (pass == 0) ok = can_go(w, h, grid, x, y, dir, x2, y2, d2); else ok = can_go(w, h, grid, x2, y2, d2, x, y, dir); #ifdef SOLVER_DIAGNOSTICS printf(" - %sok\n", ok ? "" : "not "); #endif if (ok) { sc->positions[tail++] = i2; reachable[i2] = true; } } } } } /* * And that should be it. Now all we have to do is find the * squares for which there exists _some_ direction such that * the square plus that direction form a tuple which is both * reachable from the start and reachable to the start. */ possgems = 0; for (gy = 0; gy < h; gy++) for (gx = 0; gx < w; gx++) if (AT(w, h, grid, gx, gy) == BLANK) { for (gd = 0; gd < DIRECTIONS; gd++) { int index = (gy*w+gx)*DIRECTIONS+gd; if (sc->reachable_from[index] && sc->reachable_to[index]) { #ifdef SOLVER_DIAGNOSTICS printf("space at %d,%d is reachable via" " direction %d\n", gx, gy, gd); #endif LV_AT(w, h, grid, gx, gy) = POSSGEM; possgems++; break; } } } return possgems; } /* ---------------------------------------------------------------------- * Grid generation code. */ static char *gengrid(int w, int h, random_state *rs) { int wh = w*h; char *grid = snewn(wh+1, char); struct solver_scratch *sc = new_scratch(w, h); int maxdist_threshold, tries; maxdist_threshold = 2; tries = 0; while (1) { int i, j; int possgems; int *dist, *list, head, tail, maxdist; /* * We're going to fill the grid with the five basic piece * types in about 1/5 proportion. For the moment, though, * we leave out the gems, because we'll put those in * _after_ we run the solver to tell us where the viable * locations are. */ i = 0; for (j = 0; j < wh/5; j++) grid[i++] = WALL; for (j = 0; j < wh/5; j++) grid[i++] = STOP; for (j = 0; j < wh/5; j++) grid[i++] = MINE; assert(i < wh); grid[i++] = START; while (i < wh) grid[i++] = BLANK; shuffle(grid, wh, sizeof(*grid), rs); /* * Find the viable gem locations, and immediately give up * and try again if there aren't enough of them. */ possgems = find_gem_candidates(w, h, grid, sc); if (possgems < wh/5) continue; /* * We _could_ now select wh/5 of the POSSGEMs and set them * to GEM, and have a viable level. However, there's a * chance that a large chunk of the level will turn out to * be unreachable, so first we test for that. * * We do this by finding the largest distance from any * square to the nearest POSSGEM, by breadth-first search. * If this is above a critical threshold, we abort and try * again. * * (This search is purely geometric, without regard to * walls and long ways round.) */ dist = sc->positions; list = sc->positions + wh; for (i = 0; i < wh; i++) dist[i] = -1; head = tail = 0; for (i = 0; i < wh; i++) if (grid[i] == POSSGEM) { dist[i] = 0; list[tail++] = i; } maxdist = 0; while (head < tail) { int pos, x, y, d; pos = list[head++]; if (maxdist < dist[pos]) maxdist = dist[pos]; x = pos % w; y = pos / w; for (d = 0; d < DIRECTIONS; d++) { int x2, y2, p2; x2 = x + DX(d); y2 = y + DY(d); if (x2 >= 0 && x2 < w && y2 >= 0 && y2 < h) { p2 = y2*w+x2; if (dist[p2] < 0) { dist[p2] = dist[pos] + 1; list[tail++] = p2; } } } } assert(head == wh && tail == wh); /* * Now abandon this grid and go round again if maxdist is * above the required threshold. * * We can safely start the threshold as low as 2. As we * accumulate failed generation attempts, we gradually * raise it as we get more desperate. */ if (maxdist > maxdist_threshold) { tries++; if (tries == 50) { maxdist_threshold++; tries = 0; } continue; } /* * Now our reachable squares are plausibly evenly * distributed over the grid. I'm not actually going to * _enforce_ that I place the gems in such a way as not to * increase that maxdist value; I'm now just going to trust * to the RNG to pick a sensible subset of the POSSGEMs. */ j = 0; for (i = 0; i < wh; i++) if (grid[i] == POSSGEM) list[j++] = i; shuffle(list, j, sizeof(*list), rs); for (i = 0; i < j; i++) grid[list[i]] = (i < wh/5 ? GEM : BLANK); break; } free_scratch(sc); grid[wh] = '\0'; return grid; } static char *new_game_desc(const game_params *params, random_state *rs, char **aux, bool interactive) { return gengrid(params->w, params->h, rs); } static const char *validate_desc(const game_params *params, const char *desc) { int w = params->w, h = params->h, wh = w*h; int starts = 0, gems = 0, i; for (i = 0; i < wh; i++) { if (!desc[i]) return "Not enough data to fill grid"; if (desc[i] != WALL && desc[i] != START && desc[i] != STOP && desc[i] != GEM && desc[i] != MINE && desc[i] != BLANK) return "Unrecognised character in game description"; if (desc[i] == START) starts++; if (desc[i] == GEM) gems++; } if (desc[i]) return "Too much data to fill grid"; if (starts < 1) return "No starting square specified"; if (starts > 1) return "More than one starting square specified"; if (gems < 1) return "No gems specified"; return NULL; } static game_state *new_game(midend *me, const game_params *params, const char *desc) { int w = params->w, h = params->h, wh = w*h; int i; game_state *state = snew(game_state); state->p = *params; /* structure copy */ state->grid = snewn(wh, char); assert(strlen(desc) == wh); memcpy(state->grid, desc, wh); state->px = state->py = -1; state->gems = 0; for (i = 0; i < wh; i++) { if (state->grid[i] == START) { state->grid[i] = STOP; state->px = i % w; state->py = i / w; } else if (state->grid[i] == GEM) { state->gems++; } } assert(state->gems > 0); assert(state->px >= 0 && state->py >= 0); state->distance_moved = 0; state->dead = false; state->cheated = false; state->solnpos = 0; state->soln = NULL; return state; } static game_state *dup_game(const game_state *state) { int w = state->p.w, h = state->p.h, wh = w*h; game_state *ret = snew(game_state); ret->p = state->p; ret->px = state->px; ret->py = state->py; ret->gems = state->gems; ret->grid = snewn(wh, char); ret->distance_moved = state->distance_moved; ret->dead = false; memcpy(ret->grid, state->grid, wh); ret->cheated = state->cheated; ret->soln = state->soln; if (ret->soln) ret->soln->refcount++; ret->solnpos = state->solnpos; return ret; } static void free_game(game_state *state) { if (state->soln && --state->soln->refcount == 0) { sfree(state->soln->list); sfree(state->soln); } sfree(state->grid); sfree(state); } /* * Internal function used by solver. */ static int move_goes_to(int w, int h, char *grid, int x, int y, int d) { int dr; /* * See where we'd get to if we made this move. */ dr = -1; /* placate optimiser */ while (1) { if (AT(w, h, grid, x+DX(d), y+DY(d)) == WALL) { dr = DIRECTIONS; /* hit a wall, so end up stationary */ break; } x += DX(d); y += DY(d); if (AT(w, h, grid, x, y) == STOP) { dr = DIRECTIONS; /* hit a stop, so end up stationary */ break; } if (AT(w, h, grid, x, y) == GEM) { dr = d; /* hit a gem, so we're still moving */ break; } if (AT(w, h, grid, x, y) == MINE) return -1; /* hit a mine, so move is invalid */ } assert(dr >= 0); return (y*w+x)*DP1+dr; } static int compare_integers(const void *av, const void *bv) { const int *a = (const int *)av; const int *b = (const int *)bv; if (*a < *b) return -1; else if (*a > *b) return +1; else return 0; } static char *solve_game(const game_state *state, const game_state *currstate, const char *aux, const char **error) { int w = currstate->p.w, h = currstate->p.h, wh = w*h; int *nodes, *nodeindex, *edges, *backedges, *edgei, *backedgei, *circuit; int nedges; int *dist, *dist2, *list; int *unvisited; int circuitlen, circuitsize; int head, tail, pass, i, j, n, x, y, d, dd; const char *err; char *soln, *p; /* * Before anything else, deal with the special case in which * all the gems are already collected. */ for (i = 0; i < wh; i++) if (currstate->grid[i] == GEM) break; if (i == wh) { *error = "Game is already solved"; return NULL; } /* * Solving Inertia is a question of first building up the graph * of where you can get to from where, and secondly finding a * tour of the graph which takes in every gem. * * This is of course a close cousin of the travelling salesman * problem, which is NP-complete; so I rather doubt that any * _optimal_ tour can be found in plausible time. Hence I'll * restrict myself to merely finding a not-too-bad one. * * First construct the graph, by bfsing out move by move from * the current player position. Graph vertices will be * - every endpoint of a move (place the ball can be * stationary) * - every gem (place the ball can go through in motion). * Vertices of this type have an associated direction, since * if a gem can be collected by sliding through it in two * different directions it doesn't follow that you can * change direction at it. * * I'm going to refer to a non-directional vertex as * (y*w+x)*DP1+DIRECTIONS, and a directional one as * (y*w+x)*DP1+d. */ /* * nodeindex[] maps node codes as shown above to numeric * indices in the nodes[] array. */ nodeindex = snewn(DP1*wh, int); for (i = 0; i < DP1*wh; i++) nodeindex[i] = -1; /* * Do the bfs to find all the interesting graph nodes. */ nodes = snewn(DP1*wh, int); head = tail = 0; nodes[tail] = (currstate->py * w + currstate->px) * DP1 + DIRECTIONS; nodeindex[nodes[0]] = tail; tail++; while (head < tail) { int nc = nodes[head++], nnc; d = nc % DP1; /* * Plot all possible moves from this node. If the node is * directed, there's only one. */ for (dd = 0; dd < DIRECTIONS; dd++) { x = nc / DP1; y = x / w; x %= w; if (d < DIRECTIONS && d != dd) continue; nnc = move_goes_to(w, h, currstate->grid, x, y, dd); if (nnc >= 0 && nnc != nc) { if (nodeindex[nnc] < 0) { nodes[tail] = nnc; nodeindex[nnc] = tail; tail++; } } } } n = head; /* * Now we know how many nodes we have, allocate the edge array * and go through setting up the edges. */ edges = snewn(DIRECTIONS*n, int); edgei = snewn(n+1, int); nedges = 0; for (i = 0; i < n; i++) { int nc = nodes[i]; edgei[i] = nedges; d = nc % DP1; x = nc / DP1; y = x / w; x %= w; for (dd = 0; dd < DIRECTIONS; dd++) { int nnc; if (d >= DIRECTIONS || d == dd) { nnc = move_goes_to(w, h, currstate->grid, x, y, dd); if (nnc >= 0 && nnc != nc) edges[nedges++] = nodeindex[nnc]; } } } edgei[n] = nedges; /* * Now set up the backedges array. */ backedges = snewn(nedges, int); backedgei = snewn(n+1, int); for (i = j = 0; i < nedges; i++) { while (j+1 < n && i >= edgei[j+1]) j++; backedges[i] = edges[i] * n + j; } qsort(backedges, nedges, sizeof(int), compare_integers); backedgei[0] = 0; for (i = j = 0; i < nedges; i++) { int k = backedges[i] / n; backedges[i] %= n; while (j < k) backedgei[++j] = i; } backedgei[n] = nedges; /* * Set up the initial tour. At all times, our tour is a circuit * of graph vertices (which may, and probably will often, * repeat vertices). To begin with, it's got exactly one vertex * in it, which is the player's current starting point. */ circuitsize = 256; circuit = snewn(circuitsize, int); circuitlen = 0; circuit[circuitlen++] = 0; /* node index 0 is the starting posn */ /* * Track which gems are as yet unvisited. */ unvisited = snewn(wh, int); for (i = 0; i < wh; i++) unvisited[i] = false; for (i = 0; i < wh; i++) if (currstate->grid[i] == GEM) unvisited[i] = true; /* * Allocate space for doing bfses inside the main loop. */ dist = snewn(n, int); dist2 = snewn(n, int); list = snewn(n, int); err = NULL; soln = NULL; /* * Now enter the main loop, in each iteration of which we * extend the tour to take in an as yet uncollected gem. */ while (1) { int target, n1, n2, bestdist, extralen, targetpos; #ifdef TSP_DIAGNOSTICS printf("circuit is"); for (i = 0; i < circuitlen; i++) { int nc = nodes[circuit[i]]; printf(" (%d,%d,%d)", nc/DP1%w, nc/(DP1*w), nc%DP1); } printf("\n"); printf("moves are "); x = nodes[circuit[0]] / DP1 % w; y = nodes[circuit[0]] / DP1 / w; for (i = 1; i < circuitlen; i++) { int x2, y2, dx, dy; if (nodes[circuit[i]] % DP1 != DIRECTIONS) continue; x2 = nodes[circuit[i]] / DP1 % w; y2 = nodes[circuit[i]] / DP1 / w; dx = (x2 > x ? +1 : x2 < x ? -1 : 0); dy = (y2 > y ? +1 : y2 < y ? -1 : 0); for (d = 0; d < DIRECTIONS; d++) if (DX(d) == dx && DY(d) == dy) printf("%c", "89632147"[d]); x = x2; y = y2; } printf("\n"); #endif /* * First, start a pair of bfses at _every_ vertex currently * in the tour, and extend them outwards to find the * nearest as yet unreached gem vertex. * * This is largely a heuristic: we could pick _any_ doubly * reachable node here and still get a valid tour as * output. I hope that picking a nearby one will result in * generally good tours. */ for (pass = 0; pass < 2; pass++) { int *ep = (pass == 0 ? edges : backedges); int *ei = (pass == 0 ? edgei : backedgei); int *dp = (pass == 0 ? dist : dist2); head = tail = 0; for (i = 0; i < n; i++) dp[i] = -1; for (i = 0; i < circuitlen; i++) { int ni = circuit[i]; if (dp[ni] < 0) { dp[ni] = 0; list[tail++] = ni; } } while (head < tail) { int ni = list[head++]; for (i = ei[ni]; i < ei[ni+1]; i++) { int ti = ep[i]; if (ti >= 0 && dp[ti] < 0) { dp[ti] = dp[ni] + 1; list[tail++] = ti; } } } } /* Now find the nearest unvisited gem. */ bestdist = -1; target = -1; for (i = 0; i < n; i++) { if (unvisited[nodes[i] / DP1] && dist[i] >= 0 && dist2[i] >= 0) { int thisdist = dist[i] + dist2[i]; if (bestdist < 0 || bestdist > thisdist) { bestdist = thisdist; target = i; } } } if (target < 0) { /* * If we get to here, we haven't found a gem we can get * at all, which means we terminate this loop. */ break; } /* * Now we have a graph vertex at list[tail-1] which is an * unvisited gem. We want to add that vertex to our tour. * So we run two more breadth-first searches: one starting * from that vertex and following forward edges, and * another starting from the same vertex and following * backward edges. This allows us to determine, for each * node on the current tour, how quickly we can get both to * and from the target vertex from that node. */ #ifdef TSP_DIAGNOSTICS printf("target node is %d (%d,%d,%d)\n", target, nodes[target]/DP1%w, nodes[target]/DP1/w, nodes[target]%DP1); #endif for (pass = 0; pass < 2; pass++) { int *ep = (pass == 0 ? edges : backedges); int *ei = (pass == 0 ? edgei : backedgei); int *dp = (pass == 0 ? dist : dist2); for (i = 0; i < n; i++) dp[i] = -1; head = tail = 0; dp[target] = 0; list[tail++] = target; while (head < tail) { int ni = list[head++]; for (i = ei[ni]; i < ei[ni+1]; i++) { int ti = ep[i]; if (ti >= 0 && dp[ti] < 0) { dp[ti] = dp[ni] + 1; /*printf("pass %d: set dist of vertex %d to %d (via %d)\n", pass, ti, dp[ti], ni);*/ list[tail++] = ti; } } } } /* * Now for every node n, dist[n] gives the length of the * shortest path from the target vertex to n, and dist2[n] * gives the length of the shortest path from n to the * target vertex. * * Our next step is to search linearly along the tour to * find the optimum place to insert a trip to the target * vertex and back. Our two options are either * (a) to find two adjacent vertices A,B in the tour and * replace the edge A->B with the path A->target->B * (b) to find a single vertex X in the tour and replace * it with the complete round trip X->target->X. * We do whichever takes the fewest moves. */ n1 = n2 = -1; bestdist = -1; for (i = 0; i < circuitlen; i++) { int thisdist; /* * Try a round trip from vertex i. */ if (dist[circuit[i]] >= 0 && dist2[circuit[i]] >= 0) { thisdist = dist[circuit[i]] + dist2[circuit[i]]; if (bestdist < 0 || thisdist < bestdist) { bestdist = thisdist; n1 = n2 = i; } } /* * Try a trip from vertex i via target to vertex i+1. */ if (i+1 < circuitlen && dist2[circuit[i]] >= 0 && dist[circuit[i+1]] >= 0) { thisdist = dist2[circuit[i]] + dist[circuit[i+1]]; if (bestdist < 0 || thisdist < bestdist) { bestdist = thisdist; n1 = i; n2 = i+1; } } } if (bestdist < 0) { /* * We couldn't find a round trip taking in this gem _at * all_. Give up. */ err = "Unable to find a solution from this starting point"; break; } #ifdef TSP_DIAGNOSTICS printf("insertion point: n1=%d, n2=%d, dist=%d\n", n1, n2, bestdist); #endif #ifdef TSP_DIAGNOSTICS printf("circuit before lengthening is"); for (i = 0; i < circuitlen; i++) { printf(" %d", circuit[i]); } printf("\n"); #endif /* * Now actually lengthen the tour to take in this round * trip. */ extralen = dist2[circuit[n1]] + dist[circuit[n2]]; if (n1 != n2) extralen--; circuitlen += extralen; if (circuitlen >= circuitsize) { circuitsize = circuitlen + 256; circuit = sresize(circuit, circuitsize, int); } memmove(circuit + n2 + extralen, circuit + n2, (circuitlen - n2 - extralen) * sizeof(int)); n2 += extralen; #ifdef TSP_DIAGNOSTICS printf("circuit in middle of lengthening is"); for (i = 0; i < circuitlen; i++) { printf(" %d", circuit[i]); } printf("\n"); #endif /* * Find the shortest-path routes to and from the target, * and write them into the circuit. */ targetpos = n1 + dist2[circuit[n1]]; assert(targetpos - dist2[circuit[n1]] == n1); assert(targetpos + dist[circuit[n2]] == n2); for (pass = 0; pass < 2; pass++) { int dir = (pass == 0 ? -1 : +1); int *ep = (pass == 0 ? backedges : edges); int *ei = (pass == 0 ? backedgei : edgei); int *dp = (pass == 0 ? dist : dist2); int nn = (pass == 0 ? n2 : n1); int ni = circuit[nn], ti, dest = nn; while (1) { circuit[dest] = ni; if (dp[ni] == 0) break; dest += dir; ti = -1; /*printf("pass %d: looking at vertex %d\n", pass, ni);*/ for (i = ei[ni]; i < ei[ni+1]; i++) { ti = ep[i]; if (ti >= 0 && dp[ti] == dp[ni] - 1) break; } assert(i < ei[ni+1] && ti >= 0); ni = ti; } } #ifdef TSP_DIAGNOSTICS printf("circuit after lengthening is"); for (i = 0; i < circuitlen; i++) { printf(" %d", circuit[i]); } printf("\n"); #endif /* * Finally, mark all gems that the new piece of circuit * passes through as visited. */ for (i = n1; i <= n2; i++) { int pos = nodes[circuit[i]] / DP1; assert(pos >= 0 && pos < wh); unvisited[pos] = false; } } #ifdef TSP_DIAGNOSTICS printf("before reduction, moves are "); x = nodes[circuit[0]] / DP1 % w; y = nodes[circuit[0]] / DP1 / w; for (i = 1; i < circuitlen; i++) { int x2, y2, dx, dy; if (nodes[circuit[i]] % DP1 != DIRECTIONS) continue; x2 = nodes[circuit[i]] / DP1 % w; y2 = nodes[circuit[i]] / DP1 / w; dx = (x2 > x ? +1 : x2 < x ? -1 : 0); dy = (y2 > y ? +1 : y2 < y ? -1 : 0); for (d = 0; d < DIRECTIONS; d++) if (DX(d) == dx && DY(d) == dy) printf("%c", "89632147"[d]); x = x2; y = y2; } printf("\n"); #endif /* * That's got a basic solution. Now optimise it by removing * redundant sections of the circuit: it's entirely possible * that a piece of circuit we carefully inserted at one stage * to collect a gem has become pointless because the steps * required to collect some _later_ gem necessarily passed * through the same one. * * So first we go through and work out how many times each gem * is collected. Then we look for maximal sections of circuit * which are redundant in the sense that their removal would * not reduce any gem's collection count to zero, and replace * each one with a bfs-derived fastest path between their * endpoints. */ while (1) { int oldlen = circuitlen; int dir; for (dir = +1; dir >= -1; dir -= 2) { for (i = 0; i < wh; i++) unvisited[i] = 0; for (i = 0; i < circuitlen; i++) { int xy = nodes[circuit[i]] / DP1; if (currstate->grid[xy] == GEM) unvisited[xy]++; } /* * If there's any gem we didn't end up visiting at all, * give up. */ for (i = 0; i < wh; i++) { if (currstate->grid[i] == GEM && unvisited[i] == 0) { err = "Unable to find a solution from this starting point"; break; } } if (i < wh) break; for (i = j = (dir > 0 ? 0 : circuitlen-1); i < circuitlen && i >= 0; i += dir) { int xy = nodes[circuit[i]] / DP1; if (currstate->grid[xy] == GEM && unvisited[xy] > 1) { unvisited[xy]--; } else if (currstate->grid[xy] == GEM || i == circuitlen-1) { /* * circuit[i] collects a gem for the only time, * or is the last node in the circuit. * Therefore it cannot be removed; so we now * want to replace the path from circuit[j] to * circuit[i] with a bfs-shortest path. */ int p, q, k, dest, ni, ti, thisdist; /* * Set up the upper and lower bounds of the * reduced section. */ p = min(i, j); q = max(i, j); #ifdef TSP_DIAGNOSTICS printf("optimising section from %d - %d\n", p, q); #endif for (k = 0; k < n; k++) dist[k] = -1; head = tail = 0; dist[circuit[p]] = 0; list[tail++] = circuit[p]; while (head < tail && dist[circuit[q]] < 0) { int ni = list[head++]; for (k = edgei[ni]; k < edgei[ni+1]; k++) { int ti = edges[k]; if (ti >= 0 && dist[ti] < 0) { dist[ti] = dist[ni] + 1; list[tail++] = ti; } } } thisdist = dist[circuit[q]]; assert(thisdist >= 0 && thisdist <= q-p); memmove(circuit+p+thisdist, circuit+q, (circuitlen - q) * sizeof(int)); circuitlen -= q-p; q = p + thisdist; circuitlen += q-p; if (dir > 0) i = q; /* resume loop from the right place */ #ifdef TSP_DIAGNOSTICS printf("new section runs from %d - %d\n", p, q); #endif dest = q; assert(dest >= 0); ni = circuit[q]; while (1) { /* printf("dest=%d circuitlen=%d ni=%d dist[ni]=%d\n", dest, circuitlen, ni, dist[ni]); */ circuit[dest] = ni; if (dist[ni] == 0) break; dest--; ti = -1; for (k = backedgei[ni]; k < backedgei[ni+1]; k++) { ti = backedges[k]; if (ti >= 0 && dist[ti] == dist[ni] - 1) break; } assert(k < backedgei[ni+1] && ti >= 0); ni = ti; } /* * Now re-increment the visit counts for the * new path. */ while (++p < q) { int xy = nodes[circuit[p]] / DP1; if (currstate->grid[xy] == GEM) unvisited[xy]++; } j = i; #ifdef TSP_DIAGNOSTICS printf("during reduction, circuit is"); for (k = 0; k < circuitlen; k++) { int nc = nodes[circuit[k]]; printf(" (%d,%d,%d)", nc/DP1%w, nc/(DP1*w), nc%DP1); } printf("\n"); printf("moves are "); x = nodes[circuit[0]] / DP1 % w; y = nodes[circuit[0]] / DP1 / w; for (k = 1; k < circuitlen; k++) { int x2, y2, dx, dy; if (nodes[circuit[k]] % DP1 != DIRECTIONS) continue; x2 = nodes[circuit[k]] / DP1 % w; y2 = nodes[circuit[k]] / DP1 / w; dx = (x2 > x ? +1 : x2 < x ? -1 : 0); dy = (y2 > y ? +1 : y2 < y ? -1 : 0); for (d = 0; d < DIRECTIONS; d++) if (DX(d) == dx && DY(d) == dy) printf("%c", "89632147"[d]); x = x2; y = y2; } printf("\n"); #endif } } #ifdef TSP_DIAGNOSTICS printf("after reduction, moves are "); x = nodes[circuit[0]] / DP1 % w; y = nodes[circuit[0]] / DP1 / w; for (i = 1; i < circuitlen; i++) { int x2, y2, dx, dy; if (nodes[circuit[i]] % DP1 != DIRECTIONS) continue; x2 = nodes[circuit[i]] / DP1 % w; y2 = nodes[circuit[i]] / DP1 / w; dx = (x2 > x ? +1 : x2 < x ? -1 : 0); dy = (y2 > y ? +1 : y2 < y ? -1 : 0); for (d = 0; d < DIRECTIONS; d++) if (DX(d) == dx && DY(d) == dy) printf("%c", "89632147"[d]); x = x2; y = y2; } printf("\n"); #endif } /* * If we've managed an entire reduction pass in each * direction and not made the solution any shorter, we're * _really_ done. */ if (circuitlen == oldlen) break; } /* * Encode the solution as a move string. */ if (!err) { soln = snewn(circuitlen+2, char); p = soln; *p++ = 'S'; x = nodes[circuit[0]] / DP1 % w; y = nodes[circuit[0]] / DP1 / w; for (i = 1; i < circuitlen; i++) { int x2, y2, dx, dy; if (nodes[circuit[i]] % DP1 != DIRECTIONS) continue; x2 = nodes[circuit[i]] / DP1 % w; y2 = nodes[circuit[i]] / DP1 / w; dx = (x2 > x ? +1 : x2 < x ? -1 : 0); dy = (y2 > y ? +1 : y2 < y ? -1 : 0); for (d = 0; d < DIRECTIONS; d++) if (DX(d) == dx && DY(d) == dy) { *p++ = '0' + d; break; } assert(d < DIRECTIONS); x = x2; y = y2; } *p++ = '\0'; assert(p - soln < circuitlen+2); } sfree(list); sfree(dist); sfree(dist2); sfree(unvisited); sfree(circuit); sfree(backedgei); sfree(backedges); sfree(edgei); sfree(edges); sfree(nodeindex); sfree(nodes); if (err) *error = err; return soln; } static bool game_can_format_as_text_now(const game_params *params) { return true; } static char *game_text_format(const game_state *state) { int w = state->p.w, h = state->p.h, r, c; int cw = 4, ch = 2, gw = cw*w + 2, gh = ch * h + 1, len = gw * gh; char *board = snewn(len + 1, char); sprintf(board, "%*s+\n", len - 2, ""); for (r = 0; r < h; ++r) { for (c = 0; c < w; ++c) { int cell = r*ch*gw + cw*c, center = cell + gw*ch/2 + cw/2; int i = r*w + c; switch (state->grid[i]) { case BLANK: break; case GEM: board[center] = 'o'; break; case MINE: board[center] = 'M'; break; case STOP: board[center-1] = '('; board[center+1] = ')'; break; case WALL: memset(board + center - 1, 'X', 3); } if (r == state->py && c == state->px) { if (!state->dead) board[center] = '@'; else memcpy(board + center - 1, ":-(", 3); } board[cell] = '+'; memset(board + cell + 1, '-', cw - 1); for (i = 1; i < ch; ++i) board[cell + i*gw] = '|'; } for (c = 0; c < ch; ++c) { board[(r*ch+c)*gw + gw - 2] = "|+"[!c]; board[(r*ch+c)*gw + gw - 1] = '\n'; } } memset(board + len - gw, '-', gw - 2); for (c = 0; c < w; ++c) board[len - gw + cw*c] = '+'; return board; } struct game_ui { float anim_length; int flashtype; int deaths; bool just_made_move; bool just_died; }; static game_ui *new_ui(const game_state *state) { game_ui *ui = snew(game_ui); ui->anim_length = 0.0F; ui->flashtype = 0; ui->deaths = 0; ui->just_made_move = false; ui->just_died = false; return ui; } static void free_ui(game_ui *ui) { sfree(ui); } static char *encode_ui(const game_ui *ui) { char buf[80]; /* * The deaths counter needs preserving across a serialisation. */ sprintf(buf, "D%d", ui->deaths); return dupstr(buf); } static void decode_ui(game_ui *ui, const char *encoding) { int p = 0; sscanf(encoding, "D%d%n", &ui->deaths, &p); } static void game_changed_state(game_ui *ui, const game_state *oldstate, const game_state *newstate) { /* * Increment the deaths counter. We only do this if * ui->just_made_move is set (redoing a suicide move doesn't * kill you _again_), and also we only do it if the game wasn't * already completed (once you're finished, you can play). */ if (!oldstate->dead && newstate->dead && ui->just_made_move && oldstate->gems) { ui->deaths++; ui->just_died = true; } else { ui->just_died = false; } ui->just_made_move = false; } static const char *current_key_label(const game_ui *ui, const game_state *state, int button) { if (IS_CURSOR_SELECT(button) && state->soln && state->solnpos < state->soln->len) return "Advance"; return ""; } struct game_drawstate { game_params p; int tilesize; bool started; unsigned short *grid; blitter *player_background; bool player_bg_saved; int pbgx, pbgy; }; #define PREFERRED_TILESIZE 32 #define TILESIZE (ds->tilesize) #ifdef SMALL_SCREEN #define BORDER (TILESIZE / 4) #else #define BORDER (TILESIZE) #endif #define HIGHLIGHT_WIDTH (TILESIZE / 10) #define COORD(x) ( (x) * TILESIZE + BORDER ) #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 ) static char *interpret_move(const game_state *state, game_ui *ui, const game_drawstate *ds, int x, int y, int button) { int w = state->p.w, h = state->p.h /*, wh = w*h */; int dir; char buf[80]; dir = -1; if (button == LEFT_BUTTON) { /* * Mouse-clicking near the target point (or, more * accurately, in the appropriate octant) is an alternative * way to input moves. */ if (FROMCOORD(x) != state->px || FROMCOORD(y) != state->py) { int dx, dy; float angle; dx = FROMCOORD(x) - state->px; dy = FROMCOORD(y) - state->py; /* I pass dx,dy rather than dy,dx so that the octants * end up the right way round. */ angle = atan2(dx, -dy); angle = (angle + (PI/8)) / (PI/4); assert(angle > -16.0F); dir = (int)(angle + 16.0F) & 7; } } else if (button == CURSOR_UP || button == (MOD_NUM_KEYPAD | '8')) dir = 0; else if (button == CURSOR_DOWN || button == (MOD_NUM_KEYPAD | '2')) dir = 4; else if (button == CURSOR_LEFT || button == (MOD_NUM_KEYPAD | '4')) dir = 6; else if (button == CURSOR_RIGHT || button == (MOD_NUM_KEYPAD | '6')) dir = 2; else if (button == (MOD_NUM_KEYPAD | '7')) dir = 7; else if (button == (MOD_NUM_KEYPAD | '1')) dir = 5; else if (button == (MOD_NUM_KEYPAD | '9')) dir = 1; else if (button == (MOD_NUM_KEYPAD | '3')) dir = 3; else if (IS_CURSOR_SELECT(button) && state->soln && state->solnpos < state->soln->len) dir = state->soln->list[state->solnpos]; if (dir < 0) return NULL; /* * Reject the move if we can't make it at all due to a wall * being in the way. */ if (AT(w, h, state->grid, state->px+DX(dir), state->py+DY(dir)) == WALL) return NULL; /* * Reject the move if we're dead! */ if (state->dead) return NULL; /* * Otherwise, we can make the move. All we need to specify is * the direction. */ ui->just_made_move = true; sprintf(buf, "%d", dir); return dupstr(buf); } static void install_new_solution(game_state *ret, const char *move) { int i; soln *sol; assert (*move == 'S'); ++move; sol = snew(soln); sol->len = strlen(move); sol->list = snewn(sol->len, unsigned char); for (i = 0; i < sol->len; ++i) sol->list[i] = move[i] - '0'; if (ret->soln && --ret->soln->refcount == 0) { sfree(ret->soln->list); sfree(ret->soln); } ret->soln = sol; sol->refcount = 1; ret->cheated = true; ret->solnpos = 0; } static void discard_solution(game_state *ret) { --ret->soln->refcount; assert(ret->soln->refcount > 0); /* ret has a soln-pointing dup */ ret->soln = NULL; ret->solnpos = 0; } static game_state *execute_move(const game_state *state, const char *move) { int w = state->p.w, h = state->p.h /*, wh = w*h */; int dir; game_state *ret; if (*move == 'S') { /* * This is a solve move, so we don't actually _change_ the * grid but merely set up a stored solution path. */ ret = dup_game(state); install_new_solution(ret, move); return ret; } dir = atoi(move); if (dir < 0 || dir >= DIRECTIONS) return NULL; /* huh? */ if (state->dead) return NULL; if (AT(w, h, state->grid, state->px+DX(dir), state->py+DY(dir)) == WALL) return NULL; /* wall in the way! */ /* * Now make the move. */ ret = dup_game(state); ret->distance_moved = 0; while (1) { ret->px += DX(dir); ret->py += DY(dir); ret->distance_moved++; if (AT(w, h, ret->grid, ret->px, ret->py) == GEM) { LV_AT(w, h, ret->grid, ret->px, ret->py) = BLANK; ret->gems--; } if (AT(w, h, ret->grid, ret->px, ret->py) == MINE) { ret->dead = true; break; } if (AT(w, h, ret->grid, ret->px, ret->py) == STOP || AT(w, h, ret->grid, ret->px+DX(dir), ret->py+DY(dir)) == WALL) break; } if (ret->soln) { if (ret->dead || ret->gems == 0) discard_solution(ret); else if (ret->soln->list[ret->solnpos] == dir) { ++ret->solnpos; assert(ret->solnpos < ret->soln->len); /* or gems == 0 */ assert(!ret->dead); /* or not a solution */ } else { const char *error = NULL; char *soln = solve_game(NULL, ret, NULL, &error); if (!error) { install_new_solution(ret, soln); sfree(soln); } else discard_solution(ret); } } return ret; } /* ---------------------------------------------------------------------- * Drawing routines. */ static void game_compute_size(const game_params *params, int tilesize, int *x, int *y) { /* Ick: fake up `ds->tilesize' for macro expansion purposes */ struct { int tilesize; } ads, *ds = &ads; ads.tilesize = tilesize; *x = 2 * BORDER + 1 + params->w * TILESIZE; *y = 2 * BORDER + 1 + params->h * TILESIZE; } static void game_set_size(drawing *dr, game_drawstate *ds, const game_params *params, int tilesize) { ds->tilesize = tilesize; assert(!ds->player_background); /* set_size is never called twice */ assert(!ds->player_bg_saved); ds->player_background = blitter_new(dr, TILESIZE, TILESIZE); } static float *game_colours(frontend *fe, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); int i; game_mkhighlight(fe, ret, COL_BACKGROUND, COL_HIGHLIGHT, COL_LOWLIGHT); ret[COL_OUTLINE * 3 + 0] = 0.0F; ret[COL_OUTLINE * 3 + 1] = 0.0F; ret[COL_OUTLINE * 3 + 2] = 0.0F; ret[COL_PLAYER * 3 + 0] = 0.0F; ret[COL_PLAYER * 3 + 1] = 1.0F; ret[COL_PLAYER * 3 + 2] = 0.0F; ret[COL_DEAD_PLAYER * 3 + 0] = 1.0F; ret[COL_DEAD_PLAYER * 3 + 1] = 0.0F; ret[COL_DEAD_PLAYER * 3 + 2] = 0.0F; ret[COL_MINE * 3 + 0] = 0.0F; ret[COL_MINE * 3 + 1] = 0.0F; ret[COL_MINE * 3 + 2] = 0.0F; ret[COL_GEM * 3 + 0] = 0.6F; ret[COL_GEM * 3 + 1] = 1.0F; ret[COL_GEM * 3 + 2] = 1.0F; for (i = 0; i < 3; i++) { ret[COL_WALL * 3 + i] = (3 * ret[COL_BACKGROUND * 3 + i] + 1 * ret[COL_HIGHLIGHT * 3 + i]) / 4; } ret[COL_HINT * 3 + 0] = 1.0F; ret[COL_HINT * 3 + 1] = 1.0F; ret[COL_HINT * 3 + 2] = 0.0F; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) { int w = state->p.w, h = state->p.h, wh = w*h; struct game_drawstate *ds = snew(struct game_drawstate); int i; ds->tilesize = 0; /* We can't allocate the blitter rectangle for the player background * until we know what size to make it. */ ds->player_background = NULL; ds->player_bg_saved = false; ds->pbgx = ds->pbgy = -1; ds->p = state->p; /* structure copy */ ds->started = false; ds->grid = snewn(wh, unsigned short); for (i = 0; i < wh; i++) ds->grid[i] = UNDRAWN; return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { if (ds->player_background) blitter_free(dr, ds->player_background); sfree(ds->grid); sfree(ds); } static void draw_player(drawing *dr, game_drawstate *ds, int x, int y, bool dead, int hintdir) { if (dead) { int coords[DIRECTIONS*4]; int d; for (d = 0; d < DIRECTIONS; d++) { float x1, y1, x2, y2, x3, y3, len; x1 = DX(d); y1 = DY(d); len = sqrt(x1*x1+y1*y1); x1 /= len; y1 /= len; x3 = DX(d+1); y3 = DY(d+1); len = sqrt(x3*x3+y3*y3); x3 /= len; y3 /= len; x2 = (x1+x3) / 4; y2 = (y1+y3) / 4; coords[d*4+0] = x + TILESIZE/2 + (int)((TILESIZE*3/7) * x1); coords[d*4+1] = y + TILESIZE/2 + (int)((TILESIZE*3/7) * y1); coords[d*4+2] = x + TILESIZE/2 + (int)((TILESIZE*3/7) * x2); coords[d*4+3] = y + TILESIZE/2 + (int)((TILESIZE*3/7) * y2); } draw_polygon(dr, coords, DIRECTIONS*2, COL_DEAD_PLAYER, COL_OUTLINE); } else { draw_circle(dr, x + TILESIZE/2, y + TILESIZE/2, TILESIZE/3, COL_PLAYER, COL_OUTLINE); } if (!dead && hintdir >= 0) { float scale = (DX(hintdir) && DY(hintdir) ? 0.8F : 1.0F); int ax = (TILESIZE*2/5) * scale * DX(hintdir); int ay = (TILESIZE*2/5) * scale * DY(hintdir); int px = -ay, py = ax; int ox = x + TILESIZE/2, oy = y + TILESIZE/2; int coords[14], *c; c = coords; *c++ = ox + px/9; *c++ = oy + py/9; *c++ = ox + px/9 + ax*2/3; *c++ = oy + py/9 + ay*2/3; *c++ = ox + px/3 + ax*2/3; *c++ = oy + py/3 + ay*2/3; *c++ = ox + ax; *c++ = oy + ay; *c++ = ox - px/3 + ax*2/3; *c++ = oy - py/3 + ay*2/3; *c++ = ox - px/9 + ax*2/3; *c++ = oy - py/9 + ay*2/3; *c++ = ox - px/9; *c++ = oy - py/9; draw_polygon(dr, coords, 7, COL_HINT, COL_OUTLINE); } draw_update(dr, x, y, TILESIZE, TILESIZE); } #define FLASH_DEAD 0x100 #define FLASH_WIN 0x200 #define FLASH_MASK 0x300 static void draw_tile(drawing *dr, game_drawstate *ds, int x, int y, int v) { int tx = COORD(x), ty = COORD(y); int bg = (v & FLASH_DEAD ? COL_DEAD_PLAYER : v & FLASH_WIN ? COL_HIGHLIGHT : COL_BACKGROUND); v &= ~FLASH_MASK; clip(dr, tx+1, ty+1, TILESIZE-1, TILESIZE-1); draw_rect(dr, tx+1, ty+1, TILESIZE-1, TILESIZE-1, bg); if (v == WALL) { int coords[6]; coords[0] = tx + TILESIZE; coords[1] = ty + TILESIZE; coords[2] = tx + TILESIZE; coords[3] = ty + 1; coords[4] = tx + 1; coords[5] = ty + TILESIZE; draw_polygon(dr, coords, 3, COL_LOWLIGHT, COL_LOWLIGHT); coords[0] = tx + 1; coords[1] = ty + 1; draw_polygon(dr, coords, 3, COL_HIGHLIGHT, COL_HIGHLIGHT); draw_rect(dr, tx + 1 + HIGHLIGHT_WIDTH, ty + 1 + HIGHLIGHT_WIDTH, TILESIZE - 2*HIGHLIGHT_WIDTH, TILESIZE - 2*HIGHLIGHT_WIDTH, COL_WALL); } else if (v == MINE) { int cx = tx + TILESIZE / 2; int cy = ty + TILESIZE / 2; int r = TILESIZE / 2 - 3; draw_circle(dr, cx, cy, 5*r/6, COL_MINE, COL_MINE); draw_rect(dr, cx - r/6, cy - r, 2*(r/6)+1, 2*r+1, COL_MINE); draw_rect(dr, cx - r, cy - r/6, 2*r+1, 2*(r/6)+1, COL_MINE); draw_rect(dr, cx-r/3, cy-r/3, r/3, r/4, COL_HIGHLIGHT); } else if (v == STOP) { draw_circle(dr, tx + TILESIZE/2, ty + TILESIZE/2, TILESIZE*3/7, -1, COL_OUTLINE); draw_rect(dr, tx + TILESIZE*3/7, ty+1, TILESIZE - 2*(TILESIZE*3/7) + 1, TILESIZE-1, bg); draw_rect(dr, tx+1, ty + TILESIZE*3/7, TILESIZE-1, TILESIZE - 2*(TILESIZE*3/7) + 1, bg); } else if (v == GEM) { int coords[8]; coords[0] = tx+TILESIZE/2; coords[1] = ty+TILESIZE/2-TILESIZE*5/14; coords[2] = tx+TILESIZE/2-TILESIZE*5/14; coords[3] = ty+TILESIZE/2; coords[4] = tx+TILESIZE/2; coords[5] = ty+TILESIZE/2+TILESIZE*5/14; coords[6] = tx+TILESIZE/2+TILESIZE*5/14; coords[7] = ty+TILESIZE/2; draw_polygon(dr, coords, 4, COL_GEM, COL_OUTLINE); } unclip(dr); draw_update(dr, tx, ty, TILESIZE, TILESIZE); } #define BASE_ANIM_LENGTH 0.1F #define FLASH_LENGTH 0.3F static void game_redraw(drawing *dr, game_drawstate *ds, const game_state *oldstate, const game_state *state, int dir, const game_ui *ui, float animtime, float flashtime) { int w = state->p.w, h = state->p.h /*, wh = w*h */; int x, y; float ap; int player_dist; int flashtype; int gems, deaths; char status[256]; if (flashtime && !((int)(flashtime * 3 / FLASH_LENGTH) % 2)) flashtype = ui->flashtype; else flashtype = 0; /* * Erase the player sprite. */ if (ds->player_bg_saved) { assert(ds->player_background); blitter_load(dr, ds->player_background, ds->pbgx, ds->pbgy); draw_update(dr, ds->pbgx, ds->pbgy, TILESIZE, TILESIZE); ds->player_bg_saved = false; } /* * Initialise a fresh drawstate. */ if (!ds->started) { /* * Draw the grid lines. */ for (y = 0; y <= h; y++) draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y), COL_LOWLIGHT); for (x = 0; x <= w; x++) draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h), COL_LOWLIGHT); ds->started = true; } /* * If we're in the process of animating a move, let's start by * working out how far the player has moved from their _older_ * state. */ if (oldstate) { ap = animtime / ui->anim_length; player_dist = ap * (dir > 0 ? state : oldstate)->distance_moved; } else { player_dist = 0; ap = 0.0F; } /* * Draw the grid contents. * * We count the gems as we go round this loop, for the purposes * of the status bar. Of course we have a gems counter in the * game_state already, but if we do the counting in this loop * then it tracks gems being picked up in a sliding move, and * updates one by one. */ gems = 0; for (y = 0; y < h; y++) for (x = 0; x < w; x++) { unsigned short v = (unsigned char)state->grid[y*w+x]; /* * Special case: if the player is in the process of * moving over a gem, we draw the gem iff they haven't * gone past it yet. */ if (oldstate && oldstate->grid[y*w+x] != state->grid[y*w+x]) { /* * Compute the distance from this square to the * original player position. */ int dist = max(abs(x - oldstate->px), abs(y - oldstate->py)); /* * If the player has reached here, use the new grid * element. Otherwise use the old one. */ if (player_dist < dist) v = oldstate->grid[y*w+x]; else v = state->grid[y*w+x]; } /* * Special case: erase the mine the dead player is * sitting on. Only at the end of the move. */ if (v == MINE && !oldstate && state->dead && x == state->px && y == state->py) v = BLANK; if (v == GEM) gems++; v |= flashtype; if (ds->grid[y*w+x] != v) { draw_tile(dr, ds, x, y, v); ds->grid[y*w+x] = v; } } /* * Gem counter in the status bar. We replace it with * `COMPLETED!' when it reaches zero ... or rather, when the * _current state_'s gem counter is zero. (Thus, `Gems: 0' is * shown between the collection of the last gem and the * completion of the move animation that did it.) */ if (state->dead && (!oldstate || oldstate->dead)) { sprintf(status, "DEAD!"); } else if (state->gems || (oldstate && oldstate->gems)) { if (state->cheated) sprintf(status, "Auto-solver used. "); else *status = '\0'; sprintf(status + strlen(status), "Gems: %d", gems); } else if (state->cheated) { sprintf(status, "Auto-solved."); } else { sprintf(status, "COMPLETED!"); } /* We subtract one from the visible death counter if we're still * animating the move at the end of which the death took place. */ deaths = ui->deaths; if (oldstate && ui->just_died) { assert(deaths > 0); deaths--; } if (deaths) sprintf(status + strlen(status), " Deaths: %d", deaths); status_bar(dr, status); /* * Draw the player sprite. */ assert(!ds->player_bg_saved); assert(ds->player_background); { int ox, oy, nx, ny; nx = COORD(state->px); ny = COORD(state->py); if (oldstate) { ox = COORD(oldstate->px); oy = COORD(oldstate->py); } else { ox = nx; oy = ny; } ds->pbgx = ox + ap * (nx - ox); ds->pbgy = oy + ap * (ny - oy); } blitter_save(dr, ds->player_background, ds->pbgx, ds->pbgy); draw_player(dr, ds, ds->pbgx, ds->pbgy, (state->dead && !oldstate), (!oldstate && state->soln ? state->soln->list[state->solnpos] : -1)); ds->player_bg_saved = true; } static float game_anim_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { int dist; if (dir > 0) dist = newstate->distance_moved; else dist = oldstate->distance_moved; ui->anim_length = sqrt(dist) * BASE_ANIM_LENGTH; return ui->anim_length; } static float game_flash_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { if (!oldstate->dead && newstate->dead) { ui->flashtype = FLASH_DEAD; return FLASH_LENGTH; } else if (oldstate->gems && !newstate->gems) { ui->flashtype = FLASH_WIN; return FLASH_LENGTH; } return 0.0F; } static void game_get_cursor_location(const game_ui *ui, const game_drawstate *ds, const game_state *state, const game_params *params, int *x, int *y, int *w, int *h) { *x = ds->pbgx; *y = ds->pbgy; *w = *h = TILESIZE; } static int game_status(const game_state *state) { /* * We never report the game as lost, on the grounds that if the * player has died they're quite likely to want to undo and carry * on. */ return state->gems == 0 ? +1 : 0; } static bool game_timing_state(const game_state *state, game_ui *ui) { return true; } static void game_print_size(const game_params *params, float *x, float *y) { } static void game_print(drawing *dr, const game_state *state, int tilesize) { } #ifdef COMBINED #define thegame inertia #endif const struct game thegame = { "Inertia", "games.inertia", "inertia", default_params, game_fetch_preset, NULL, decode_params, encode_params, free_params, dup_params, true, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, true, solve_game, true, game_can_format_as_text_now, game_text_format, new_ui, free_ui, encode_ui, decode_ui, NULL, /* game_request_keys */ game_changed_state, current_key_label, interpret_move, execute_move, PREFERRED_TILESIZE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_get_cursor_location, game_status, false, false, game_print_size, game_print, true, /* wants_statusbar */ false, game_timing_state, 0, /* flags */ };