ref: c7bfc72d072dda08adb4f233a0cf84ee83b3a1a5
dir: /dnn/torch/weight-exchange/wexchange/c_export/c_writer.py/
""" /* Copyright (c) 2023 Amazon Written by Jan Buethe */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ """ import os from collections import OrderedDict class CWriter: def __init__(self, filename_without_extension, message=None, header_only=False, create_state_struct=False, enable_binary_blob=True, model_struct_name="Model", nnet_header="nnet.h"): """ Writer class for creating souce and header files for weight exports to C Parameters: ----------- filename_without_extension: str filename from which .c and .h files are created message: str, optional if given and not None, this message will be printed as comment in the header file header_only: bool, optional if True, only a header file is created; defaults to False enable_binary_blob: bool, optional if True, export is done in binary blob format and a model type is created; defaults to False create_state_struct: bool, optional if True, a state struct type is created in the header file; if False, state sizes are defined as macros; defaults to False model_struct_name: str, optional name used for the model struct type; only relevant when enable_binary_blob is True; defaults to "Model" nnet_header: str, optional name of header nnet header file; defaults to nnet.h """ self.header_only = header_only self.enable_binary_blob = enable_binary_blob self.create_state_struct = create_state_struct self.model_struct_name = model_struct_name # for binary blob format, format is key=<layer name>, value=(<layer type>, <init call>) self.layer_dict = OrderedDict() # for binary blob format, format is key=<layer name>, value=<layer type> self.weight_arrays = [] # form model struct, format is key=<layer name>, value=<number of elements> self.state_dict = OrderedDict() self.header = open(filename_without_extension + ".h", "w") header_name = os.path.basename(filename_without_extension) + '.h' if message is not None: self.header.write(f"/* {message} */\n\n") self.header_guard = os.path.basename(filename_without_extension).upper() + "_H" self.header.write( f''' #ifndef {self.header_guard} #define {self.header_guard} #include "{nnet_header}" ''' ) if not self.header_only: self.source = open(filename_without_extension + ".c", "w") if message is not None: self.source.write(f"/* {message} */\n\n") self.source.write( f""" #ifdef HAVE_CONFIG_H #include "config.h" #endif """) self.source.write(f'#include "{header_name}"\n\n') def _finalize_header(self): # create model type if self.enable_binary_blob: self.header.write(f"\nstruct {self.model_struct_name} {{") for name, data in self.layer_dict.items(): layer_type = data[0] self.header.write(f"\n {layer_type} {name};") self.header.write(f"\n}};\n") init_prototype = f"int init_{self.model_struct_name.lower()}({self.model_struct_name} *model, const WeightArray *arrays)" self.header.write(f"\n{init_prototype};\n") self.header.write(f"\n#endif /* {self.header_guard} */\n") def _finalize_source(self): if self.enable_binary_blob: # create weight array if len(set(self.weight_arrays)) != len(self.weight_arrays): raise ValueError("error: detected duplicates in weight arrays") self.source.write("\n#ifndef USE_WEIGHTS_FILE\n") self.source.write(f"const WeightArray {self.model_struct_name.lower()}_arrays[] = {{\n") for name in self.weight_arrays: self.source.write(f"#ifdef WEIGHTS_{name}_DEFINED\n") self.source.write(f' {{"{name}", WEIGHTS_{name}_TYPE, sizeof({name}), {name}}},\n') self.source.write(f"#endif\n") self.source.write(" {NULL, 0, 0, NULL}\n") self.source.write("};\n") self.source.write("#endif /* USE_WEIGHTS_FILE */\n") # create init function definition init_prototype = f"int init_{self.model_struct_name.lower()}({self.model_struct_name} *model, const WeightArray *arrays)" self.source.write("\n#ifndef DUMP_BINARY_WEIGHTS\n") self.source.write(f"{init_prototype} {{\n") for name, data in self.layer_dict.items(): self.source.write(f" if ({data[1]}) return 1;\n") self.source.write(" return 0;\n") self.source.write("}\n") self.source.write("#endif /* DUMP_BINARY_WEIGHTS */\n") def close(self): if not self.header_only: self._finalize_source() self.source.close() self._finalize_header() self.header.close() def __del__(self): try: self.close() except: pass