ref: 4322c16335860985d857e507d45b98e5b3d73896
dir: /dnn/training_tf2/train_lpcnet.py/
#!/usr/bin/python3 '''Copyright (c) 2018 Mozilla Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' # Train an LPCNet model import argparse parser = argparse.ArgumentParser(description='Train an LPCNet model') parser.add_argument('features', metavar='<features file>', help='binary features file (float32)') parser.add_argument('data', metavar='<audio data file>', help='binary audio data file (uint8)') parser.add_argument('output', metavar='<output>', help='trained model file (.h5)') parser.add_argument('--model', metavar='<model>', default='lpcnet', help='LPCNet model python definition (without .py)') parser.add_argument('--quantize', metavar='<input weights>', help='quantize model') parser.add_argument('--density', metavar='<global density>', type=float, help='average density of the recurrent weights (default 0.1)') parser.add_argument('--density-split', nargs=3, metavar=('<update>', '<reset>', '<state>'), type=float, help='density of each recurrent gate (default 0.05, 0.05, 0.2)') parser.add_argument('--grub-density', metavar='<global GRU B density>', type=float, help='average density of the recurrent weights (default 1.0)') parser.add_argument('--grub-density-split', nargs=3, metavar=('<update>', '<reset>', '<state>'), type=float, help='density of each GRU B input gate (default 1.0, 1.0, 1.0)') parser.add_argument('--grua-size', metavar='<units>', default=384, type=int, help='number of units in GRU A (default 384)') parser.add_argument('--grub-size', metavar='<units>', default=16, type=int, help='number of units in GRU B (default 16)') parser.add_argument('--epochs', metavar='<epochs>', default=120, type=int, help='number of epochs to train for (default 120)') parser.add_argument('--batch-size', metavar='<batch size>', default=128, type=int, help='batch size to use (default 128)') args = parser.parse_args() density = (0.05, 0.05, 0.2) if args.density_split is not None: density = args.density_split elif args.density is not None: density = [0.5*args.density, 0.5*args.density, 2.0*args.density]; grub_density = (1., 1., 1.) if args.grub_density_split is not None: grub_density = args.grub_density_split elif args.grub_density is not None: grub_density = [0.5*args.grub_density, 0.5*args.grub_density, 2.0*args.grub_density]; import importlib lpcnet = importlib.import_module(args.model) import sys import numpy as np from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import ModelCheckpoint from ulaw import ulaw2lin, lin2ulaw import tensorflow.keras.backend as K import h5py import tensorflow as tf #gpus = tf.config.experimental.list_physical_devices('GPU') #if gpus: # try: # tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=5120)]) # except RuntimeError as e: # print(e) nb_epochs = args.epochs # Try reducing batch_size if you run out of memory on your GPU batch_size = args.batch_size quantize = args.quantize is not None if quantize: lr = 0.00003 decay = 0 else: lr = 0.001 decay = 2.5e-5 opt = Adam(lr, decay=decay, beta_2=0.99) strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy() with strategy.scope(): model, _, _ = lpcnet.new_lpcnet_model(rnn_units1=args.grua_size, rnn_units2=args.grub_size, training=True, quantize=quantize) model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics='sparse_categorical_crossentropy') model.summary() feature_file = args.features pcm_file = args.data # 16 bit unsigned short PCM samples frame_size = model.frame_size nb_features = 55 nb_used_features = model.nb_used_features feature_chunk_size = 15 pcm_chunk_size = frame_size*feature_chunk_size # u for unquantised, load 16 bit PCM samples and convert to mu-law data = np.memmap(pcm_file, dtype='uint8', mode='r') nb_frames = len(data)//(4*pcm_chunk_size)//batch_size*batch_size features = np.memmap(feature_file, dtype='float32', mode='r') # limit to discrete number of frames data = data[:nb_frames*4*pcm_chunk_size] features = features[:nb_frames*feature_chunk_size*nb_features].copy() features = np.reshape(features, (nb_frames*feature_chunk_size, nb_features)) data = np.reshape(data, (nb_frames, pcm_chunk_size, 4)) in_data = data[:,:,:3] out_exc = data[:,:,3:4] print("ulaw std = ", np.std(out_exc)) features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features)) features = features[:, :, :nb_used_features] features[:,:,18:36] = 0 fpad1 = np.concatenate([features[0:1, 0:2, :], features[:-1, -2:, :]], axis=0) fpad2 = np.concatenate([features[1:, :2, :], features[0:1, -2:, :]], axis=0) features = np.concatenate([fpad1, features, fpad2], axis=1) periods = (.1 + 50*features[:,:,36:37]+100).astype('int16') #periods = np.minimum(periods, 255) # dump models to disk as we go checkpoint = ModelCheckpoint('{}_{}_{}.h5'.format(args.output, args.grua_size, '{epoch:02d}')) if quantize: #Adapting from an existing model model.load_weights(args.quantize) sparsify = lpcnet.Sparsify(0, 0, 1, density) grub_sparsify = lpcnet.SparsifyGRUB(0, 0, 1, args.grua_size, grub_density) else: #Training from scratch sparsify = lpcnet.Sparsify(2000, 40000, 400, density) grub_sparsify = lpcnet.SparsifyGRUB(2000, 40000, 400, args.grua_size, grub_density) model.save_weights('{}_{}_initial.h5'.format(args.output, args.grua_size)) model.fit([in_data, features, periods], out_exc, batch_size=batch_size, epochs=nb_epochs, validation_split=0.0, callbacks=[checkpoint, sparsify, grub_sparsify])