ref: 247ea8367395a95e5be2a7a9c5dfb8025a3f367e
dir: /dnn/torch/osce/models/td_discriminator.py/
""" MIT License Copyright (c) 2020 Jungil Kong Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ # This is an adaptation of the HiFi-Gan discriminators derived from https://github.com/jik876/hifi-gan import torch import torch.nn.functional as F import torch.nn as nn from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm def get_padding(kernel_size, dilation=1): return int((kernel_size*dilation - dilation)/2) LRELU_SLOPE = 0.1 class DiscriminatorP(torch.nn.Module): def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False, max_channels=1024): super(DiscriminatorP, self).__init__() self.max_channels = max_channels self.period = period norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList([ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(min(self.max_channels, 128), min(self.max_channels, 512), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(min(self.max_channels, 512), min(self.max_channels, 1024), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), norm_f(Conv2d(min(self.max_channels, 1024), min(self.max_channels, 1024), (kernel_size, 1), 1, padding=(2, 0))), ]) self.conv_post = norm_f(Conv2d(min(self.max_channels, 1024), 1, (3, 1), 1, padding=(1, 0))) def forward(self, x): # 1d to 2d b, c, t = x.shape if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), "reflect") t = t + n_pad x = x.view(b, c, t // self.period, self.period) output = [] for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) output.append(x) x = self.conv_post(x) output.append(x) return output class MultiPeriodDiscriminator(torch.nn.Module): def __init__(self, max_channels=1024): super(MultiPeriodDiscriminator, self).__init__() self.discriminators = nn.ModuleList([ DiscriminatorP(2, max_channels=max_channels), DiscriminatorP(3, max_channels=max_channels), DiscriminatorP(5, max_channels=max_channels), DiscriminatorP(7, max_channels=max_channels), DiscriminatorP(11, max_channels=max_channels), ]) def forward(self, y): outputs = [] for disc in self.discriminators: outputs.append(disc(y)) return outputs class DiscriminatorS(torch.nn.Module): def __init__(self, use_spectral_norm=False, max_channels=1024): super(DiscriminatorS, self).__init__() self.max_channels = max_channels norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList([ norm_f(Conv1d(1, min(self.max_channels, 128), 15, 1, padding=7)), norm_f(Conv1d(min(self.max_channels, 128), min(self.max_channels, 128), 41, 2, groups=4, padding=20)), norm_f(Conv1d(min(self.max_channels, 128), min(self.max_channels, 256), 41, 2, groups=16, padding=20)), norm_f(Conv1d(min(self.max_channels, 256), min(self.max_channels, 512), 41, 4, groups=16, padding=20)), norm_f(Conv1d(min(self.max_channels, 512), min(self.max_channels, 1024), 41, 4, groups=16, padding=20)), norm_f(Conv1d(min(self.max_channels, 1024), min(self.max_channels, 1024), 41, 1, groups=16, padding=20)), norm_f(Conv1d(min(self.max_channels, 1024), min(self.max_channels, 1024), 5, 1, padding=2)), ]) self.conv_post = norm_f(Conv1d(min(self.max_channels, 1024), 1, 3, 1, padding=1)) def forward(self, x): output = [] for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) output.append(x) x = self.conv_post(x) output.append(x) return output class MultiScaleDiscriminator(torch.nn.Module): def __init__(self, max_channels=1024): super(MultiScaleDiscriminator, self).__init__() self.discriminators = nn.ModuleList([ DiscriminatorS(use_spectral_norm=True, max_channels=max_channels), DiscriminatorS(max_channels=max_channels), DiscriminatorS(max_channels=max_channels), ]) self.meanpools = nn.ModuleList([ AvgPool1d(4, 2, padding=2), AvgPool1d(4, 2, padding=2) ]) def forward(self, y): outputs = [] for disc in self.discriminators: outputs.append(disc(y)) return outputs class TDMultiResolutionDiscriminator(torch.nn.Module): def __init__(self, max_channels=1024, **kwargs): super().__init__() print(f"{max_channels=}") self.msd = MultiScaleDiscriminator(max_channels=max_channels) self.mpd = MultiPeriodDiscriminator(max_channels=max_channels) def forward(self, y): return self.msd(y) + self.mpd(y)