ref: 3bc58f13cc4ae0881ce483a8dcd7789a2d6f325d
dir: /vpx_dsp/x86/highbd_quantize_intrin_sse2.c/
/* * Copyright (c) 2015 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <assert.h> #include <emmintrin.h> #include "./vpx_dsp_rtcd.h" #include "vpx_dsp/vpx_dsp_common.h" #include "vpx_mem/vpx_mem.h" #include "vpx_ports/mem.h" #if CONFIG_VP9_HIGHBITDEPTH void vpx_highbd_quantize_b_sse2(const tran_low_t *coeff_ptr, intptr_t count, int skip_block, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan) { int i, j, non_zero_regs = (int)count / 4, eob_i = -1; __m128i zbins[2]; __m128i nzbins[2]; zbins[0] = _mm_set_epi32((int)zbin_ptr[1], (int)zbin_ptr[1], (int)zbin_ptr[1], (int)zbin_ptr[0]); zbins[1] = _mm_set1_epi32((int)zbin_ptr[1]); nzbins[0] = _mm_setzero_si128(); nzbins[1] = _mm_setzero_si128(); nzbins[0] = _mm_sub_epi32(nzbins[0], zbins[0]); nzbins[1] = _mm_sub_epi32(nzbins[1], zbins[1]); (void)scan; (void)skip_block; assert(!skip_block); memset(qcoeff_ptr, 0, count * sizeof(*qcoeff_ptr)); memset(dqcoeff_ptr, 0, count * sizeof(*dqcoeff_ptr)); // Pre-scan pass for (i = ((int)count / 4) - 1; i >= 0; i--) { __m128i coeffs, cmp1, cmp2; int test; coeffs = _mm_load_si128((const __m128i *)(coeff_ptr + i * 4)); cmp1 = _mm_cmplt_epi32(coeffs, zbins[i != 0]); cmp2 = _mm_cmpgt_epi32(coeffs, nzbins[i != 0]); cmp1 = _mm_and_si128(cmp1, cmp2); test = _mm_movemask_epi8(cmp1); if (test == 0xffff) non_zero_regs--; else break; } // Quantization pass: for (i = 0; i < non_zero_regs; i++) { __m128i coeffs, coeffs_sign, tmp1, tmp2; int test; int abs_coeff[4]; int coeff_sign[4]; coeffs = _mm_load_si128((const __m128i *)(coeff_ptr + i * 4)); coeffs_sign = _mm_srai_epi32(coeffs, 31); coeffs = _mm_sub_epi32(_mm_xor_si128(coeffs, coeffs_sign), coeffs_sign); tmp1 = _mm_cmpgt_epi32(coeffs, zbins[i != 0]); tmp2 = _mm_cmpeq_epi32(coeffs, zbins[i != 0]); tmp1 = _mm_or_si128(tmp1, tmp2); test = _mm_movemask_epi8(tmp1); _mm_storeu_si128((__m128i *)abs_coeff, coeffs); _mm_storeu_si128((__m128i *)coeff_sign, coeffs_sign); for (j = 0; j < 4; j++) { if (test & (1 << (4 * j))) { int k = 4 * i + j; const int64_t tmp3 = abs_coeff[j] + round_ptr[k != 0]; const int64_t tmp4 = ((tmp3 * quant_ptr[k != 0]) >> 16) + tmp3; const uint32_t abs_qcoeff = (uint32_t)((tmp4 * quant_shift_ptr[k != 0]) >> 16); qcoeff_ptr[k] = (int)(abs_qcoeff ^ coeff_sign[j]) - coeff_sign[j]; dqcoeff_ptr[k] = qcoeff_ptr[k] * dequant_ptr[k != 0]; if (abs_qcoeff) eob_i = iscan[k] > eob_i ? iscan[k] : eob_i; } } } *eob_ptr = eob_i + 1; } void vpx_highbd_quantize_b_32x32_sse2( const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block, const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr, const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan) { __m128i zbins[2]; __m128i nzbins[2]; int idx = 0; int idx_arr[1024]; int i, eob = -1; const int zbin0_tmp = ROUND_POWER_OF_TWO(zbin_ptr[0], 1); const int zbin1_tmp = ROUND_POWER_OF_TWO(zbin_ptr[1], 1); (void)scan; (void)skip_block; assert(!skip_block); zbins[0] = _mm_set_epi32(zbin1_tmp, zbin1_tmp, zbin1_tmp, zbin0_tmp); zbins[1] = _mm_set1_epi32(zbin1_tmp); nzbins[0] = _mm_setzero_si128(); nzbins[1] = _mm_setzero_si128(); nzbins[0] = _mm_sub_epi32(nzbins[0], zbins[0]); nzbins[1] = _mm_sub_epi32(nzbins[1], zbins[1]); memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr)); memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr)); // Pre-scan pass for (i = 0; i < n_coeffs / 4; i++) { __m128i coeffs, cmp1, cmp2; int test; coeffs = _mm_load_si128((const __m128i *)(coeff_ptr + i * 4)); cmp1 = _mm_cmplt_epi32(coeffs, zbins[i != 0]); cmp2 = _mm_cmpgt_epi32(coeffs, nzbins[i != 0]); cmp1 = _mm_and_si128(cmp1, cmp2); test = _mm_movemask_epi8(cmp1); if (!(test & 0xf)) idx_arr[idx++] = i * 4; if (!(test & 0xf0)) idx_arr[idx++] = i * 4 + 1; if (!(test & 0xf00)) idx_arr[idx++] = i * 4 + 2; if (!(test & 0xf000)) idx_arr[idx++] = i * 4 + 3; } // Quantization pass: only process the coefficients selected in // pre-scan pass. Note: idx can be zero. for (i = 0; i < idx; i++) { const int rc = idx_arr[i]; const int coeff = coeff_ptr[rc]; const int coeff_sign = (coeff >> 31); const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; const int64_t tmp1 = abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1); const int64_t tmp2 = ((tmp1 * quant_ptr[rc != 0]) >> 16) + tmp1; const uint32_t abs_qcoeff = (uint32_t)((tmp2 * quant_shift_ptr[rc != 0]) >> 15); qcoeff_ptr[rc] = (int)(abs_qcoeff ^ coeff_sign) - coeff_sign; dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0] / 2; if (abs_qcoeff) eob = iscan[idx_arr[i]] > eob ? iscan[idx_arr[i]] : eob; } *eob_ptr = eob + 1; } #endif