ref: 815734e5fb2693f10d6e9bf53ce5d68c9707d460
dir: /vp9/common/x86/vp9_idct_x86.c/
/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <emmintrin.h> // SSE2
#include "./vpx_config.h"
#include "vpx/vpx_integer.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_idct.h"
#if HAVE_SSE2
// In order to improve performance, clip absolute diff values to [0, 255],
// which allows to keep the additions/subtractions in 8 bits.
void vp9_dc_only_idct_add_sse2(int input_dc, uint8_t *pred_ptr,
uint8_t *dst_ptr, int pitch, int stride) {
int a1;
int16_t out;
uint8_t abs_diff;
__m128i p0, p1, p2, p3;
unsigned int extended_diff;
__m128i diff;
out = dct_const_round_shift(input_dc * cospi_16_64);
out = dct_const_round_shift(out * cospi_16_64);
a1 = ROUND_POWER_OF_TWO(out, 4);
// Read prediction data.
p0 = _mm_cvtsi32_si128 (*(const int *)(pred_ptr + 0 * pitch));
p1 = _mm_cvtsi32_si128 (*(const int *)(pred_ptr + 1 * pitch));
p2 = _mm_cvtsi32_si128 (*(const int *)(pred_ptr + 2 * pitch));
p3 = _mm_cvtsi32_si128 (*(const int *)(pred_ptr + 3 * pitch));
// Unpack prediction data, and store 4x4 array in 1 XMM register.
p0 = _mm_unpacklo_epi32(p0, p1);
p2 = _mm_unpacklo_epi32(p2, p3);
p0 = _mm_unpacklo_epi64(p0, p2);
// Clip dc value to [0, 255] range. Then, do addition or subtraction
// according to its sign.
if (a1 >= 0) {
abs_diff = (a1 > 255) ? 255 : a1;
extended_diff = abs_diff * 0x01010101u;
diff = _mm_shuffle_epi32(_mm_cvtsi32_si128((int)extended_diff), 0);
p1 = _mm_adds_epu8(p0, diff);
} else {
abs_diff = (a1 < -255) ? 255 : -a1;
extended_diff = abs_diff * 0x01010101u;
diff = _mm_shuffle_epi32(_mm_cvtsi32_si128((int)extended_diff), 0);
p1 = _mm_subs_epu8(p0, diff);
}
// Store results to dst.
*(int *)dst_ptr = _mm_cvtsi128_si32(p1);
dst_ptr += stride;
p1 = _mm_srli_si128(p1, 4);
*(int *)dst_ptr = _mm_cvtsi128_si32(p1);
dst_ptr += stride;
p1 = _mm_srli_si128(p1, 4);
*(int *)dst_ptr = _mm_cvtsi128_si32(p1);
dst_ptr += stride;
p1 = _mm_srli_si128(p1, 4);
*(int *)dst_ptr = _mm_cvtsi128_si32(p1);
}
void vp9_short_idct4x4_sse2(int16_t *input, int16_t *output, int pitch) {
const __m128i zero = _mm_setzero_si128();
const __m128i eight = _mm_set1_epi16(8);
const __m128i cst = _mm_setr_epi16((int16_t)cospi_16_64, (int16_t)cospi_16_64,
(int16_t)cospi_16_64, (int16_t)-cospi_16_64,
(int16_t)cospi_24_64, (int16_t)-cospi_8_64,
(int16_t)cospi_8_64, (int16_t)cospi_24_64);
const __m128i rounding = _mm_set1_epi32(DCT_CONST_ROUNDING);
const int half_pitch = pitch >> 1;
__m128i input0, input1, input2, input3;
// Rows
input0 = _mm_loadl_epi64((__m128i *)input);
input1 = _mm_loadl_epi64((__m128i *)(input + 4));
input2 = _mm_loadl_epi64((__m128i *)(input + 8));
input3 = _mm_loadl_epi64((__m128i *)(input + 12));
// Construct i3, i1, i3, i1, i2, i0, i2, i0
input0 = _mm_shufflelo_epi16(input0, 0xd8);
input1 = _mm_shufflelo_epi16(input1, 0xd8);
input2 = _mm_shufflelo_epi16(input2, 0xd8);
input3 = _mm_shufflelo_epi16(input3, 0xd8);
input0 = _mm_unpacklo_epi32(input0, input0);
input1 = _mm_unpacklo_epi32(input1, input1);
input2 = _mm_unpacklo_epi32(input2, input2);
input3 = _mm_unpacklo_epi32(input3, input3);
// Stage 1
input0 = _mm_madd_epi16(input0, cst);
input1 = _mm_madd_epi16(input1, cst);
input2 = _mm_madd_epi16(input2, cst);
input3 = _mm_madd_epi16(input3, cst);
input0 = _mm_add_epi32(input0, rounding);
input1 = _mm_add_epi32(input1, rounding);
input2 = _mm_add_epi32(input2, rounding);
input3 = _mm_add_epi32(input3, rounding);
input0 = _mm_srai_epi32(input0, DCT_CONST_BITS);
input1 = _mm_srai_epi32(input1, DCT_CONST_BITS);
input2 = _mm_srai_epi32(input2, DCT_CONST_BITS);
input3 = _mm_srai_epi32(input3, DCT_CONST_BITS);
// Stage 2
input0 = _mm_packs_epi32(input0, zero);
input1 = _mm_packs_epi32(input1, zero);
input2 = _mm_packs_epi32(input2, zero);
input3 = _mm_packs_epi32(input3, zero);
// Transpose
input1 = _mm_unpacklo_epi16(input0, input1);
input3 = _mm_unpacklo_epi16(input2, input3);
input0 = _mm_unpacklo_epi32(input1, input3);
input1 = _mm_unpackhi_epi32(input1, input3);
// Switch column2, column 3, and then, we got:
// input2: column1, column 0; input3: column2, column 3.
input1 = _mm_shuffle_epi32(input1, 0x4e);
input2 = _mm_add_epi16(input0, input1);
input3 = _mm_sub_epi16(input0, input1);
// Columns
// Construct i3, i1, i3, i1, i2, i0, i2, i0
input0 = _mm_shufflelo_epi16(input2, 0xd8);
input1 = _mm_shufflehi_epi16(input2, 0xd8);
input2 = _mm_shufflehi_epi16(input3, 0xd8);
input3 = _mm_shufflelo_epi16(input3, 0xd8);
input0 = _mm_unpacklo_epi32(input0, input0);
input1 = _mm_unpackhi_epi32(input1, input1);
input2 = _mm_unpackhi_epi32(input2, input2);
input3 = _mm_unpacklo_epi32(input3, input3);
// Stage 1
input0 = _mm_madd_epi16(input0, cst);
input1 = _mm_madd_epi16(input1, cst);
input2 = _mm_madd_epi16(input2, cst);
input3 = _mm_madd_epi16(input3, cst);
input0 = _mm_add_epi32(input0, rounding);
input1 = _mm_add_epi32(input1, rounding);
input2 = _mm_add_epi32(input2, rounding);
input3 = _mm_add_epi32(input3, rounding);
input0 = _mm_srai_epi32(input0, DCT_CONST_BITS);
input1 = _mm_srai_epi32(input1, DCT_CONST_BITS);
input2 = _mm_srai_epi32(input2, DCT_CONST_BITS);
input3 = _mm_srai_epi32(input3, DCT_CONST_BITS);
// Stage 2
input0 = _mm_packs_epi32(input0, zero);
input1 = _mm_packs_epi32(input1, zero);
input2 = _mm_packs_epi32(input2, zero);
input3 = _mm_packs_epi32(input3, zero);
// Transpose
input1 = _mm_unpacklo_epi16(input0, input1);
input3 = _mm_unpacklo_epi16(input2, input3);
input0 = _mm_unpacklo_epi32(input1, input3);
input1 = _mm_unpackhi_epi32(input1, input3);
// Switch column2, column 3, and then, we got:
// input2: column1, column 0; input3: column2, column 3.
input1 = _mm_shuffle_epi32(input1, 0x4e);
input2 = _mm_add_epi16(input0, input1);
input3 = _mm_sub_epi16(input0, input1);
// Final round and shift
input2 = _mm_add_epi16(input2, eight);
input3 = _mm_add_epi16(input3, eight);
input2 = _mm_srai_epi16(input2, 4);
input3 = _mm_srai_epi16(input3, 4);
// Store results
_mm_storel_epi64((__m128i *)output, input2);
input2 = _mm_srli_si128(input2, 8);
_mm_storel_epi64((__m128i *)(output + half_pitch), input2);
_mm_storel_epi64((__m128i *)(output + 3 * half_pitch), input3);
input3 = _mm_srli_si128(input3, 8);
_mm_storel_epi64((__m128i *)(output + 2 * half_pitch), input3);
}
void vp9_idct4_1d_sse2(int16_t *input, int16_t *output) {
const __m128i zero = _mm_setzero_si128();
const __m128i c1 = _mm_setr_epi16((int16_t)cospi_16_64, (int16_t)cospi_16_64,
(int16_t)cospi_16_64, (int16_t)-cospi_16_64,
(int16_t)cospi_24_64, (int16_t)-cospi_8_64,
(int16_t)cospi_8_64, (int16_t)cospi_24_64);
const __m128i c2 = _mm_setr_epi16(1, 1, 1, 1, 1, -1, 1, -1);
const __m128i rounding = _mm_set1_epi32(DCT_CONST_ROUNDING);
__m128i in, temp;
// Load input data.
in = _mm_loadl_epi64((__m128i *)input);
// Construct i3, i1, i3, i1, i2, i0, i2, i0
in = _mm_shufflelo_epi16(in, 0xd8);
in = _mm_unpacklo_epi32(in, in);
// Stage 1
in = _mm_madd_epi16(in, c1);
in = _mm_add_epi32(in, rounding);
in = _mm_srai_epi32(in, DCT_CONST_BITS);
in = _mm_packs_epi32(in, zero);
// Stage 2
temp = _mm_shufflelo_epi16(in, 0x9c);
in = _mm_shufflelo_epi16(in, 0xc9);
in = _mm_unpacklo_epi64(temp, in);
in = _mm_madd_epi16(in, c2);
in = _mm_packs_epi32(in, zero);
// Store results
_mm_storel_epi64((__m128i *)output, in);
}
#define IDCT8x8_1D \
/* Stage1 */ \
{ \
const __m128i lo_17 = _mm_unpacklo_epi16(in1, in7); \
const __m128i hi_17 = _mm_unpackhi_epi16(in1, in7); \
const __m128i lo_35 = _mm_unpacklo_epi16(in3, in5); \
const __m128i hi_35 = _mm_unpackhi_epi16(in3, in5); \
\
tmp0 = _mm_madd_epi16(lo_17, stg1_0); \
tmp1 = _mm_madd_epi16(hi_17, stg1_0); \
tmp2 = _mm_madd_epi16(lo_17, stg1_1); \
tmp3 = _mm_madd_epi16(hi_17, stg1_1); \
tmp4 = _mm_madd_epi16(lo_35, stg1_2); \
tmp5 = _mm_madd_epi16(hi_35, stg1_2); \
tmp6 = _mm_madd_epi16(lo_35, stg1_3); \
tmp7 = _mm_madd_epi16(hi_35, stg1_3); \
\
tmp0 = _mm_add_epi32(tmp0, rounding); \
tmp1 = _mm_add_epi32(tmp1, rounding); \
tmp2 = _mm_add_epi32(tmp2, rounding); \
tmp3 = _mm_add_epi32(tmp3, rounding); \
tmp4 = _mm_add_epi32(tmp4, rounding); \
tmp5 = _mm_add_epi32(tmp5, rounding); \
tmp6 = _mm_add_epi32(tmp6, rounding); \
tmp7 = _mm_add_epi32(tmp7, rounding); \
\
tmp0 = _mm_srai_epi32(tmp0, DCT_CONST_BITS); \
tmp1 = _mm_srai_epi32(tmp1, DCT_CONST_BITS); \
tmp2 = _mm_srai_epi32(tmp2, DCT_CONST_BITS); \
tmp3 = _mm_srai_epi32(tmp3, DCT_CONST_BITS); \
tmp4 = _mm_srai_epi32(tmp4, DCT_CONST_BITS); \
tmp5 = _mm_srai_epi32(tmp5, DCT_CONST_BITS); \
tmp6 = _mm_srai_epi32(tmp6, DCT_CONST_BITS); \
tmp7 = _mm_srai_epi32(tmp7, DCT_CONST_BITS); \
\
stp1_4 = _mm_packs_epi32(tmp0, tmp1); \
stp1_7 = _mm_packs_epi32(tmp2, tmp3); \
stp1_5 = _mm_packs_epi32(tmp4, tmp5); \
stp1_6 = _mm_packs_epi32(tmp6, tmp7); \
} \
\
/* Stage2 */ \
{ \
const __m128i lo_04 = _mm_unpacklo_epi16(in0, in4); \
const __m128i hi_04 = _mm_unpackhi_epi16(in0, in4); \
const __m128i lo_26 = _mm_unpacklo_epi16(in2, in6); \
const __m128i hi_26 = _mm_unpackhi_epi16(in2, in6); \
\
tmp0 = _mm_madd_epi16(lo_04, stg2_0); \
tmp1 = _mm_madd_epi16(hi_04, stg2_0); \
tmp2 = _mm_madd_epi16(lo_04, stg2_1); \
tmp3 = _mm_madd_epi16(hi_04, stg2_1); \
tmp4 = _mm_madd_epi16(lo_26, stg2_2); \
tmp5 = _mm_madd_epi16(hi_26, stg2_2); \
tmp6 = _mm_madd_epi16(lo_26, stg2_3); \
tmp7 = _mm_madd_epi16(hi_26, stg2_3); \
\
tmp0 = _mm_add_epi32(tmp0, rounding); \
tmp1 = _mm_add_epi32(tmp1, rounding); \
tmp2 = _mm_add_epi32(tmp2, rounding); \
tmp3 = _mm_add_epi32(tmp3, rounding); \
tmp4 = _mm_add_epi32(tmp4, rounding); \
tmp5 = _mm_add_epi32(tmp5, rounding); \
tmp6 = _mm_add_epi32(tmp6, rounding); \
tmp7 = _mm_add_epi32(tmp7, rounding); \
\
tmp0 = _mm_srai_epi32(tmp0, DCT_CONST_BITS); \
tmp1 = _mm_srai_epi32(tmp1, DCT_CONST_BITS); \
tmp2 = _mm_srai_epi32(tmp2, DCT_CONST_BITS); \
tmp3 = _mm_srai_epi32(tmp3, DCT_CONST_BITS); \
tmp4 = _mm_srai_epi32(tmp4, DCT_CONST_BITS); \
tmp5 = _mm_srai_epi32(tmp5, DCT_CONST_BITS); \
tmp6 = _mm_srai_epi32(tmp6, DCT_CONST_BITS); \
tmp7 = _mm_srai_epi32(tmp7, DCT_CONST_BITS); \
\
stp2_0 = _mm_packs_epi32(tmp0, tmp1); \
stp2_1 = _mm_packs_epi32(tmp2, tmp3); \
stp2_2 = _mm_packs_epi32(tmp4, tmp5); \
stp2_3 = _mm_packs_epi32(tmp6, tmp7); \
\
stp2_4 = _mm_adds_epi16(stp1_4, stp1_5); \
stp2_5 = _mm_subs_epi16(stp1_4, stp1_5); \
stp2_6 = _mm_subs_epi16(stp1_7, stp1_6); \
stp2_7 = _mm_adds_epi16(stp1_7, stp1_6); \
} \
\
/* Stage3 */ \
{ \
const __m128i lo_56 = _mm_unpacklo_epi16(stp2_6, stp2_5); \
const __m128i hi_56 = _mm_unpackhi_epi16(stp2_6, stp2_5); \
\
stp1_0 = _mm_adds_epi16(stp2_0, stp2_3); \
stp1_1 = _mm_adds_epi16(stp2_1, stp2_2); \
stp1_2 = _mm_subs_epi16(stp2_1, stp2_2); \
stp1_3 = _mm_subs_epi16(stp2_0, stp2_3); \
\
tmp0 = _mm_madd_epi16(lo_56, stg2_1); \
tmp1 = _mm_madd_epi16(hi_56, stg2_1); \
tmp2 = _mm_madd_epi16(lo_56, stg2_0); \
tmp3 = _mm_madd_epi16(hi_56, stg2_0); \
\
tmp0 = _mm_add_epi32(tmp0, rounding); \
tmp1 = _mm_add_epi32(tmp1, rounding); \
tmp2 = _mm_add_epi32(tmp2, rounding); \
tmp3 = _mm_add_epi32(tmp3, rounding); \
\
tmp0 = _mm_srai_epi32(tmp0, DCT_CONST_BITS); \
tmp1 = _mm_srai_epi32(tmp1, DCT_CONST_BITS); \
tmp2 = _mm_srai_epi32(tmp2, DCT_CONST_BITS); \
tmp3 = _mm_srai_epi32(tmp3, DCT_CONST_BITS); \
\
stp1_5 = _mm_packs_epi32(tmp0, tmp1); \
stp1_6 = _mm_packs_epi32(tmp2, tmp3); \
} \
\
/* Stage4 */ \
in0 = _mm_adds_epi16(stp1_0, stp2_7); \
in1 = _mm_adds_epi16(stp1_1, stp1_6); \
in2 = _mm_adds_epi16(stp1_2, stp1_5); \
in3 = _mm_adds_epi16(stp1_3, stp2_4); \
in4 = _mm_subs_epi16(stp1_3, stp2_4); \
in5 = _mm_subs_epi16(stp1_2, stp1_5); \
in6 = _mm_subs_epi16(stp1_1, stp1_6); \
in7 = _mm_subs_epi16(stp1_0, stp2_7);
void vp9_short_idct8x8_sse2(int16_t *input, int16_t *output, int pitch) {
const int half_pitch = pitch >> 1;
const __m128i rounding = _mm_set1_epi32(DCT_CONST_ROUNDING);
const __m128i final_rounding = _mm_set1_epi16(1<<4);
const __m128i stg1_0 = pair_set_epi16(cospi_28_64, -cospi_4_64);
const __m128i stg1_1 = pair_set_epi16(cospi_4_64, cospi_28_64);
const __m128i stg1_2 = pair_set_epi16(-cospi_20_64, cospi_12_64);
const __m128i stg1_3 = pair_set_epi16(cospi_12_64, cospi_20_64);
const __m128i stg2_0 = pair_set_epi16(cospi_16_64, cospi_16_64);
const __m128i stg2_1 = pair_set_epi16(cospi_16_64, -cospi_16_64);
const __m128i stg2_2 = pair_set_epi16(cospi_24_64, -cospi_8_64);
const __m128i stg2_3 = pair_set_epi16(cospi_8_64, cospi_24_64);
__m128i in0, in1, in2, in3, in4, in5, in6, in7;
__m128i stp1_0, stp1_1, stp1_2, stp1_3, stp1_4, stp1_5, stp1_6, stp1_7;
__m128i stp2_0, stp2_1, stp2_2, stp2_3, stp2_4, stp2_5, stp2_6, stp2_7;
__m128i tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
int i;
// Load input data.
in0 = _mm_load_si128((__m128i *)input);
in1 = _mm_load_si128((__m128i *)(input + 8 * 1));
in2 = _mm_load_si128((__m128i *)(input + 8 * 2));
in3 = _mm_load_si128((__m128i *)(input + 8 * 3));
in4 = _mm_load_si128((__m128i *)(input + 8 * 4));
in5 = _mm_load_si128((__m128i *)(input + 8 * 5));
in6 = _mm_load_si128((__m128i *)(input + 8 * 6));
in7 = _mm_load_si128((__m128i *)(input + 8 * 7));
// 2-D
for (i = 0; i < 2; i++) {
// 8x8 Transpose is copied from vp9_short_fdct8x8_sse2()
{
const __m128i tr0_0 = _mm_unpacklo_epi16(in0, in1);
const __m128i tr0_1 = _mm_unpacklo_epi16(in2, in3);
const __m128i tr0_2 = _mm_unpackhi_epi16(in0, in1);
const __m128i tr0_3 = _mm_unpackhi_epi16(in2, in3);
const __m128i tr0_4 = _mm_unpacklo_epi16(in4, in5);
const __m128i tr0_5 = _mm_unpacklo_epi16(in6, in7);
const __m128i tr0_6 = _mm_unpackhi_epi16(in4, in5);
const __m128i tr0_7 = _mm_unpackhi_epi16(in6, in7);
const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
}
// 4-stage 1D idct8x8
IDCT8x8_1D
}
// Final rounding and shift
in0 = _mm_add_epi16(in0, final_rounding);
in1 = _mm_add_epi16(in1, final_rounding);
in2 = _mm_add_epi16(in2, final_rounding);
in3 = _mm_add_epi16(in3, final_rounding);
in4 = _mm_add_epi16(in4, final_rounding);
in5 = _mm_add_epi16(in5, final_rounding);
in6 = _mm_add_epi16(in6, final_rounding);
in7 = _mm_add_epi16(in7, final_rounding);
in0 = _mm_srai_epi16(in0, 5);
in1 = _mm_srai_epi16(in1, 5);
in2 = _mm_srai_epi16(in2, 5);
in3 = _mm_srai_epi16(in3, 5);
in4 = _mm_srai_epi16(in4, 5);
in5 = _mm_srai_epi16(in5, 5);
in6 = _mm_srai_epi16(in6, 5);
in7 = _mm_srai_epi16(in7, 5);
// Store results
_mm_store_si128((__m128i *)output, in0);
_mm_store_si128((__m128i *)(output + half_pitch * 1), in1);
_mm_store_si128((__m128i *)(output + half_pitch * 2), in2);
_mm_store_si128((__m128i *)(output + half_pitch * 3), in3);
_mm_store_si128((__m128i *)(output + half_pitch * 4), in4);
_mm_store_si128((__m128i *)(output + half_pitch * 5), in5);
_mm_store_si128((__m128i *)(output + half_pitch * 6), in6);
_mm_store_si128((__m128i *)(output + half_pitch * 7), in7);
}
void vp9_short_idct10_8x8_sse2(int16_t *input, int16_t *output, int pitch) {
const int half_pitch = pitch >> 1;
const __m128i zero = _mm_setzero_si128();
const __m128i rounding = _mm_set1_epi32(DCT_CONST_ROUNDING);
const __m128i final_rounding = _mm_set1_epi16(1<<4);
const __m128i stg1_0 = pair_set_epi16(cospi_28_64, -cospi_4_64);
const __m128i stg1_1 = pair_set_epi16(cospi_4_64, cospi_28_64);
const __m128i stg1_2 = pair_set_epi16(-cospi_20_64, cospi_12_64);
const __m128i stg1_3 = pair_set_epi16(cospi_12_64, cospi_20_64);
const __m128i stg2_0 = pair_set_epi16(cospi_16_64, cospi_16_64);
const __m128i stg2_1 = pair_set_epi16(cospi_16_64, -cospi_16_64);
const __m128i stg2_2 = pair_set_epi16(cospi_24_64, -cospi_8_64);
const __m128i stg2_3 = pair_set_epi16(cospi_8_64, cospi_24_64);
const __m128i stg3_0 = pair_set_epi16(-cospi_16_64, cospi_16_64);
__m128i in0, in1, in2, in3, in4, in5, in6, in7;
__m128i stp1_0, stp1_1, stp1_2, stp1_3, stp1_4, stp1_5, stp1_6, stp1_7;
__m128i stp2_0, stp2_1, stp2_2, stp2_3, stp2_4, stp2_5, stp2_6, stp2_7;
__m128i tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
// Rows. Load 4-row input data.
in0 = _mm_load_si128((__m128i *)input);
in1 = _mm_load_si128((__m128i *)(input + 8 * 1));
in2 = _mm_load_si128((__m128i *)(input + 8 * 2));
in3 = _mm_load_si128((__m128i *)(input + 8 * 3));
// 8x4 Transpose
{
const __m128i tr0_0 = _mm_unpacklo_epi16(in0, in1);
const __m128i tr0_1 = _mm_unpacklo_epi16(in2, in3);
const __m128i tr0_2 = _mm_unpackhi_epi16(in0, in1);
const __m128i tr0_3 = _mm_unpackhi_epi16(in2, in3);
in0 = _mm_unpacklo_epi32(tr0_0, tr0_1); // i1 i0
in1 = _mm_unpacklo_epi32(tr0_2, tr0_3); // i5 i4
in2 = _mm_unpackhi_epi32(tr0_0, tr0_1); // i3 i2
in3 = _mm_unpackhi_epi32(tr0_2, tr0_3); // i7 i6
}
// Stage1
{
const __m128i lo_17 = _mm_unpackhi_epi16(in0, in3);
const __m128i lo_35 = _mm_unpackhi_epi16(in2, in1);
tmp0 = _mm_madd_epi16(lo_17, stg1_0);
tmp2 = _mm_madd_epi16(lo_17, stg1_1);
tmp4 = _mm_madd_epi16(lo_35, stg1_2);
tmp6 = _mm_madd_epi16(lo_35, stg1_3);
tmp0 = _mm_add_epi32(tmp0, rounding);
tmp2 = _mm_add_epi32(tmp2, rounding);
tmp4 = _mm_add_epi32(tmp4, rounding);
tmp6 = _mm_add_epi32(tmp6, rounding);
tmp0 = _mm_srai_epi32(tmp0, DCT_CONST_BITS);
tmp2 = _mm_srai_epi32(tmp2, DCT_CONST_BITS);
tmp4 = _mm_srai_epi32(tmp4, DCT_CONST_BITS);
tmp6 = _mm_srai_epi32(tmp6, DCT_CONST_BITS);
stp1_4 = _mm_packs_epi32(tmp0, zero);
stp1_7 = _mm_packs_epi32(tmp2, zero);
stp1_5 = _mm_packs_epi32(tmp4, zero);
stp1_6 = _mm_packs_epi32(tmp6, zero);
}
// Stage2
{
const __m128i lo_04 = _mm_unpacklo_epi16(in0, in1);
const __m128i lo_26 = _mm_unpacklo_epi16(in2, in3);
tmp0 = _mm_madd_epi16(lo_04, stg2_0);
tmp2 = _mm_madd_epi16(lo_04, stg2_1);
tmp4 = _mm_madd_epi16(lo_26, stg2_2);
tmp6 = _mm_madd_epi16(lo_26, stg2_3);
tmp0 = _mm_add_epi32(tmp0, rounding);
tmp2 = _mm_add_epi32(tmp2, rounding);
tmp4 = _mm_add_epi32(tmp4, rounding);
tmp6 = _mm_add_epi32(tmp6, rounding);
tmp0 = _mm_srai_epi32(tmp0, DCT_CONST_BITS);
tmp2 = _mm_srai_epi32(tmp2, DCT_CONST_BITS);
tmp4 = _mm_srai_epi32(tmp4, DCT_CONST_BITS);
tmp6 = _mm_srai_epi32(tmp6, DCT_CONST_BITS);
stp2_0 = _mm_packs_epi32(tmp0, zero);
stp2_1 = _mm_packs_epi32(tmp2, zero);
stp2_2 = _mm_packs_epi32(tmp4, zero);
stp2_3 = _mm_packs_epi32(tmp6, zero);
stp2_4 = _mm_adds_epi16(stp1_4, stp1_5);
stp2_5 = _mm_subs_epi16(stp1_4, stp1_5);
stp2_6 = _mm_subs_epi16(stp1_7, stp1_6);
stp2_7 = _mm_adds_epi16(stp1_7, stp1_6);
}
// Stage3
{
const __m128i lo_56 = _mm_unpacklo_epi16(stp2_5, stp2_6);
stp1_0 = _mm_adds_epi16(stp2_0, stp2_3);
stp1_1 = _mm_adds_epi16(stp2_1, stp2_2);
stp1_2 = _mm_subs_epi16(stp2_1, stp2_2);
stp1_3 = _mm_subs_epi16(stp2_0, stp2_3);
tmp0 = _mm_madd_epi16(lo_56, stg3_0);
tmp2 = _mm_madd_epi16(lo_56, stg2_0); // stg3_1 = stg2_0
tmp0 = _mm_add_epi32(tmp0, rounding);
tmp2 = _mm_add_epi32(tmp2, rounding);
tmp0 = _mm_srai_epi32(tmp0, DCT_CONST_BITS);
tmp2 = _mm_srai_epi32(tmp2, DCT_CONST_BITS);
stp1_5 = _mm_packs_epi32(tmp0, zero);
stp1_6 = _mm_packs_epi32(tmp2, zero);
}
// Stage4
in0 = _mm_adds_epi16(stp1_0, stp2_7);
in1 = _mm_adds_epi16(stp1_1, stp1_6);
in2 = _mm_adds_epi16(stp1_2, stp1_5);
in3 = _mm_adds_epi16(stp1_3, stp2_4);
in4 = _mm_subs_epi16(stp1_3, stp2_4);
in5 = _mm_subs_epi16(stp1_2, stp1_5);
in6 = _mm_subs_epi16(stp1_1, stp1_6);
in7 = _mm_subs_epi16(stp1_0, stp2_7);
// Columns. 4x8 Transpose
{
const __m128i tr0_0 = _mm_unpacklo_epi16(in0, in1);
const __m128i tr0_1 = _mm_unpacklo_epi16(in2, in3);
const __m128i tr0_4 = _mm_unpacklo_epi16(in4, in5);
const __m128i tr0_5 = _mm_unpacklo_epi16(in6, in7);
const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
in4 = _mm_setzero_si128();
in5 = _mm_setzero_si128();
in6 = _mm_setzero_si128();
in7 = _mm_setzero_si128();
}
// 1D idct8x8
IDCT8x8_1D
// Final rounding and shift
in0 = _mm_add_epi16(in0, final_rounding);
in1 = _mm_add_epi16(in1, final_rounding);
in2 = _mm_add_epi16(in2, final_rounding);
in3 = _mm_add_epi16(in3, final_rounding);
in4 = _mm_add_epi16(in4, final_rounding);
in5 = _mm_add_epi16(in5, final_rounding);
in6 = _mm_add_epi16(in6, final_rounding);
in7 = _mm_add_epi16(in7, final_rounding);
in0 = _mm_srai_epi16(in0, 5);
in1 = _mm_srai_epi16(in1, 5);
in2 = _mm_srai_epi16(in2, 5);
in3 = _mm_srai_epi16(in3, 5);
in4 = _mm_srai_epi16(in4, 5);
in5 = _mm_srai_epi16(in5, 5);
in6 = _mm_srai_epi16(in6, 5);
in7 = _mm_srai_epi16(in7, 5);
// Store results
_mm_store_si128((__m128i *)output, in0);
_mm_store_si128((__m128i *)(output + half_pitch * 1), in1);
_mm_store_si128((__m128i *)(output + half_pitch * 2), in2);
_mm_store_si128((__m128i *)(output + half_pitch * 3), in3);
_mm_store_si128((__m128i *)(output + half_pitch * 4), in4);
_mm_store_si128((__m128i *)(output + half_pitch * 5), in5);
_mm_store_si128((__m128i *)(output + half_pitch * 6), in6);
_mm_store_si128((__m128i *)(output + half_pitch * 7), in7);
}
#endif