ref: 3191e80bf7fda36bf0c951b0363cd52fa6ceac6b
dir: /p_setup.c/
// P_main.c
// HEADER FILES ------------------------------------------------------------
#include "h2stdinc.h"
#include "doomdef.h"
#include "p_local.h"
#include "soundst.h"
#ifdef RENDER3D
#include "ogl_def.h"
#endif
// MACROS ------------------------------------------------------------------
// TYPES -------------------------------------------------------------------
// EXTERNAL FUNCTION PROTOTYPES --------------------------------------------
void P_SpawnMapThing(mapthing_t *mthing);
// PUBLIC FUNCTION PROTOTYPES ----------------------------------------------
// PRIVATE FUNCTION PROTOTYPES ---------------------------------------------
#ifdef RENDER3D
static float P_AccurateDistance(fixed_t dx, fixed_t dy);
#endif
// EXTERNAL DATA DECLARATIONS ----------------------------------------------
// PUBLIC DATA DEFINITIONS -------------------------------------------------
mapthing_t deathmatchstarts[10], *deathmatch_p;
mapthing_t playerstarts[MAXPLAYERS];
int numvertexes;
vertex_t *vertexes;
int numsegs;
seg_t *segs;
int numsectors;
sector_t *sectors;
int numsubsectors;
subsector_t *subsectors;
int numnodes;
node_t *nodes;
int numlines;
line_t *lines;
int numsides;
side_t *sides;
short *blockmaplump; // offsets in blockmap are from here
short *blockmap;
int bmapwidth, bmapheight; // in mapblocks
fixed_t bmaporgx, bmaporgy; // origin of block map
mobj_t **blocklinks; // for thing chains
byte *rejectmatrix; // for fast sight rejection
// PRIVATE DATA DEFINITIONS ------------------------------------------------
// CODE --------------------------------------------------------------------
/*
=================
=
= P_LoadVertexes
=
=================
*/
static void P_LoadVertexes (int lump)
{
void *data;
int i;
mapvertex_t *ml;
vertex_t *li;
numvertexes = W_LumpLength (lump) / sizeof(mapvertex_t);
vertexes = (vertex_t *) Z_Malloc (numvertexes*sizeof(vertex_t), PU_LEVEL, NULL);
data = W_CacheLumpNum (lump, PU_STATIC);
ml = (mapvertex_t *)data;
li = vertexes;
for (i = 0; i < numvertexes; i++, li++, ml++)
{
li->x = SHORT(ml->x)<<FRACBITS;
li->y = SHORT(ml->y)<<FRACBITS;
}
Z_Free (data);
}
/*
=================
=
= P_LoadSegs
=
=================
*/
static void P_LoadSegs (int lump)
{
void *data;
int i;
mapseg_t *ml;
seg_t *li;
line_t *ldef;
int _linedef, side;
numsegs = W_LumpLength (lump) / sizeof(mapseg_t);
segs = (seg_t *) Z_Malloc (numsegs*sizeof(seg_t), PU_LEVEL, NULL);
memset (segs, 0, numsegs*sizeof(seg_t));
data = W_CacheLumpNum (lump, PU_STATIC);
ml = (mapseg_t *)data;
li = segs;
for (i = 0; i < numsegs; i++, li++, ml++)
{
li->v1 = &vertexes[SHORT(ml->v1)];
li->v2 = &vertexes[SHORT(ml->v2)];
li->angle = (SHORT(ml->angle))<<16;
li->offset = (SHORT(ml->offset))<<16;
_linedef = SHORT(ml->linedef);
ldef = &lines[_linedef];
li->linedef = ldef;
side = SHORT(ml->side);
li->sidedef = &sides[ldef->sidenum[side]];
li->frontsector = sides[ldef->sidenum[side]].sector;
if (ldef-> flags & ML_TWOSIDED)
li->backsector = sides[ldef->sidenum[side^1]].sector;
else
li->backsector = 0;
#ifdef RENDER3D
// Calculate the length of the segment. We need this for
// the texture coordinates. -jk
li->len = P_AccurateDistance(li->v2->x - li->v1->x, li->v2->y - li->v1->y);
#endif
}
Z_Free (data);
}
/*
=================
=
= P_LoadSubsectors
=
=================
*/
static void P_LoadSubsectors (int lump)
{
void *data;
int i;
mapsubsector_t *ms;
subsector_t *ss;
numsubsectors = W_LumpLength (lump) / sizeof(mapsubsector_t);
subsectors = (subsector_t *) Z_Malloc (numsubsectors*sizeof(subsector_t), PU_LEVEL, NULL);
data = W_CacheLumpNum (lump, PU_STATIC);
ms = (mapsubsector_t *)data;
memset (subsectors, 0, numsubsectors*sizeof(subsector_t));
ss = subsectors;
for (i = 0; i < numsubsectors; i++, ss++, ms++)
{
ss->numlines = SHORT(ms->numsegs);
ss->firstline = SHORT(ms->firstseg);
}
Z_Free (data);
}
/*
=================
=
= P_LoadSectors
=
=================
*/
static void P_LoadSectors (int lump)
{
void *data;
int i;
mapsector_t *ms;
sector_t *ss;
numsectors = W_LumpLength (lump) / sizeof(mapsector_t);
sectors = (sector_t *) Z_Malloc (numsectors*sizeof(sector_t), PU_LEVEL, NULL);
memset (sectors, 0, numsectors*sizeof(sector_t));
data = W_CacheLumpNum (lump, PU_STATIC);
ms = (mapsector_t *)data;
ss = sectors;
for (i = 0; i < numsectors; i++, ss++, ms++)
{
ss->floorheight = SHORT(ms->floorheight)<<FRACBITS;
ss->ceilingheight = SHORT(ms->ceilingheight)<<FRACBITS;
ss->floorpic = R_FlatNumForName(ms->floorpic);
ss->ceilingpic = R_FlatNumForName(ms->ceilingpic);
ss->lightlevel = SHORT(ms->lightlevel);
ss->special = SHORT(ms->special);
ss->tag = SHORT(ms->tag);
ss->thinglist = NULL;
#ifdef RENDER3D
ss->flatoffx = ss->flatoffy = 0;// Flat scrolling.
ss->skyfix = 0; // Set if needed.
#endif
}
Z_Free(data);
}
/*
=================
=
= P_LoadNodes
=
=================
*/
static void P_LoadNodes (int lump)
{
void *data;
int i, j, k;
mapnode_t *mn;
node_t *no;
numnodes = W_LumpLength (lump) / sizeof(mapnode_t);
nodes = (node_t *) Z_Malloc (numnodes*sizeof(node_t), PU_LEVEL, NULL);
data = W_CacheLumpNum (lump, PU_STATIC);
mn = (mapnode_t *)data;
no = nodes;
for (i = 0; i < numnodes; i++, no++, mn++)
{
no->x = SHORT(mn->x)<<FRACBITS;
no->y = SHORT(mn->y)<<FRACBITS;
no->dx = SHORT(mn->dx)<<FRACBITS;
no->dy = SHORT(mn->dy)<<FRACBITS;
for (j = 0; j < 2; j++)
{
no->children[j] = SHORT(mn->children[j]);
for (k = 0; k < 4; k++)
no->bbox[j][k] = SHORT(mn->bbox[j][k])<<FRACBITS;
}
}
Z_Free (data);
}
/*
=================
=
= P_LoadThings
=
=================
*/
static void P_LoadThings(int lump)
{
void *data;
int i;
mapthing_t *mt;
int numthings;
data = W_CacheLumpNum(lump, PU_STATIC);
numthings = W_LumpLength(lump) / sizeof(mapthing_t);
mt = (mapthing_t *)data;
for (i = 0; i < numthings; i++, mt++)
{
mt->x = SHORT(mt->x);
mt->y = SHORT(mt->y);
mt->angle = SHORT(mt->angle);
mt->type = SHORT(mt->type);
mt->options = SHORT(mt->options);
P_SpawnMapThing(mt);
}
Z_Free(data);
}
/*
=================
=
= P_LoadLineDefs
=
= Also counts secret lines for intermissions
=================
*/
static void P_LoadLineDefs(int lump)
{
void *data;
int i;
maplinedef_t *mld;
line_t *ld;
vertex_t *v1, *v2;
numlines = W_LumpLength(lump) / sizeof(maplinedef_t);
lines = (line_t *) Z_Malloc(numlines*sizeof(line_t), PU_LEVEL, NULL);
memset(lines, 0, numlines*sizeof(line_t));
data = W_CacheLumpNum(lump, PU_STATIC);
mld = (maplinedef_t *)data;
ld = lines;
for (i = 0; i < numlines; i++, mld++, ld++)
{
ld->flags = SHORT(mld->flags);
ld->special = SHORT(mld->special);
ld->tag = SHORT(mld->tag);
v1 = ld->v1 = &vertexes[SHORT(mld->v1)];
v2 = ld->v2 = &vertexes[SHORT(mld->v2)];
ld->dx = v2->x - v1->x;
ld->dy = v2->y - v1->y;
if (!ld->dx)
ld->slopetype = ST_VERTICAL;
else if (!ld->dy)
ld->slopetype = ST_HORIZONTAL;
else
{
if (FixedDiv (ld->dy , ld->dx) > 0)
ld->slopetype = ST_POSITIVE;
else
ld->slopetype = ST_NEGATIVE;
}
if (v1->x < v2->x)
{
ld->bbox[BOXLEFT] = v1->x;
ld->bbox[BOXRIGHT] = v2->x;
}
else
{
ld->bbox[BOXLEFT] = v2->x;
ld->bbox[BOXRIGHT] = v1->x;
}
if (v1->y < v2->y)
{
ld->bbox[BOXBOTTOM] = v1->y;
ld->bbox[BOXTOP] = v2->y;
}
else
{
ld->bbox[BOXBOTTOM] = v2->y;
ld->bbox[BOXTOP] = v1->y;
}
ld->sidenum[0] = SHORT(mld->sidenum[0]);
ld->sidenum[1] = SHORT(mld->sidenum[1]);
if (ld->sidenum[0] != -1)
ld->frontsector = sides[ld->sidenum[0]].sector;
else
ld->frontsector = 0;
if (ld->sidenum[1] != -1)
ld->backsector = sides[ld->sidenum[1]].sector;
else
ld->backsector = 0;
}
Z_Free (data);
}
/*
=================
=
= P_LoadSideDefs
=
=================
*/
static void P_LoadSideDefs (int lump)
{
void *data;
int i;
mapsidedef_t *msd;
side_t *sd;
numsides = W_LumpLength (lump) / sizeof(mapsidedef_t);
sides = (side_t *) Z_Malloc (numsides*sizeof(side_t), PU_LEVEL, NULL);
memset (sides, 0, numsides*sizeof(side_t));
data = W_CacheLumpNum (lump, PU_STATIC);
msd = (mapsidedef_t *)data;
sd = sides;
for (i = 0; i < numsides; i++, msd++, sd++)
{
sd->textureoffset = SHORT(msd->textureoffset)<<FRACBITS;
sd->rowoffset = SHORT(msd->rowoffset)<<FRACBITS;
sd->toptexture = R_TextureNumForName(msd->toptexture);
sd->bottomtexture = R_TextureNumForName(msd->bottomtexture);
sd->midtexture = R_TextureNumForName(msd->midtexture);
sd->sector = §ors[SHORT(msd->sector)];
}
Z_Free(data);
}
/*
=================
=
= P_LoadBlockMap
=
=================
*/
static void P_LoadBlockMap (int lump)
{
int i, count;
blockmaplump = (short *) W_CacheLumpNum (lump, PU_LEVEL);
blockmap = blockmaplump + 4;
count = W_LumpLength (lump) / 2;
for (i = 0; i < count; i++)
blockmaplump[i] = SHORT(blockmaplump[i]);
bmaporgx = blockmaplump[0]<<FRACBITS;
bmaporgy = blockmaplump[1]<<FRACBITS;
bmapwidth = blockmaplump[2];
bmapheight = blockmaplump[3];
// clear out mobj chains
count = sizeof(*blocklinks) * bmapwidth * bmapheight;
blocklinks = (mobj_t **) Z_Malloc (count, PU_LEVEL, NULL);
memset (blocklinks, 0, count);
}
/*
=================
=
= P_GroupLines
=
= Builds sector line lists and subsector sector numbers
= Finds block bounding boxes for sectors
=================
*/
static void P_GroupLines (void)
{
line_t **linebuffer;
int i, j, total;
line_t *li;
sector_t *sector;
subsector_t *ss;
seg_t *seg;
fixed_t bbox[4];
int block;
// look up sector number for each subsector
ss = subsectors;
for (i = 0; i < numsubsectors; i++, ss++)
{
seg = &segs[ss->firstline];
ss->sector = seg->sidedef->sector;
}
// count number of lines in each sector
li = lines;
total = 0;
for (i = 0; i < numlines; i++, li++)
{
total++;
li->frontsector->linecount++;
if (li->backsector && li->backsector != li->frontsector)
{
li->backsector->linecount++;
total++;
}
}
// build line tables for each sector
linebuffer = (line_t **) Z_Malloc (total * sizeof(line_t *), PU_LEVEL, NULL);
sector = sectors;
for (i = 0; i < numsectors; i++, sector++)
{
M_ClearBox (bbox);
sector->lines = linebuffer;
li = lines;
for (j = 0; j < numlines; j++, li++)
{
if (li->frontsector == sector || li->backsector == sector)
{
*linebuffer++ = li;
M_AddToBox (bbox, li->v1->x, li->v1->y);
M_AddToBox (bbox, li->v2->x, li->v2->y);
}
}
if (linebuffer - sector->lines != sector->linecount)
I_Error ("P_GroupLines: miscounted");
// set the degenmobj_t to the middle of the bounding box
sector->soundorg.x = (bbox[BOXRIGHT] + bbox[BOXLEFT]) / 2;
sector->soundorg.y = (bbox[BOXTOP] + bbox[BOXBOTTOM]) / 2;
// adjust bounding box to map blocks
block = (bbox[BOXTOP] - bmaporgy + MAXRADIUS) >> MAPBLOCKSHIFT;
block = block >= bmapheight ? bmapheight - 1 : block;
sector->blockbox[BOXTOP] = block;
block = (bbox[BOXBOTTOM] - bmaporgy - MAXRADIUS) >> MAPBLOCKSHIFT;
block = block < 0 ? 0 : block;
sector->blockbox[BOXBOTTOM] = block;
block = (bbox[BOXRIGHT] - bmaporgx + MAXRADIUS) >> MAPBLOCKSHIFT;
block = block >= bmapwidth ? bmapwidth - 1 : block;
sector->blockbox[BOXRIGHT] = block;
block = (bbox[BOXLEFT] - bmaporgx - MAXRADIUS) >> MAPBLOCKSHIFT;
block = block < 0 ? 0 : block;
sector->blockbox[BOXLEFT] = block;
}
}
#if defined(RENDER3D)
#define MAX_CC_SIDES 64
static float P_AccurateDistance(fixed_t dx, fixed_t dy)
{
float fx = FIX2FLT(dx), fy = FIX2FLT(dy);
return (float)sqrt(fx*fx + fy*fy);
}
static int __no_optimize detSideFloat(fvertex_t *pnt, fdivline_t *dline)
{
/*
(AY-CY)(BX-AX)-(AX-CX)(BY-AY)
s = -----------------------------
L**2
If s < 0 C is left of AB (you can just check the numerator)
If s > 0 C is right of AB
If s = 0 C is on AB
We'll return false if the point c is on the left side.
*/
float s = (dline->y - pnt->y) * dline->dx - (dline->x - pnt->x) * dline->dy;
if (s < 0)
return 0;
return 1;
}
// Lines start-end and fdiv must intersect.
static float __no_optimize findIntersectionVertex(fvertex_t *start, fvertex_t *end,
fdivline_t *fdiv, fvertex_t *inter)
{
float ax = start->x, ay = start->y, bx = end->x, by = end->y;
float cx = fdiv->x, cy = fdiv->y, dx = cx + fdiv->dx, dy = cy + fdiv->dy;
/*
(YA-YC)(XD-XC)-(XA-XC)(YD-YC)
r = ----------------------------- (eqn 1)
(XB-XA)(YD-YC)-(YB-YA)(XD-XC)
*/
float r = ((ay - cy) * (dx-cx) - (ax-cx) * (dy-cy)) /
((bx - ax) * (dy - cy) - (by - ay) * (dx-cx));
/*
XI=XA+r(XB-XA)
YI=YA+r(YB-YA)
*/
inter->x = ax + r * (bx - ax);
inter->y = ay + r * (by - ay);
return r;
}
static void P_ConvexCarver(subsector_t *ssec, int num, divline_t *list)
{
int numclippers = num + ssec->numlines;
fdivline_t *clippers = (fdivline_t *) malloc(numclippers*sizeof(fdivline_t));
int i, k, numedgepoints;
fvertex_t *edgepoints;
unsigned char sidelist[MAX_CC_SIDES];
// Convert the divlines to float, in reverse order.
for (i = 0; i < numclippers; i++)
{
if (i < num)
{
clippers[i].x = FIX2FLT(list[num - i - 1].x);
clippers[i].y = FIX2FLT(list[num - i - 1].y);
clippers[i].dx = FIX2FLT(list[num - i - 1].dx);
clippers[i].dy = FIX2FLT(list[num - i - 1].dy);
}
else
{
seg_t *seg = segs + (ssec->firstline + i - num);
clippers[i].x = FIX2FLT(seg->v1->x);
clippers[i].y = FIX2FLT(seg->v1->y);
clippers[i].dx = FIX2FLT(seg->v2->x - seg->v1->x);
clippers[i].dy = FIX2FLT(seg->v2->y - seg->v1->y);
}
}
// Setup the 'worldwide' polygon.
numedgepoints = 4;
edgepoints = (fvertex_t *) malloc(numedgepoints*sizeof(fvertex_t));
edgepoints[0].x = -32768;
edgepoints[0].y = 32768;
edgepoints[1].x = 32768;
edgepoints[1].y = 32768;
edgepoints[2].x = 32768;
edgepoints[2].y = -32768;
edgepoints[3].x = -32768;
edgepoints[3].y = -32768;
// We'll now clip the polygon with each of the divlines. The left side of
// each divline is discarded.
for (i = 0; i < numclippers; i++)
{
fdivline_t *curclip = clippers + i;
// First we'll determine the side of each vertex.
// Points are allowed to be on the line.
for (k = 0; k < numedgepoints; k++)
{
sidelist[k] = detSideFloat(edgepoints + k, curclip);
}
for (k = 0; k < numedgepoints; k++)
{
int startIdx = k, endIdx = k + 1;
// Check the end index.
if (endIdx == numedgepoints)
endIdx = 0; // Wrap-around.
// Clipping will happen when the ends are on different sides.
if (sidelist[startIdx] != sidelist[endIdx])
{
fvertex_t newvert;
// Find the intersection point of intersecting lines.
findIntersectionVertex(edgepoints + startIdx, edgepoints + endIdx, curclip, &newvert);
// Add the new vertex. Also modify the sidelist.
edgepoints = (fvertex_t *) realloc(edgepoints, (++numedgepoints)*sizeof(fvertex_t));
if (numedgepoints >= MAX_CC_SIDES)
I_Error("Too many points in carver.\n");
// Make room for the new vertex.
memmove(edgepoints + endIdx + 1, edgepoints + endIdx,
(numedgepoints - endIdx - 1)*sizeof(fvertex_t));
memcpy (edgepoints + endIdx, &newvert, sizeof(newvert));
memmove(sidelist + endIdx + 1, sidelist + endIdx, numedgepoints - endIdx - 1);
sidelist[endIdx] = 1;
// Skip over the new vertex.
k++;
}
}
// Now we must discard the points that are on the wrong side.
for (k = 0; k < numedgepoints; k++)
{
if (!sidelist[k])
{
memmove(edgepoints + k, edgepoints + k + 1, (numedgepoints-k-1)*sizeof(fvertex_t));
memmove(sidelist + k, sidelist + k + 1, numedgepoints - k - 1);
numedgepoints--;
k--;
}
}
}
if (!numedgepoints)
{
// I_Error("All carved away!\n");
printf( "All carved away: subsector %p\n", ssec);
ssec->numedgeverts = 0;
ssec->edgeverts = 0;
ssec->origedgeverts = 0;
}
else
{
// Screen out consecutive identical points.
for (i = 0; i < numedgepoints; i++)
{
int previdx = i - 1;
if (previdx < 0)
previdx = numedgepoints - 1;
if (edgepoints[i].x == edgepoints[previdx].x &&
edgepoints[i].y == edgepoints[previdx].y)
{
// This point (i) must be removed.
memmove(edgepoints + i, edgepoints + i + 1,
sizeof(fvertex_t)*(numedgepoints - i - 1));
numedgepoints--;
i--;
}
}
// We need these with dynamic lights.
ssec->origedgeverts = (fvertex_t *) Z_Malloc(sizeof(fvertex_t)*numedgepoints, PU_LEVEL, NULL);
memcpy(ssec->origedgeverts, edgepoints, sizeof(fvertex_t)*numedgepoints);
// Find the center point. Do this by first finding the bounding box.
ssec->bbox[0].x = ssec->bbox[1].x = edgepoints[0].x;
ssec->bbox[0].y = ssec->bbox[1].y = edgepoints[0].y;
for (i = 1; i < numedgepoints; i++)
{
if (edgepoints[i].x < ssec->bbox[0].x)
ssec->bbox[0].x = edgepoints[i].x;
if (edgepoints[i].y < ssec->bbox[0].y)
ssec->bbox[0].y = edgepoints[i].y;
if (edgepoints[i].x > ssec->bbox[1].x)
ssec->bbox[1].x = edgepoints[i].x;
if (edgepoints[i].y > ssec->bbox[1].y)
ssec->bbox[1].y = edgepoints[i].y;
}
ssec->midpoint.x = (ssec->bbox[1].x + ssec->bbox[0].x) / 2;
ssec->midpoint.y = (ssec->bbox[1].y + ssec->bbox[0].y) / 2;
// Make slight adjustments to patch up those ugly, small gaps.
for (i = 0; i < numedgepoints; i++)
{
float dx = edgepoints[i].x - ssec->midpoint.x,
dy = edgepoints[i].y - ssec->midpoint.y;
float dlen = (float) sqrt(dx*dx + dy*dy) * 3;
if (dlen)
{
edgepoints[i].x += dx / dlen;
edgepoints[i].y += dy / dlen;
}
}
ssec->numedgeverts = numedgepoints;
ssec->edgeverts = (fvertex_t *) Z_Malloc(sizeof(fvertex_t)*numedgepoints, PU_LEVEL, NULL);
memcpy(ssec->edgeverts, edgepoints, sizeof(fvertex_t)*numedgepoints);
}
// We're done, free the edgepoints memory.
free(clippers);
free(edgepoints);
}
static void P_CreateFloorsAndCeilings(int bspnode, int numdivlines, divline_t* divlines)
{
node_t *nod;
divline_t *childlist, *dl;
int childlistsize = numdivlines + 1;
// If this is a subsector we are dealing with, begin carving with the
// given list.
if (bspnode & NF_SUBSECTOR)
{
// We have arrived at a subsector. The divline list contains all
// the partition lines that carve out the subsector.
int ssidx = bspnode & (~NF_SUBSECTOR);
OGL_DEBUG("subsector %d: %d divlines\n", ssidx, numdivlines);
// if (ssidx < 10)
P_ConvexCarver(subsectors+ssidx, numdivlines, divlines);
OGL_DEBUG("subsector %d: %d edgeverts\n", ssidx, subsectors[ssidx].numedgeverts);
return; // This leaf is done.
}
// Get a pointer to the node.
nod = nodes + bspnode;
// Allocate a new list for each child.
childlist = (divline_t *) malloc(childlistsize*sizeof(divline_t));
// Copy the previous lines.
if (divlines)
memcpy(childlist, divlines, numdivlines*sizeof(divline_t));
dl = childlist + numdivlines;
dl->x = nod->x;
dl->y = nod->y;
// The right child gets the original line (LEFT side clipped).
dl->dx = nod->dx;
dl->dy = nod->dy;
P_CreateFloorsAndCeilings(nod->children[0], childlistsize, childlist);
// The left side. We must reverse the line, otherwise the wrong
// side would get clipped.
dl->dx = -nod->dx;
dl->dy = -nod->dy;
P_CreateFloorsAndCeilings(nod->children[1], childlistsize, childlist);
// We are finishing with this node, free the allocated list.
free(childlist);
}
static void P_SkyFix(void)
{
int i;
// We need to check all the linedefs.
for (i = 0; i < numlines; i++)
{
line_t *line = lines + i;
sector_t *front = line->frontsector, *back = line->backsector;
int fix = 0;
// The conditions!
if (!front || !back)
continue;
// Both the front and back sectors must have the sky ceiling.
if (front->ceilingpic != skyflatnum || back->ceilingpic != skyflatnum)
continue;
// Operate on the lower sector.
OGL_DEBUG("Line %d (f:%d, b:%d).\n", i, front->ceilingheight >> FRACBITS,
back->ceilingheight >> FRACBITS);
if (front->ceilingheight < back->ceilingheight)
{
fix = (back->ceilingheight - front->ceilingheight) >> FRACBITS;
if (fix > front->skyfix)
front->skyfix = fix;
}
else if (front->ceilingheight > back->ceilingheight)
{
fix = (front->ceilingheight - back->ceilingheight) >> FRACBITS;
if (fix > back->skyfix)
back->skyfix = fix;
}
}
}
#endif /* RENDER3D */
//=============================================================================
/*
=================
=
= P_SetupLevel
=
=================
*/
void P_SetupLevel(int episode, int map, int playermask, skill_t skill)
{
int i;
int parm;
char lumpname[9];
int lumpnum;
mobj_t *mobj;
totalkills = totalitems = totalsecret = 0;
for (i = 0; i < MAXPLAYERS; i++)
{
players[i].killcount = players[i].secretcount = players[i].itemcount = 0;
}
players[consoleplayer].viewz = 1; // will be set by player think
S_Start (); // make sure all sounds are stopped before Z_FreeTags
Z_FreeTags(PU_LEVEL, PU_PURGELEVEL - 1);
#ifdef RENDER3D
OGL_ResetData();
#endif
P_InitThinkers();
//
// look for a regular (development) map first
//
lumpname[0] = 'E';
lumpname[1] = '0' + episode;
lumpname[2] = 'M';
lumpname[3] = '0' + map;
lumpname[4] = 0;
leveltime = 0;
lumpnum = W_GetNumForName (lumpname);
// Note: most of this ordering is important
P_LoadBlockMap(lumpnum + ML_BLOCKMAP);
P_LoadVertexes(lumpnum + ML_VERTEXES);
P_LoadSectors(lumpnum + ML_SECTORS);
P_LoadSideDefs(lumpnum + ML_SIDEDEFS);
P_LoadLineDefs(lumpnum + ML_LINEDEFS);
P_LoadSubsectors(lumpnum + ML_SSECTORS);
P_LoadNodes(lumpnum + ML_NODES);
P_LoadSegs(lumpnum + ML_SEGS);
#ifdef RENDER3D
// We need to carve out the floor/ceiling polygons of each subsector.
// Walk the tree to do this.
//OGL_DEBUG("Floor/ceiling creation: begin at %d, ", ticcount);
P_CreateFloorsAndCeilings(numnodes - 1, 0, 0);
// Also check if the sky needs a fix.
P_SkyFix();
#endif
rejectmatrix = (byte *) W_CacheLumpNum(lumpnum + ML_REJECT, PU_LEVEL);
P_GroupLines();
bodyqueslot = 0;
deathmatch_p = deathmatchstarts;
P_InitAmbientSound();
P_InitMonsters();
P_OpenWeapons();
P_LoadThings(lumpnum + ML_THINGS);
P_CloseWeapons();
// If deathmatch, randomly spawn the active players
TimerGame = 0;
if (deathmatch)
{
for (i = 0; i < MAXPLAYERS; i++)
{
if (playeringame[i])
{ // must give a player spot before deathmatchspawn
mobj = P_SpawnMobj (playerstarts[i].x<<16,
playerstarts[i].y<<16,
0, MT_PLAYER);
players[i].mo = mobj;
G_DeathMatchSpawnPlayer (i);
P_RemoveMobj (mobj);
}
}
parm = M_CheckParm("-timer");
if (parm && parm < myargc - 1)
{
TimerGame = atoi(myargv[parm + 1]) * 35 * 60;
}
}
// set up world state
P_SpawnSpecials ();
// build subsector connect matrix
// P_ConnectSubsectors ();
// preload graphics
if (precache)
R_PrecacheLevel ();
// printf ("free memory: 0x%x\n", Z_FreeMemory());
}
/*
=================
=
= P_Init
=
=================
*/
void P_Init(void)
{
P_InitSwitchList();
P_InitPicAnims();
P_InitTerrainTypes();
P_InitLava();
R_InitSprites(sprnames);
}