ref: 0164bdb37a5115db7221fb0a065ba78812995e6a
dir: /dnn/training_tf2/pade.py/
# Optimizing a rational function to optimize a tanh() approximation import numpy as np import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, GRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Multiply, Add, Bidirectional, MaxPooling1D, Activation import tensorflow.keras.backend as K from tensorflow.keras.optimizers import Adam, SGD def my_loss1(y_true, y_pred): return 1*K.mean(K.square(y_true-y_pred)) + 1*K.max(K.square(y_true-y_pred), axis=1) def my_loss2(y_true, y_pred): return .1*K.mean(K.square(y_true-y_pred)) + 1*K.max(K.square(y_true-y_pred), axis=1) def my_loss3(y_true, y_pred): return .01*K.mean(K.square(y_true-y_pred)) + 1*K.max(K.square(y_true-y_pred), axis=1) # Using these initializers to seed the approximation # with a reasonable starting point def num_init(shape, dtype=None): rr = tf.constant([[945], [105], [1]], dtype=dtype) #rr = tf.constant([[946.56757], [98.01368], [0.66841]], dtype=dtype) print(rr) return rr def den_init(shape, dtype=None): rr = tf.constant([[945], [420], [15]], dtype=dtype) #rr = tf.constant([[946.604], [413.342], [12.465]], dtype=dtype) print(rr) return rr x = np.arange(-10, 10, .01) N = len(x) x = np.reshape(x, (1, -1, 1)) x2 = x*x x2in = np.concatenate([x2*0 + 1, x2, x2*x2], axis=2) yout = np.tanh(x) model_x = Input(shape=(None, 1,)) model_x2 = Input(shape=(None, 3,)) num = Dense(1, name='num', use_bias=False, kernel_initializer=num_init) den = Dense(1, name='den', use_bias=False, kernel_initializer=den_init) def ratio(x): return tf.minimum(1., tf.maximum(-1., x[0]*x[1]/x[2])) out_layer = Lambda(ratio) output = out_layer([model_x, num(model_x2), den(model_x2)]) model = Model([model_x, model_x2], output) model.summary() model.compile(Adam(0.05, beta_1=0.9, beta_2=0.9, decay=2e-5), loss='mean_squared_error') model.fit([x, x2in], yout, batch_size=1, epochs=500000, validation_split=0.0) model.compile(Adam(0.001, beta_2=0.9, decay=1e-4), loss=my_loss1) model.fit([x, x2in], yout, batch_size=1, epochs=50000, validation_split=0.0) model.compile(Adam(0.0001, beta_2=0.9, decay=1e-4), loss=my_loss2) model.fit([x, x2in], yout, batch_size=1, epochs=50000, validation_split=0.0) model.compile(Adam(0.00001, beta_2=0.9, decay=1e-4), loss=my_loss3) model.fit([x, x2in], yout, batch_size=1, epochs=50000, validation_split=0.0) model.save_weights('tanh.h5')