shithub: opus

ref: fd45fba905b580cd001637c3b9459e44323f6f0c
dir: /dnn/lpcnet_plc.c/

View raw version
/* Copyright (c) 2021 Amazon */
/*
   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:

   - Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.

   - Redistributions in binary form must reproduce the above copyright
   notice, this list of conditions and the following disclaimer in the
   documentation and/or other materials provided with the distribution.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "lpcnet_private.h"
#include "lpcnet.h"
#include "plc_data.h"

#define PLC_DUMP_FEATURES 0
#define PLC_READ_FEATURES 0
#define PLC_DNN_PRED 1

LPCNET_EXPORT int lpcnet_plc_get_size() {
  return sizeof(LPCNetPLCState);
}

LPCNET_EXPORT void lpcnet_plc_init(LPCNetPLCState *st) {
  lpcnet_init(&st->lpcnet);
  lpcnet_encoder_init(&st->enc);
  RNN_CLEAR(st->pcm, PLC_BUF_SIZE);
  st->pcm_fill = PLC_BUF_SIZE;
  st->skip_analysis = 0;
  st->blend = 0;
  st->loss_count = 0;
}

LPCNET_EXPORT LPCNetPLCState *lpcnet_plc_create() {
  LPCNetPLCState *st;
  st = calloc(sizeof(*st), 1);
  lpcnet_plc_init(st);
  return st;
}

LPCNET_EXPORT void lpcnet_plc_destroy(LPCNetPLCState *st) {
  free(st);
}

static void compute_plc_pred(PLCNetState *net, float *out, const float *in) {
  float zeros[3*PLC_MAX_RNN_NEURONS] = {0};
  float dense_out[PLC_DENSE1_OUT_SIZE];
  _lpcnet_compute_dense(&plc_dense1, dense_out, in);
  compute_gruB(&plc_gru1, zeros, net->plc_gru1_state, dense_out);
  compute_gruB(&plc_gru2, zeros, net->plc_gru2_state, net->plc_gru1_state);
  _lpcnet_compute_dense(&plc_out, out, net->plc_gru2_state);
}

#if 1
LPCNET_EXPORT int lpcnet_plc_update(LPCNetPLCState *st, short *pcm) {
  int i;
  float x[FRAME_SIZE];
  short output[FRAME_SIZE];
#if PLC_DNN_PRED
  float plc_features[2*NB_BANDS+NB_FEATURES+1];
  for (i=0;i<FRAME_SIZE;i++) x[i] = pcm[i];
  burg_cepstral_analysis(plc_features, x);
#endif
  st->enc.pcount = 0;
  if (st->skip_analysis) {
    /*fprintf(stderr, "skip update\n");*/
    if (st->blend) {
      short tmp[FRAME_SIZE-TRAINING_OFFSET];
      lpcnet_synthesize_tail_impl(&st->lpcnet, tmp, FRAME_SIZE-TRAINING_OFFSET, 0);
      for (i=0;i<FRAME_SIZE-TRAINING_OFFSET;i++) {
        float w;
        w = .5 - .5*cos(M_PI*i/(FRAME_SIZE-TRAINING_OFFSET));
        pcm[i] = (int)floor(.5 + w*pcm[i] + (1-w)*tmp[i]);
      }
      st->blend = 0;
      RNN_COPY(st->pcm, &pcm[FRAME_SIZE-TRAINING_OFFSET], TRAINING_OFFSET);
      st->pcm_fill = TRAINING_OFFSET;
    } else {
      RNN_COPY(&st->pcm[st->pcm_fill], pcm, FRAME_SIZE);
      st->pcm_fill += FRAME_SIZE;
    }
    /*fprintf(stderr, "fill at %d\n", st->pcm_fill);*/
  }
  /* Update state. */
  /*fprintf(stderr, "update state\n");*/
  for (i=0;i<FRAME_SIZE;i++) x[i] = pcm[i];
  preemphasis(x, &st->enc.mem_preemph, x, PREEMPHASIS, FRAME_SIZE);
  compute_frame_features(&st->enc, x);
  process_single_frame(&st->enc, NULL);
#if PLC_DNN_PRED
  if (st->skip_analysis <= 1) {
    RNN_COPY(&plc_features[2*NB_BANDS], st->enc.features[0], NB_FEATURES);
    plc_features[2*NB_BANDS+NB_FEATURES] = 1;
    compute_plc_pred(&st->plc_net, st->features, plc_features);
  }
#else
  RNN_COPY(st->features, st->enc.features[0], NB_TOTAL_FEATURES);
#endif
  if (st->skip_analysis) {
    float lpc[LPC_ORDER];
    float gru_a_condition[3*GRU_A_STATE_SIZE];
    float gru_b_condition[3*GRU_B_STATE_SIZE];
    /* FIXME: backtrack state, replace features. */
    run_frame_network(&st->lpcnet, gru_a_condition, gru_b_condition, lpc, st->enc.features[0]);
    st->skip_analysis--;
  } else {
    for (i=0;i<FRAME_SIZE;i++) st->pcm[PLC_BUF_SIZE+i] = pcm[i];
    RNN_COPY(output, &st->pcm[0], FRAME_SIZE);
    lpcnet_synthesize_impl(&st->lpcnet, st->enc.features[0], output, FRAME_SIZE, FRAME_SIZE);
#if PLC_READ_FEATURES
    for (i=0;i<NB_FEATURES;i++) scanf("%f", &st->features[i]);
#endif
#if PLC_DUMP_FEATURES
    for (i=0;i<NB_FEATURES;i++) printf("%f ", st->enc.features[0][i]);
    printf("1\n");
#endif
    RNN_MOVE(st->pcm, &st->pcm[FRAME_SIZE], PLC_BUF_SIZE);
  }
  st->loss_count = 0;
  return 0;
}

static const float att_table[10] = {0, 0,  -.2, -.2,  -.4, -.4,  -.8, -.8, -1.6, -1.6};
LPCNET_EXPORT int lpcnet_plc_conceal(LPCNetPLCState *st, short *pcm) {
#if PLC_READ_FEATURES || PLC_DUMP_FEATURES
  int i;
#endif
  short output[FRAME_SIZE];
  float zeros[2*NB_BANDS+NB_FEATURES+1] = {0};
  st->enc.pcount = 0;
  /* If we concealed the previous frame, finish synthesizing the rest of the samples. */
  /* FIXME: Copy/predict features. */
  while (st->pcm_fill > 0) {
    /*fprintf(stderr, "update state for PLC %d\n", st->pcm_fill);*/
    int update_count;
    update_count = IMIN(st->pcm_fill, FRAME_SIZE);
    RNN_COPY(output, &st->pcm[0], update_count);
#if PLC_DNN_PRED
    if (st->pcm_fill > FRAME_SIZE) compute_plc_pred(&st->plc_net, st->features, zeros);
#endif
#if PLC_READ_FEATURES
    for (i=0;i<NB_FEATURES;i++) scanf("%f", &st->features[i]);
#endif
#if PLC_DUMP_FEATURES
    for (i=0;i<NB_FEATURES+1;i++) printf("%f ", 0.);
    printf("\n");
#endif
    lpcnet_synthesize_impl(&st->lpcnet, &st->features[0], output, update_count, update_count);
    RNN_MOVE(st->pcm, &st->pcm[FRAME_SIZE], PLC_BUF_SIZE);
    st->pcm_fill -= update_count;
    st->skip_analysis++;
  }
  lpcnet_synthesize_tail_impl(&st->lpcnet, pcm, FRAME_SIZE-TRAINING_OFFSET, 0);
#if PLC_DNN_PRED
  compute_plc_pred(&st->plc_net, st->features, zeros);
  if (st->loss_count >= 10) st->features[0] = MAX16(-10, st->features[0]+att_table[9] - 2*(st->loss_count-9));
  else st->features[0] = MAX16(-10, st->features[0]+att_table[st->loss_count]);
  if (st->loss_count > 4) st->features[NB_FEATURES-1] = MAX16(-.5, st->features[NB_FEATURES-1]-.1*(st->loss_count-4));
#endif
#if PLC_READ_FEATURES
  for (i=0;i<NB_FEATURES;i++) scanf("%f", &st->features[i]);
#endif
#if PLC_DUMP_FEATURES
  for (i=0;i<NB_FEATURES+1;i++) printf("%f ", 0.);
  printf("\n");
#endif
  lpcnet_synthesize_impl(&st->lpcnet, &st->features[0], &pcm[FRAME_SIZE-TRAINING_OFFSET], TRAINING_OFFSET, 0);
  {
    int i;
    float x[FRAME_SIZE];
    /* FIXME: Can we do better? */
    for (i=0;i<FRAME_SIZE;i++) x[i] = pcm[i];
    preemphasis(x, &st->enc.mem_preemph, x, PREEMPHASIS, FRAME_SIZE);
    compute_frame_features(&st->enc, x);
    process_single_frame(&st->enc, NULL);
  }
  st->loss_count++;
  st->blend = 1;
  return 0;
}

#else

LPCNET_EXPORT int lpcnet_plc_update(LPCNetPLCState *st, short *pcm) {
  int i;
  float x[FRAME_SIZE];
  short pcm_save[FRAME_SIZE];
  float plc_features[2*NB_BANDS+NB_FEATURES+1];
  RNN_COPY(pcm_save, pcm, FRAME_SIZE);
  for (i=0;i<FRAME_SIZE;i++) x[i] = pcm[i];
  burg_cepstral_analysis(plc_features, x);
  st->enc.pcount = 0;
  if (st->loss_count > 0) {
    LPCNetState copy;
    /* Handle blending. */
    short tmp[FRAME_SIZE-TRAINING_OFFSET];
    float zeros[2*NB_BANDS+NB_FEATURES+1] = {0};
    RNN_COPY(zeros, plc_features, 2*NB_BANDS);
    zeros[2*NB_BANDS+NB_FEATURES] = 1;
    compute_plc_pred(&st->plc_net, st->features, zeros);
    lpcnet_synthesize_impl(&st->lpcnet, st->features, &st->pcm[FRAME_SIZE-TRAINING_OFFSET], TRAINING_OFFSET, 0);
    
    copy = st->lpcnet;
    {
      short rev[FRAME_SIZE];
      for (i=0;i<FRAME_SIZE;i++) rev[i] = pcm[FRAME_SIZE-i-1];
      lpcnet_synthesize_tail_impl(&st->lpcnet, rev, FRAME_SIZE, FRAME_SIZE);
      lpcnet_synthesize_tail_impl(&st->lpcnet, rev, TRAINING_OFFSET, 0);
      for (i=0;i<TRAINING_OFFSET;i++) {
        float w;
        w = .5 - .5*cos(M_PI*i/(TRAINING_OFFSET));
        st->pcm[FRAME_SIZE-1-i] = (int)floor(.5 + w*st->pcm[FRAME_SIZE-1-i] + (1-w)*rev[i]);
      }
      
    }
    st->lpcnet = copy;
    lpcnet_synthesize_tail_impl(&st->lpcnet, pcm, FRAME_SIZE-TRAINING_OFFSET, FRAME_SIZE-TRAINING_OFFSET);

    for (i=0;i<FRAME_SIZE;i++) x[i] = st->pcm[i];
    preemphasis(x, &st->enc.mem_preemph, x, PREEMPHASIS, FRAME_SIZE);
    compute_frame_features(&st->enc, x);
    process_single_frame(&st->enc, NULL);
    
  }
  for (i=0;i<FRAME_SIZE;i++) x[i] = pcm[i];
  preemphasis(x, &st->enc.mem_preemph, x, PREEMPHASIS, FRAME_SIZE);
  compute_frame_features(&st->enc, x);
  process_single_frame(&st->enc, NULL);
  if (st->loss_count == 0) {
    RNN_COPY(&plc_features[2*NB_BANDS], st->enc.features[0], NB_FEATURES);
    plc_features[2*NB_BANDS+NB_FEATURES] = 1;
    compute_plc_pred(&st->plc_net, st->features, plc_features);
    lpcnet_synthesize_impl(&st->lpcnet, st->enc.features[0], &st->pcm[FRAME_SIZE-TRAINING_OFFSET], TRAINING_OFFSET, TRAINING_OFFSET);
    lpcnet_synthesize_tail_impl(&st->lpcnet, pcm, FRAME_SIZE-TRAINING_OFFSET, FRAME_SIZE-TRAINING_OFFSET);
  }
  RNN_COPY(&pcm[FRAME_SIZE-TRAINING_OFFSET], pcm, TRAINING_OFFSET);
  RNN_COPY(pcm, &st->pcm[TRAINING_OFFSET], FRAME_SIZE-TRAINING_OFFSET);
  RNN_COPY(st->pcm, pcm_save, FRAME_SIZE);
  st->loss_count = 0;
  return 0;
}

static const float att_table[10] = {0, 0,  -.2, -.2,  -.4, -.4,  -.8, -.8, -1.6, -1.6};
LPCNET_EXPORT int lpcnet_plc_conceal(LPCNetPLCState *st, short *pcm) {
  int i;
  float x[FRAME_SIZE];
  float zeros[2*NB_BANDS+NB_FEATURES+1] = {0};
  st->enc.pcount = 0;

  compute_plc_pred(&st->plc_net, st->features, zeros);
  if (st->loss_count >= 10) st->features[0] = MAX16(-10, st->features[0]+att_table[9] - 2*(st->loss_count-9));
  else st->features[0] = MAX16(-10, st->features[0]+att_table[st->loss_count]);
  if (st->loss_count > 4) st->features[NB_FEATURES-1] = MAX16(-.5, st->features[NB_FEATURES-1]-.1*(st->loss_count-4));

  if (st->loss_count == 0) {
    RNN_COPY(pcm, &st->pcm[FRAME_SIZE-TRAINING_OFFSET], TRAINING_OFFSET);
    lpcnet_synthesize_impl(&st->lpcnet, st->features, &st->pcm[FRAME_SIZE-TRAINING_OFFSET], TRAINING_OFFSET, TRAINING_OFFSET);
    lpcnet_synthesize_tail_impl(&st->lpcnet, &pcm[TRAINING_OFFSET], FRAME_SIZE-TRAINING_OFFSET, 0);
  } else {
    lpcnet_synthesize_impl(&st->lpcnet, st->features, pcm, TRAINING_OFFSET, 0);
    lpcnet_synthesize_tail_impl(&st->lpcnet, &pcm[TRAINING_OFFSET], FRAME_SIZE-TRAINING_OFFSET, 0);

    RNN_COPY(&st->pcm[FRAME_SIZE-TRAINING_OFFSET], pcm, TRAINING_OFFSET);
    for (i=0;i<FRAME_SIZE;i++) x[i] = st->pcm[i];
    preemphasis(x, &st->enc.mem_preemph, x, PREEMPHASIS, FRAME_SIZE);
    compute_frame_features(&st->enc, x);
    process_single_frame(&st->enc, NULL);
  }
  RNN_COPY(st->pcm, &pcm[TRAINING_OFFSET], FRAME_SIZE-TRAINING_OFFSET);


  st->loss_count++;
  return 0;
}

#endif