ref: d58faea390e91e54db28e18e982b03745b29c60c
dir: /dnn/training_tf2/pade.py/
# Optimizing a rational function to optimize a tanh() approximation import numpy as np import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, GRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Multiply, Add, Bidirectional, MaxPooling1D, Activation import tensorflow.keras.backend as K from tensorflow.keras.optimizers import Adam, SGD def my_loss1(y_true, y_pred): return 1*K.mean(K.square(y_true-y_pred)) + 1*K.max(K.square(y_true-y_pred), axis=1) def my_loss2(y_true, y_pred): return .1*K.mean(K.square(y_true-y_pred)) + 1*K.max(K.square(y_true-y_pred), axis=1) def my_loss3(y_true, y_pred): return .01*K.mean(K.square(y_true-y_pred)) + 1*K.max(K.square(y_true-y_pred), axis=1) # Using these initializers to seed the approximation # with a reasonable starting point def num_init(shape, dtype=None): rr = tf.constant([[945], [105], [1]], dtype=dtype) #rr = tf.constant([[946.56757], [98.01368], [0.66841]], dtype=dtype) print(rr) return rr def den_init(shape, dtype=None): rr = tf.constant([[945], [420], [15]], dtype=dtype) #rr = tf.constant([[946.604], [413.342], [12.465]], dtype=dtype) print(rr) return rr x = np.arange(-10, 10, .01) N = len(x) x = np.reshape(x, (1, -1, 1)) x2 = x*x x2in = np.concatenate([x2*0 + 1, x2, x2*x2], axis=2) yout = np.tanh(x) model_x = Input(shape=(None, 1,)) model_x2 = Input(shape=(None, 3,)) num = Dense(1, name='num', use_bias=False, kernel_initializer=num_init) den = Dense(1, name='den', use_bias=False, kernel_initializer=den_init) def ratio(x): return tf.minimum(1., tf.maximum(-1., x[0]*x[1]/x[2])) out_layer = Lambda(ratio) output = out_layer([model_x, num(model_x2), den(model_x2)]) model = Model([model_x, model_x2], output) model.summary() model.compile(Adam(0.05, beta_1=0.9, beta_2=0.9, decay=2e-5), loss='mean_squared_error') model.fit([x, x2in], yout, batch_size=1, epochs=500000, validation_split=0.0) model.compile(Adam(0.001, beta_2=0.9, decay=1e-4), loss=my_loss1) model.fit([x, x2in], yout, batch_size=1, epochs=50000, validation_split=0.0) model.compile(Adam(0.0001, beta_2=0.9, decay=1e-4), loss=my_loss2) model.fit([x, x2in], yout, batch_size=1, epochs=50000, validation_split=0.0) model.compile(Adam(0.00001, beta_2=0.9, decay=1e-4), loss=my_loss3) model.fit([x, x2in], yout, batch_size=1, epochs=50000, validation_split=0.0) model.save_weights('tanh.h5')