ref: 735c40706f37aa5de935f9036c606b2ff39e4f66
dir: /dnn/training_tf2/pade.py/
# Optimizing a rational function to optimize a tanh() approximation import numpy as np import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, GRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Multiply, Add, Bidirectional, MaxPooling1D, Activation import tensorflow.keras.backend as K from tensorflow.keras.optimizers import Adam, SGD def my_loss1(y_true, y_pred): return 1*K.mean(K.square(y_true-y_pred)) + 1*K.max(K.square(y_true-y_pred), axis=1) def my_loss2(y_true, y_pred): return .1*K.mean(K.square(y_true-y_pred)) + 1*K.max(K.square(y_true-y_pred), axis=1) def my_loss3(y_true, y_pred): return .01*K.mean(K.square(y_true-y_pred)) + 1*K.max(K.square(y_true-y_pred), axis=1) # Using these initializers to seed the approximation # with a reasonable starting point def num_init(shape, dtype=None): rr = tf.constant([[945], [105], [1]], dtype=dtype) #rr = tf.constant([[946.56757], [98.01368], [0.66841]], dtype=dtype) print(rr) return rr def den_init(shape, dtype=None): rr = tf.constant([[945], [420], [15]], dtype=dtype) #rr = tf.constant([[946.604], [413.342], [12.465]], dtype=dtype) print(rr) return rr x = np.arange(-10, 10, .01) N = len(x) x = np.reshape(x, (1, -1, 1)) x2 = x*x x2in = np.concatenate([x2*0 + 1, x2, x2*x2], axis=2) yout = np.tanh(x) model_x = Input(shape=(None, 1,)) model_x2 = Input(shape=(None, 3,)) num = Dense(1, name='num', use_bias=False, kernel_initializer=num_init) den = Dense(1, name='den', use_bias=False, kernel_initializer=den_init) def ratio(x): return tf.minimum(1., tf.maximum(-1., x[0]*x[1]/x[2])) out_layer = Lambda(ratio) output = out_layer([model_x, num(model_x2), den(model_x2)]) model = Model([model_x, model_x2], output) model.summary() model.compile(Adam(0.05, beta_1=0.9, beta_2=0.9, decay=2e-5), loss='mean_squared_error') model.fit([x, x2in], yout, batch_size=1, epochs=500000, validation_split=0.0) model.compile(Adam(0.001, beta_2=0.9, decay=1e-4), loss=my_loss1) model.fit([x, x2in], yout, batch_size=1, epochs=50000, validation_split=0.0) model.compile(Adam(0.0001, beta_2=0.9, decay=1e-4), loss=my_loss2) model.fit([x, x2in], yout, batch_size=1, epochs=50000, validation_split=0.0) model.compile(Adam(0.00001, beta_2=0.9, decay=1e-4), loss=my_loss3) model.fit([x, x2in], yout, batch_size=1, epochs=50000, validation_split=0.0) model.save_weights('tanh.h5')