ref: 03bf63f40e0fdd56e86dfe5a7c5ce1937ab9127a
dir: /other/make_text_dict.py/
import array
memos = {}
memoslist = []
def memo(s):
m = memos.get(s)
if m == None:
m = len(memoslist)
memos[s] = m
memoslist.append(s)
return m
def tos(s): return "".join(memoslist[c] for c in s)
lines = []
for line in open('dialogue.txt', 'r').read().splitlines():
line = line.split(': ')[1]
r = array.array('H')
i = 0
while i < len(line):
if line[i] == '[':
j = line.index(']', i + 1)
r.append(memo(line[i:j+1]))
i = j + 1
else:
r.append(memo(line[i]))
i += 1
#print(repr(line))
#print(r)
lines.append(list(r))
import collections
def find_all_ngrams(lines, N, cost):
ctr = collections.Counter()
for line in lines:
for i in range(len(line) - N + 1):
if line[i] != line[i+1]:
ctr[tuple(line[i:i+N])] += 1
r = list((b, a) for a, b in ctr.items() if b >= 2)
if len(r) == 0:
return None, 0
b, a = max(r)
return a, (N - cost) * b - N - 2 # 2 is the overhead of the dict
def find_best_ngram(cost):
best_score=0
for i in range(2, 32):
text, score = find_all_ngrams(lines, i, cost)
if score > best_score:
best_score = score
best_text = text
return best_score, best_text
def update_ngrams(lines, replace_from, replace_to):
for line in lines:
for i in range(len(line) - len(replace_from) + 1):
if tuple(line[i:i+len(replace_from)]) == replace_from:
line[i:i+len(replace_from)] = replace_to
total_gain = 0
original_tokens = sum(len(line) for line in lines)
kTextDictionary_US = [
' ', ' ', ' ', "'s ", 'and ',
'are ', 'all ', 'ain', 'and', 'at ',
'ast', 'an', 'at', 'ble', 'ba',
'be', 'bo', 'can ', 'che', 'com',
'ck', 'des', 'di', 'do', 'en ',
'er ', 'ear', 'ent', 'ed ', 'en',
'er', 'ev', 'for', 'fro', 'give ',
'get', 'go', 'have', 'has', 'her',
'hi', 'ha', 'ight ', 'ing ', 'in',
'is', 'it', 'just', 'know', 'ly ',
'la', 'lo', 'man', 'ma', 'me',
'mu', "n't ", 'non', 'not', 'open',
'ound', 'out ', 'of', 'on', 'or',
'per', 'ple', 'pow', 'pro', 're ',
're', 'some', 'se', 'sh', 'so',
'st', 'ter ', 'thin', 'ter', 'tha',
'the', 'thi', 'to', 'tr', 'up',
'ver', 'with', 'wa', 'we', 'wh',
'wi', 'you', 'Her', 'Tha', 'The',
'Thi', 'You',
]
dictionary = []
for i in range(111+256):
best_score, best_text = find_best_ngram(1 if i < 111 else 2)
if best_score == 0:
break
total_gain += best_score
print(f'Removed best bigram "{tos(best_text)}" with gain {best_score}, total gain {total_gain} / {original_tokens}')
dictionary.append(best_text)
update_ngrams(lines, best_text, [memo('{%s}' % tos(best_text))])
#print('kTextDictionary_NEW = [')
#for i, d in enumerate(dictionary):
# repl = tos(d).replace('{', '').replace('}', '')
# print(f'{repr(repl)},')
#print(']')
for i, a in enumerate(lines):
print(i, tos(a))