ref: 83c67348be306b34e1783ba44972675c9e33df30
dir: /python/test/bench/onset/bench-onset/
#! /usr/bin/python
from aubio.tasks import *
from benchonset import mmean, stdev, benchonset
class mybenchonset(benchonset):
def run_bench(self,modes=['dual'],thresholds=[0.5]):
from os.path import dirname,basename
self.thresholds = thresholds
self.pretty_titles()
d,e,f = [],[],[]
for mode in modes:
self.vlist = []
self.params.onsetmode = mode
for threshold in self.thresholds:
self.params.threshold = threshold
self.dir_exec()
self.dir_eval()
self.pretty_print()
#print self.v
self.vlist.append(self.v)
self.plotroc(d)
self.plotfmeas(e)
self.plotpr(f)
#print vlist
#self.plotplotroc(d)
#self.plotplotfmeas(e)
#self.plotplotpr(f)
outplot = basename(self.datadir)
for ext in ("png","svg","ps"):
self.plotplotroc(d,outplot=outplot,extension=ext)
self.plotplotfmeas(e,outplot=outplot,extension=ext)
self.plotplotpr(f,outplot=outplot,extension=ext)
def auto_learn(self,modes=['dual'],thresholds=[0.1,1.5]):
""" simple dichotomia like algorithm to optimise threshold """
self.modes = modes
self.pretty_titles()
for mode in self.modes:
steps = 11
lesst = thresholds[0]
topt = thresholds[1]
self.params.onsetmode = mode
self.params.threshold = topt
self.dir_exec()
self.dir_eval()
self.pretty_print()
topF = self.F
self.params.threshold = lesst
self.dir_exec()
self.dir_eval()
self.pretty_print()
lessF = self.F
for i in range(steps):
self.params.localmin = True
self.params.delay = 1.
self.dir_exec()
self.dir_eval()
self.params.threshold = ( lesst + topt ) * .5
self.dir_exec()
self.dir_eval()
self.pretty_print()
if self.F == 100.0 or self.F == topF:
print "assuming we converged, stopping"
break
#elif abs(self.F - topF) < 0.01 :
# print "done converging"
# break
if topF < self.F:
#lessF = topF
#lesst = topt
topF = self.F
topt = self.params.threshold
elif lessF < self.F:
lessF = self.F
lesst = self.params.threshold
if topt == lesst:
lesst /= 2.
def auto_learn2(self,modes=['dual'],thresholds=[0.00001,1.0]):
""" simple dichotomia like algorithm to optimise threshold """
self.modes = modes
self.pretty_titles([])
for mode in self.modes:
steps = 10
step = 0.4
self.params.onsetmode = mode
self.params.threshold = thresholds[0]
cur = 0
for i in range(steps):
self.dir_exec()
self.dir_eval()
self.pretty_print()
new = self.P
if self.R == 0.0:
#print "Found maximum, highering"
step /= 2.
self.params.threshold -= step
elif new == 100.0:
#print "Found maximum, highering"
step *= .99
self.params.threshold += step
elif cur > new:
#print "lower"
step /= 2.
self.params.threshold -= step
elif cur < new:
#print "higher"
step *= .99
self.params.threshold += step
else:
print "Assuming we converged"
break
cur = new
if __name__ == "__main__":
import sys
if len(sys.argv) > 1: datapath = sys.argv[1]
else: print "ERR: a path is required"; sys.exit(1)
modes = ['complex', 'energy', 'phase', 'hfc', 'specdiff', 'kl', 'mkl', 'dual']
thresholds = [ 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2]
#modes = [ 'hfc' ]
#thresholds = [0.1, 1.5]
#datapath = "%s%s" % (DATADIR,'/onset/DB/*/')
respath = '/var/tmp/DB-testings'
benchonset = mybenchonset(datapath,respath,checkres=True,checkanno=True)
benchonset.params = taskparams()
benchonset.task = taskonset
benchonset.valuesdict = {}
try:
#benchonset.auto_learn2(modes=modes)
benchonset.run_bench(modes=modes,thresholds=thresholds)
except KeyboardInterrupt:
sys.exit(1)