ref: b3ec9761b2f3d4c7d4e63255462aa98bb329c70f
dir: /dnn/torch/osce/losses/td_lowpass.py/
import torch import scipy.signal from utils.layers.fir import FIR class TDLowpass(torch.nn.Module): def __init__(self, numtaps, cutoff, power=2): super().__init__() self.b = scipy.signal.firwin(numtaps, cutoff) self.weight = torch.nn.Parameter(torch.from_numpy(self.b).float().view(1, 1, -1), requires_grad=False) self.power = power def forward(self, y_true, y_pred): if len(y_true.shape) < 3: y_true = y_true.unsqueeze(1) if len(y_pred.shape) < 3: y_pred = y_pred.unsqueeze(1) diff = y_true - y_pred diff_lp = torch.nn.functional.conv1d(diff, self.weight) loss = torch.mean(torch.abs(diff_lp) ** self.power) / (torch.mean(torch.abs(y_true) ** self.power) + 1e-6**self.power) loss = loss ** 1/self.power return loss def get_freqz(self): freq, response = scipy.signal.freqz(self.b) return freq, response